1
|
Gera K, Chauhan A, Castillo P, Rahman M, Mathavan A, Mathavan A, Oganda-Rivas E, Elliott L, Wingard JR, Sayour EJ. Vaccines: a promising therapy for myelodysplastic syndrome. J Hematol Oncol 2024; 17:4. [PMID: 38191498 PMCID: PMC10773074 DOI: 10.1186/s13045-023-01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024] Open
Abstract
Myelodysplastic neoplasms (MDS) define clonal hematopoietic malignancies characterized by heterogeneous mutational and clinical spectra typically seen in the elderly. Curative treatment entails allogeneic hematopoietic stem cell transplant, which is often not a feasible option due to older age and significant comorbidities. Immunotherapy has the cytotoxic capacity to elicit tumor-specific killing with long-term immunological memory. While a number of platforms have emerged, therapeutic vaccination presents as an appealing strategy for MDS given its promising safety profile and amenability for commercialization. Several preclinical and clinical trials have investigated the efficacy of vaccines in MDS; these include peptide vaccines targeting tumor antigens, whole cell-based vaccines and dendritic cell-based vaccines. These therapeutic vaccines have shown acceptable safety profiles, but consistent clinical responses remain elusive despite robust immunological reactions. Combining vaccines with immunotherapeutic agents holds promise and requires further investigation. Herein, we highlight therapeutic vaccine trials while reviewing challenges and future directions of successful vaccination strategies in MDS.
Collapse
Affiliation(s)
- Kriti Gera
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Anjali Chauhan
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA
| | - Paul Castillo
- Division of Hematology and Oncology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Maryam Rahman
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA
| | - Akash Mathavan
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Akshay Mathavan
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Elizabeth Oganda-Rivas
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA
| | - Leighton Elliott
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - John R Wingard
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA.
| | - Elias J Sayour
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Abstract
Cancer gene therapy emerged as a promising treatment modality 3 decades ago. However, the failure of the first gene therapy trials in cancer treatment has decreased its popularity. Likewise, immunotherapy has followed a similar course. While it was a popular and promising treatment with IL-2 and interferon and cancer vaccines in the 1980s, it later lost its popularity. Immunotherapy became one of the main options for cancer treatment with the successful use of immune checkpoint inhibitors in clinics approximately 10 years ago. The success of immunotherapy has increased even more with the introduction of cancer gene therapy methods in this area. With the identification of the oncolytic herpes simplex virus and Chimeric antigen receptor (CAR) T-cells, immune gene therapy has become an essential modality in cancer treatments such as surgery, radiotherapy, chemotherapy, and targeted therapies.
Collapse
Affiliation(s)
- Hakan Akbulut
- Department of Basic Oncology, Ankara University Cancer Research Institute, Ankara, Turkey,Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Okamoto M, Soeda T, Asamura A, Tanaka K, Watanabe K, Ikeda T. Functional comparison of the human epidermal growth factor receptor and telomerase reverse transcriptase promoters in canine tumor cells. J Vet Med Sci 2019; 81:397-400. [PMID: 30674742 PMCID: PMC6451903 DOI: 10.1292/jvms.18-0418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously showed that the promoter region of the human epidermal growth factor receptor (hEGFR) gene elicits high transduction efficiency, with transgene expression restricted to canine breast tumor cells. However, it was unclear whether this promoter induces tumor cell-specific transgene expression in canine urothelial carcinoma cells. Furthermore, compared with studies in human cancer cells, the utility of the telomerase reverse transcriptase (TERT) gene promoter for therapeutic transgene expression in canine cancer cells has not been evaluated thus far. Here, we compared the activity of these promoters in canine mammary tumor and urothelial carcinoma cells. Our results showed that compared with the TERT promoter, the hEGFR promoter was more useful as a tumor-specific promoter to induce efficient transgene expression in canine tumor cells.
Collapse
Affiliation(s)
- Mariko Okamoto
- Laboratory of Veterinary Immunology, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Takefumi Soeda
- Laboratory of Veterinary Immunology, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Ai Asamura
- Laboratory of Veterinary Immunology, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Ko Tanaka
- Laboratory of Veterinary Immunology, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Kyo Watanabe
- Laboratory of Veterinary Immunology, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Teruo Ikeda
- Laboratory of Veterinary Immunology, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
4
|
Liu Y, Bewersdorf JP, Stahl M, Zeidan AM. Immunotherapy in acute myeloid leukemia and myelodysplastic syndromes: The dawn of a new era? Blood Rev 2018; 34:67-83. [PMID: 30553527 DOI: 10.1016/j.blre.2018.12.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022]
Abstract
Immunotherapy has revolutionized therapy in both solid and liquid malignancies. The ability to cure acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) with an allogeneic hematopoietic stem cell transplant (HSCT) is proof of concept for the application of immunotherapy in AML and MDS. However, outside of HSCT, only the anti-CD33 antibody drug conjugate gemtuzumab ozogamicin is currently approved as an antibody-targeted therapy for AML. Several avenues of immunotherapeutic drugs are currently in different stages of clinical development. Here, we review recent advances in antibody-based therapy, immune checkpoint inhibitors, vaccines and adoptive cell-based therapy for patients with AML and MDS. First, we discuss different antibody constructs. Immune checkpoint inhibitors targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein-1 (PD-1) and CD47 as well as peptide, dendritic cell and dendritic/AML cell-based vaccines are reviewed next. Lastly, adoptive cell-based therapy including chimeric antigen receptor (CAR)-T cell and NK cell therapy is discussed.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| | - Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| | - Maximilian Stahl
- Department of Medicine, Section of Hematologic Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Ravindranathan S, Nguyen KG, Kurtz SL, Frazier HN, Smith SG, Koppolu BP, Rajaram N, Zaharoff DA. Tumor-derived granulocyte colony-stimulating factor diminishes efficacy of breast tumor cell vaccines. Breast Cancer Res 2018; 20:126. [PMID: 30348199 PMCID: PMC6198508 DOI: 10.1186/s13058-018-1054-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/25/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Although metastasis is ultimately responsible for about 90% of breast cancer mortality, the vast majority of breast-cancer-related deaths are due to progressive recurrences from non-metastatic disease. Current adjuvant therapies are unable to prevent progressive recurrences for a significant fraction of patients with breast cancer. Autologous tumor cell vaccines (ATCVs) are a safe and potentially useful strategy to prevent breast cancer recurrence, in a personalized and patient-specific manner, following standard-of-care tumor resection. Given the high intra-patient and inter-patient heterogeneity in breast cancer, it is important to understand which factors influence the immunogenicity of breast tumor cells in order to maximize ATCV effectiveness. METHODS The relative immunogenicity of two murine breast carcinomas, 4T1 and EMT6, were compared in a prophylactic vaccination-tumor challenge model. Differences in cell surface expression of antigen-presentation-related and costimulatory molecules were compared along with immunosuppressive cytokine production. CRISPR/Cas9 technology was used to modulate tumor-derived cytokine secretion. The impacts of cytokine deletion on splenomegaly, myeloid-derived suppressor cell (MDSC) accumulation and ATCV immunogenicity were assessed. RESULTS Mice vaccinated with an EMT6 vaccine exhibited significantly greater protective immunity than mice vaccinated with a 4T1 vaccine. Hybrid vaccination studies revealed that the 4T1 vaccination induced both local and systemic immune impairments. Although there were significant differences between EMT6 and 4T1 in the expression of costimulatory molecules, major disparities in the secretion of immunosuppressive cytokines likely accounts for differences in immunogenicity between the cell lines. Ablation of one cytokine in particular, granulocyte-colony stimulating factor (G-CSF), reversed MDSC accumulation and splenomegaly in the 4T1 model. Furthermore, G-CSF inhibition enhanced the immunogenicity of a 4T1-based vaccine to the extent that all vaccinated mice developed complete protective immunity. CONCLUSIONS Breast cancer cells that express high levels of G-CSF have the potential to diminish or abrogate the efficacy of breast cancer ATCVs. Fortunately, this study demonstrates that genetic ablation of immunosuppressive cytokines, such as G-CSF, can enhance the immunogenicity of breast cancer cell-based vaccines. Strategies that combine inhibition of immunosuppressive factors with immune stimulatory co-formulations already under development may help ATCVs reach their full potential.
Collapse
Affiliation(s)
| | - Khue G Nguyen
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Samantha L Kurtz
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Haven N Frazier
- Honors College, University of Arkansas, Fayetteville, AR, USA
| | - Sean G Smith
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC and North Carolina State University, Raleigh, NC, USA
| | - Bhanu Prasanth Koppolu
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC and North Carolina State University, Raleigh, NC, USA
| | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - David A Zaharoff
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA. .,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA. .,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA. .,Honors College, University of Arkansas, Fayetteville, AR, USA. .,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC and North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
6
|
Galati D, Zanotta S. Hematologic neoplasms: Dendritic cells vaccines in motion. Clin Immunol 2017; 183:181-190. [PMID: 28870867 DOI: 10.1016/j.clim.2017.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/28/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs) are bone-marrow-derived immune cells accounted for a key role in cancer vaccination as potent antigen-presenting cells within the immune system. Cancer microenvironment can modulate DCs maturation resulting in their accumulation into functional states associated with a reduced antitumor immune response. In this regard, a successful cancer vaccine needs to mount a potent antitumor immune response able to overcome the immunosuppressive tumor milieu. As a consequence, DCs-based approaches are a safe and promising strategy for improving the therapeutic efficacy in hematological malignancies, particularly in combinations with additional treatments. This review summarizes the most significant evidence about the immunotherapeutic strategies performed to target hematologic neoplasms including the tumoral associated antigens (TAA) pulsed on DCs, whole tumor cell vaccines or leukemia-derived DCs.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Hematology, National Cancer Institute, Fondazione 'G. Pascale', IRCCS, Via Mariano Semmola 49, 80131 Naples, Italy.
| | - Serena Zanotta
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Hematology, National Cancer Institute, Fondazione 'G. Pascale', IRCCS, Via Mariano Semmola 49, 80131 Naples, Italy
| |
Collapse
|
7
|
Li XM, Zhang LP, Wang YZ, Lu AD, Chang Y, Zhu HH, Qin YZ, Lai YY, Kong Y, Huang XJ, Liu YR. CD38+ CD58- is an independent adverse prognostic factor in paediatric Philadelphia chromosome negative B cell acute lymphoblastic leukaemia patients. Leuk Res 2016; 43:33-8. [PMID: 26930456 DOI: 10.1016/j.leukres.2015.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
Abstract
To explore new risk predictors for a high risk of relapse in Philadelphia chromosome negative (Ph-) B cell acute lymphoblastic leukaemia (B-ALL) patients, 196 paediatric Ph- B-ALL patients (≤ 18 years) were retrospectively analysed. We mainly focus on investigating the prognostic value of CD38 and CD58 expression in leukemic blasts in these patients by four colour flow cytometry. The CD38+ CD58- group (n=16) had a higher relapse rate, a shorter 3-year event-free survival (EFS) and overall survival (OS) than the CD38+ CD58+ group (n=157; 31.3% vs 10.2%, P=0.04; 52.4% vs 92.3%, P<0.01; 32.5% vs 91.0%, P=0.01); CD38+ CD58- was an independent adverse prognostic predictor for relapse (hazard ratio [HR], 0.203; 95%CI, 0.063-0.656; P=0.01), 3-year EFS (HR, 0.091; 95%CI, 0.023-0.355; P<0.01) and OS (HR, 0.102; 95%CI, 0.026-0.3971; P<0.01) in this cohort, as determined by Cox multivariate analysis. We identified, for the first time, a higher risk population of paediatric Ph- B-ALL patients with CD38+ CD58- who had a higher relapse risk and a shorter survival. Our results may allow better risk stratification and individualized treatment.
Collapse
Affiliation(s)
- Xu-Mian Li
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Le-Ping Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Ya-Zhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Ai-Dong Lu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yan Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Hong-Hu Zhu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yue-Yun Lai
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yan-Rong Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.
| |
Collapse
|
8
|
Pyzer AR, Avigan DE, Rosenblatt J. Clinical trials of dendritic cell-based cancer vaccines in hematologic malignancies. Hum Vaccin Immunother 2014; 10:3125-31. [PMID: 25625926 PMCID: PMC4514037 DOI: 10.4161/21645515.2014.982993] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/17/2014] [Accepted: 10/05/2014] [Indexed: 11/19/2022] Open
Abstract
The potential for the immune system to target hematological malignancies is demonstrated in the allogeneic transplant setting, where durable responses can be achieved. However, allogeneic transplantation is associated with significant morbidity and mortality related to graft versus host disease. Cancer immunotherapy has the capacity to direct a specific cytotoxic immune response against cancer cells, particularly residual cancer cells, in order to reduce the likelihood of disease relapse in a more targeted and tolerated manner. Ex vivo dendritic cells can be primed in various ways to present tumor associated antigen to the immune system, in the context of co-stimulatory molecules, eliciting a tumor specific cytotoxic response in patients. Several approaches to prime dendritic cells and overcome the immunosuppressive microenvironment have been evaluated in pre-clinical and early clinical trials with promising results. In this review, we summarize the clinical data evaluating dendritic cell based vaccines for the treatment of hematological malignancies.
Collapse
Key Words
- AML, Acute Myeloid Leukemia
- ASCT, Autologous Stem Cell Transplant
- Apo-DC, Apoptotic body loaded- dendritic cells
- CML, Chronic Myeloid Leukemia
- CR, Complete response
- CTLA-4, Cytotoxic T-Lymphocyte Antigen 4
- DC/AML, Dendritic cell Acute Myeloid Leukemia fusion vaccine
- DC/MM, Dendritic cell Multiple Myeloma fusion vaccine
- DNA Deoxyribonucleic acid
- FLT-ITD, Fms-like Tyrosine Kinase with Internal Tandem Duplication
- GMCSF, Granulocyte macrophage colony-stimulating factor
- GVHD, Graft vs Host Disease
- HLA-A*2402, Human Leukocyte antigen A*2402
- IFN, Interferon
- IFNg, Interferon gamma
- IL, Interleukin
- Id, Idiotype
- KLH, Keyhole limpet hemocyanin
- MDS, Myelodysplastic syndrome
- MHC, Major histocompatibility complex
- OS, Overall Survival
- PD-1, Programmed death 1
- PD-L1, Programmed death-ligand 1
- PR, Partial response
- PRR, Pathogen recognition receptor
- RNA, Ribonucleic acid
- SCT, Stem cell transplant
- TGFB, Transforming growth factor β
- TNFα, Tumor necrosis factor α
- VEGF, Vascular endothelial growth factor
- VGPR, Very good partial response
- WT-1, Wilm's tumor suppressor gene 1
- cancer
- dendritic cell
- immunotherapy
- leukemia
- mRNA, mRNA
- myeloma
- pDCs, Plasmacytoid Dendritic cell
- trial
- vaccine
Collapse
Affiliation(s)
- Athalia R Pyzer
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - David E Avigan
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - Jacalyn Rosenblatt
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| |
Collapse
|
9
|
Abstract
A promising cancer vaccine involves the fusion of dendritic cells (DCs) with tumor cells such that a broad array of tumor antigens are presented in the context of DC-mediated costimulation and stimulatory cytokines. In diverse animal models, vaccination with DC/tumor fusions results in protection from an otherwise lethal challenge of tumor cells and eradication of established disease. In phase I clinical studies, vaccination with DC/tumor fusions was well tolerated, and induced immunologic responses in the majority of patients and clinical responses in a subset. Vaccine efficacy may be blunted by the immunosuppressive milieu characteristic of patients with malignancy, including the increased presence of regulatory T cells, and inhibitory pathways such as the PD-1/PDL-1 pathway. A current focus of research interest lies in enhancing response to cancer vaccines, by combining vaccination with tumor cytoreduction, regulatory T-cell depletion, and blockade of critical inhibitory pathways.
Collapse
Affiliation(s)
- David Avigan
- Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | |
Collapse
|