1
|
He X, Zhang Q, Wang Y, Sun J, Zhang Y, Zhang C. Non-coding RNAs in the spotlight of the pathogenesis, diagnosis, and therapy of cutaneous T cell lymphoma. Cell Death Discov 2024; 10:400. [PMID: 39256366 PMCID: PMC11387814 DOI: 10.1038/s41420-024-02165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a group of primary and secondary cutaneous malignancies characterized by aberrant T-cells in the skin. Diagnosing CTCL in its early stage can be difficult because of CTCL's ability to mimic benign cutaneous inflammatory skin diseases. CTCL has multiple subtypes with different disease progression and diagnostic parameters despite similar clinical manifestations. The accurate diagnosis and prognosis of a varied range of diseases require the detection of molecular entities to capture the complete footprint of disease physiology. Non-coding RNAs (ncRNAs) have recently been discovered as major regulators of CTCL gene expression. They can affect tumor cell growth, migration, programmed cell death (PCD), and immunoregulation through interactions with the tumor microenvironment (TME), which in turn affect CTCL progression. This review summarizes recent advances in how ncRNAs regulate CTCL cell activity, especially their role in PCD. It also discusses the potential use of ncRNAs as diagnostic and prognostic biomarkers for different subtypes of CTCL. Furthermore, prospective targets and therapeutic approaches influenced by ncRNAs are presented. A better appreciation of the intricate epigenetic landscape of CTCL is expected to facilitate the creation of innovative targeted therapies for the condition.
Collapse
Affiliation(s)
- Xiao He
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Qian Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Yimeng Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Jiachen Sun
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Ying Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Chunlei Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
2
|
Entezari M, Tayari A, Paskeh MDA, Kheirabad SK, Naeemi S, Taheriazam A, Dehghani H, Salimimoghadam S, Hashemi M, Mirzaei S, Samarghandian S. Curcumin in treatment of hematological cancers: Promises and challenges. J Tradit Complement Med 2024; 14:121-134. [PMID: 38481552 PMCID: PMC10927384 DOI: 10.1016/j.jtcme.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2024] Open
Abstract
Hematological cancers include leukemia, myeloma and lymphoma and up to 178.000 new cases are diagnosed with these tumors each year. Different kinds of treatment including radiotherapy, chemotherapy, immunotherapy and stem cell transplantation have been employed in the therapy of hematological cancers. However, they are still causing death among patients. On the other hand, curcumin as an anti-cancer agent for the suppression of human cancers has been introduced. The treatment of hematological cancers using curcumin has been followed. Curcumin diminishes viability and survival rate of leukemia, myeloma and lymphoma cells. Curcumin stimulates apoptosis and G2/M arrest to impair progression of tumor. Curcumin decreases levels of matrix metalloproteinases in suppressing cancer metastasis. A number of downstream targets including VEGF, Akt and STAT3 undergo suppression by curcumin in suppressing progression of hematological cancers. Curcumin stimulates DNA damage and reduces resistance of cancer cells to irradiation. Furthermore, curcumin causes drug sensitivity of hematological tumors, especially myeloma. For targeted delivery of curcumin and improving its pharmacokinetic and anti-cancer features, nanostructures containing curcumin and other anti-cancer agents have been developed.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Armita Tayari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Simin Khorsand Kheirabad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Naeemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Dehghani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Medical Laboratory Sciences, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
3
|
In Vitro Study of Cytotoxic Mechanisms of Alkylphospholipids and Alkyltriazoles in Acute Lymphoblastic Leukemia Models. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238633. [PMID: 36500726 PMCID: PMC9737184 DOI: 10.3390/molecules27238633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022]
Abstract
This study investigates the efficacy of miltefosine, alkylphospholipid, and alkyltriazolederivative compounds against leukemia lineages. The cytotoxic effects and cellular and molecular mechanisms of the compounds were investigated. The inhibitory potential and mechanism of inhibition of cathepsins B and L, molecular docking simulation, molecular dynamics and binding free energy evaluation were performed to determine the interaction of cathepsins and compounds. Among the 21 compounds tested, C9 and C21 mainly showed cytotoxic effects in Jurkat and CCRF-CEM cells, two human acute lymphoblastic leukemia (ALL) lineages. Activation of induced cell death by C9 and C21 with apoptotic and necrosis-like characteristics was observed, including an increase in annexin-V+propidium iodide-, annexin-V+propidium iodide+, cleaved caspase 3 and PARP, cytochrome c release, and nuclear alterations. Bax inhibitor, Z-VAD-FMK, pepstatin, and necrostatin partially reduced cell death, suggesting that involvement of the caspase-dependent and -independent mechanisms is related to cell type. Compounds C9 and C21 inhibited cathepsin L by a noncompetitive mechanism, and cathepsin B by a competitive and noncompetitive mechanism, respectively. Complexes cathepsin-C9 and cathepsin-C21 exhibited significant hydrophobic interactions, water bridges, and hydrogen bonds. In conclusion, alkyltriazoles present cytotoxic activity against acute lymphoblastic lineages and represent a promising scaffold for the development of molecules for this application.
Collapse
|
4
|
Micellar Curcumin Substantially Increases the Antineoplastic Activity of the Alkylphosphocholine Erufosine against TWIST1 Positive Cutaneous T Cell Lymphoma Cell Lines. Pharmaceutics 2022; 14:pharmaceutics14122688. [PMID: 36559182 PMCID: PMC9781439 DOI: 10.3390/pharmaceutics14122688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a rare form of cancer with local as well as systemic manifestations. Concomitant bacterial infections increase morbidity and mortality rates due to impaired skin barrier and immune deficiency. In the current study, we demonstrated that the in vitro anti-lymphoma potential of erufosine is diminished by TWIST1 expression and micellar curcumin substantially increases its antineoplastic activity. Pharmacokinetic analysis showed that the micellar curcumin (MCRM) used in our study was characterized by low zeta potential, slow release of curcumin, and fast cell membrane penetration. The combination ratio 1:4 [erufosine:MCRM] achieved strong synergism by inhibiting cell proliferation and clonogenicity. The combined antiproliferative effects were calculated using the symbolic mathematical software MAPLE 15. The synergistic combination strongly decreased the expression of TWIST1 and protein kinase B/Akt as proven by western blotting. Significant reductions in NF-κB activation, induction of apoptosis, and altered glutathione levels were demonstrated by corresponding assays. In addition, the synergistic combination enhanced the anti-staphylococcal activity and prevented biofilm formation, as shown by crystal violet staining. Taken together, the above results show that the development of nanotechnological treatment modalities for CTCL, based on rational drug combinations exhibiting parallel antineoplastic and antibacterial effects, may prove efficacious.
Collapse
|
5
|
Synthesis and characterization of curcumin/MMT-clay-treated bacterial cellulose as an antistatic and ultraviolet-resistive bioscaffold. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
El-Sheridy NA, El-Moslemany RM, Ramadan AA, Helmy MW, El-Khordagui LK. Itraconazole for Topical Treatment of Skin Carcinogenesis: Efficacy Enhancement by Lipid Nanocapsule Formulations. J Biomed Nanotechnol 2022; 18:97-111. [PMID: 35180903 DOI: 10.1166/jbn.2022.3217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Itraconazole (ITC), an antifungal drug with anticancer activity, shows potential for oral treatment of skin cancer. There is clinical need for topical ITC for treating low-risk skin carcinogenesis. Our objective was to develop ITC nanoformulations with enhanced anticancer efficacy. Lipid nanocapsules (LNC), either unmodified (ITC/LNC) or modified with the amphiphiles miltefosine (ITC/MF-LNC) or the lipopeptide biosurfactant surfactin (ITC/SF-LNC) as bioactive additives were developed. LNC formulations showed high ITC entrapment efficiency (>98%), small diameter (42-45 nm) and sustained ITC release. Cytotoxicity studies using malignant SCC 9 cells and normal human fibroblasts (NHF) demonstrated significant enhancement of ITC anticancer activity and selectivity for cancer cells by the LNC formulations and a synergistic ITC-amphiphile interaction improving the combination performance. Treatment of intradermal tumor-bearing mice with the ITC nanoformulation gels compared with ITC and 5-FU gels achieved significant tumor growth inhibition that was remarkably enhanced by ITC/MF-LNC and ITC/SF-LNC as well as recovery of skin architecture. Molecularly, tumoral expression of Ki-67 and cytokeratin proliferative proteins was significantly suppressed by LNC formulations, the suppressive effect on cytokeratins was superior to that of 5-FU. These findings provide new evidence for effective topical treatment of low-risk skin carcinogenesis utilizing multiple approaches that involve drug repurposing, nanotechnology, and bioactive amphiphiles as formulation enhancing additives.
Collapse
Affiliation(s)
- Nabila A El-Sheridy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Alyaa A Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Maged W Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Beheira, Egypt
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
7
|
Avsar Abdik E, Abdik H, Turan D, Sahin F, Berger MR, Kaleagasioglu F. Dual Akt and Bcl-2 inhibition induces cell-type specific modulation of apoptotic and autophagic signaling in castration resistant prostate cancer cell lines. Mol Biol Rep 2021; 48:7755-7765. [PMID: 34647221 DOI: 10.1007/s11033-021-06786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cancer cell survival depends on the cross-regulation between apoptosis and autophagy which share common signaling pathways including PI3K/Akt/mTOR and Bcl-2. The aim of this study was to elucidate the modulation patterns between apoptosis and autophagy following dual inhibition by Akt inhibitor erufosine and Bcl-2 inhibitor ABT-737 in castration-resistant prostate cancer (CRPC) cell lines, PC-3 (Bax+) and DU-145 (Bax-). METHODS AND RESULTS Cell cycle progression, apoptotic and autophagic signaling were examined by flow cytometry, multi-caspase assay, Hoechst staining, acridine orange staining of acidic vesicular organelles (AVOs), qRT-PCR and Western Blot. Dual inhibition increased G2/M arrest in PC-3 and DU-145, but not in the healthy prostate epithelium cells, PNT-1A. Only in PC-3, dual inhibition induced synergistic apoptotic and additive autophagic effects. In DU-145 and PNT-1A cells, ABT-737 did not display any remarkable effect on multicaspase activity and erufosine and ABT-737, neither alone nor in combination induced AVOs. By dual inhibition, AKT, BCL-2 and NF-κB gene expressions were downregulated in PC-3, both ATG-5 and BECLIN-1 gene expressions were upregulated in DU-145 but Beclin-1 protein expression was substantially reduced in both CRPC cells. Dual inhibition-induced synergistic multicaspase activation in PC-3 degrades and disrupts autophagic activity of Beclin-1, enhancing caspase-dependent apoptosis. However, in DU-145, following dual inhibition, rate of multicaspase induction and apoptosis are lower but autophagy is completely abolished despite markedly increased BECLIN-1 gene expression. CONCLUSION In conclusion, antineoplastic drug combinations may display cell-type specific modulation of apoptotic and autophagic signaling and lack of protective autophagy may not necessarily indicate increased chemotherapeutic sensitivity in heterogenous tumor subpopulations.
Collapse
Affiliation(s)
- Ezgi Avsar Abdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Hüseyin Abdik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Duygu Turan
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Koç University, Istanbul, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
| | - Ferda Kaleagasioglu
- Department of Pharmacology and Clinical Pharmacology, Istinye University Faculty of Medicine, Topkapı Campus, Maltepe Neighbourhood, Teyyareci Sami St., No. 3, Zeytinburnu, Istanbul, Turkey.
| |
Collapse
|
8
|
El-Sheridy NA, El-Moslemany RM, Ramadan AA, Helmy MW, El-Khordagui LK. Enhancing the in vitro and in vivo activity of itraconazole against breast cancer using miltefosine-modified lipid nanocapsules. Drug Deliv 2021; 28:906-919. [PMID: 33960245 PMCID: PMC8131005 DOI: 10.1080/10717544.2021.1917728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Itraconazole (ITC), a well-tolerated antifungal drug, exerts multiple anticancer effects which justified its preclinical and clinical investigation as potential anti-cancer agent with reduced side effects. Enhancement of ITC anti-cancer efficacy would bring valuable benefits to patients. We propose herein lipid nanocapsules (LNCs) modified with a subtherapeutic dose of miltefosine (MFS) as a membrane bioactive amphiphilic additive (M-ITC-LNC) for the development of an ITC nanoformulation with enhanced anticancer activity compared with ITC solution (ITC-sol) and unmodified ITC-LNC. Both LNC formulations showed a relatively small size (43-46 nm) and high entrapment efficiency (>97%), though ITC release was more sustained by M-ITC-LNC. Cytotoxicity studies revealed significantly greater anticancer activity and selectivity of M-ITC-LNC for MCF-7 breast cancer cells compared with ITC-sol and ITC-LNC. This trend was substantiated by in vivo findings following a 14 day-treatment of murine mammary pad Ehrlich tumors. M-ITC-LNC showed the greatest enhancement of the ITC-induced tumor growth inhibition, proliferation, and necrosis. At the molecular level, the tumor content of Gli 1, caspase-3, and vascular endothelial growth factor verified superiority of M-ITC-LNC in enhancing the ITC antiangiogenic, apoptotic, and Hedgehog pathway inhibitory effects. Finally, histopathological and biochemical analysis indicated greater reduction of ITC systemic toxicity by M-ITC-LNC. Superior performance of M-ITC-LNC was attributed to the effect of MFS on the structural and release properties of LNC coupled with its distinct bioactivities. In conclusion, MFS-modified LNC provides a simple nanoplatform integrating the potentials of LNC and MFS for enhancing the chemotherapeutic efficacy of ITC and possibly other oncology drugs.
Collapse
Affiliation(s)
- Nabila A El-Sheridy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,European Egyptian Pharmaceutical Industries, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Alyaa A Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Trochopoulos AGX, Zaharieva MM, Marinova MH, Yoncheva K, Tibi IPE, Berger MR, Konstantinov SM. Antineoplastic effect of a novel nanosized curcumin on cutaneous T cell lymphoma. Oncol Lett 2020; 20:304. [PMID: 33093913 PMCID: PMC7573878 DOI: 10.3892/ol.2020.12167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Cutaneous T cell lymphomas (CTCLs) are a group of heterogeneous, life-threatening, extra-nodal and lymphoproliferative T cell neoplasms. Since chronic inflammation serves a key role in CTCL progression, curcumin, a natural pigment with proven anti-inflammatory and antineoplastic properties, as well as minimal toxicity, may be used as a therapeutic agent. In the present study, two formulations of curcumin (standard ethanolic and a Pluronic®P-123/F-127 micellar solution) were compared regarding their cytotoxic efficacy and speed of internalization in three CTCL cell lines, namely HuT-78, HH and MJ. In addition, the modulating effect of curcumin on selected proteins involved in the proliferation and progression of the disease was determined. The results indicated the superiority of the Pluronic®P-123/F-127 micellar curcumin over the standard ethanol solution in terms of cellular internalization efficiency as determined by spectrophotometric analysis. Notably, the presence of commonly used media components, such as phenol red, may interfere when interpreting the cytotoxicity of curcumin, due to their overlapping absorbance peaks. Therefore, it was concluded that phenol red-free media are superior over media with phenol red in order to correctly measure the cytotoxic efficacy and cell penetration of curcumin. Depending on the cell line, the IC50 values of micellar curcumin varied from 29.76 to 1.24 µΜ, with HH cells demonstrating the highest sensitivity. This cell line had the lowest expression levels of the Wilms' tumor-1 transcription factor. Performing western blot analyses of treated and untreated CTCL cells, selective signal transduction changes were recorded for the first time, thus making curcumin nano-formulation an attractive and prospective option with therapeutic relevance for CTCL as a rare orphan disease.
Collapse
Affiliation(s)
- Antonios G X Trochopoulos
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Maya M Zaharieva
- Department of Infectious Microbiology, Institute of Microbiology 'Stephan Angeloff', Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Mirela H Marinova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Krasimira Yoncheva
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Ivanka Pencheva-El Tibi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Martin R Berger
- Unit of Toxicology and Chemotherapy, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Spiro M Konstantinov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
10
|
Kaleağasıoğlu F, Ali DM, Berger MR. Multiple Facets of Autophagy and the Emerging Role of Alkylphosphocholines as Autophagy Modulators. Front Pharmacol 2020; 11:547. [PMID: 32410999 PMCID: PMC7201076 DOI: 10.3389/fphar.2020.00547] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a highly conserved multistep process and functions as passage for degrading and recycling protein aggregates and defective organelles in eukaryotic cells. Based on the nature of these materials, their size and degradation rate, four types of autophagy have been described, i.e. chaperone mediated autophagy, microautophagy, macroautophagy, and selective autophagy. One of the major regulators of this process is mTOR, which inhibits the downstream pathway of autophagy following the activation of its complex 1 (mTORC1). Alkylphosphocholine (APC) derivatives represent a novel class of antineoplastic agents that inhibit the serine-threonine kinase Akt (i.e. protein kinase B), which mediates cell survival and cause cell cycle arrest. They induce autophagy through inhibition of the Akt/mTOR cascade. They interfere with phospholipid turnover and thus modify signaling chains, which start from the cell membrane and modulate PI3K/Akt/mTOR, Ras-Raf-MAPK/ERK and SAPK/JNK pathways. APCs include miltefosine, perifosine, and erufosine, which represent the first-, second- and third generation of this class, respectively. In a high fraction of human cancers, constitutively active oncoprotein Akt1 suppresses autophagy in vitro and in vivo. mTOR is a down-stream target for Akt, the activation of which suppresses autophagy. However, treatment with APC derivatives will lead to dephosphorylation (hence deactivation) of mTOR and thus induces autophagy. Autophagy is a double-edged sword and may result in chemotherapeutic resistance as well as cancer cell death when apoptotic pathways are inactive. APCs display differential autophagy induction capabilities in different cancer cell types. Therefore, autophagy-dependent cellular responses need to be well understood in order to improve the chemotherapeutic outcome.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Department of Pharmacology, Faculty of Medicine, Near East University, Mersin, Turkey
| | - Doaa M. Ali
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pharmacology and Experimental Therapeutics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Martin R. Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Kaleağasıoğlu F, Zaharieva MM, Konstantinov SM, Berger MR. Alkylphospholipids are Signal Transduction Modulators with Potential for Anticancer Therapy. Anticancer Agents Med Chem 2019; 19:66-91. [PMID: 30318001 DOI: 10.2174/1871520618666181012093056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alkylphospholipids (APLs) are synthetically derived from cell membrane components, which they target and thus modify cellular signalling and cause diverse effects. This study reviews the mechanism of action of anticancer, antiprotozoal, antibacterial and antiviral activities of ALPs, as well as their clinical use. METHODS A literature search was used as the basis of this review. RESULTS ALPs target lipid rafts and alter phospholipase D and C signalling cascades, which in turn will modulate the PI3K/Akt/mTOR and RAS/RAF/MEK/ERK pathways. By feedback coupling, the SAPK/JNK signalling chain is also affected. These changes lead to a G2/M phase cell cycle arrest and subsequently induce programmed cell death. The available knowledge on inhibition of AKT phosphorylation, mTOR phosphorylation and Raf down-regulation renders ALPs as attractive candidates for modern medical treatment, which is based on individualized diagnosis and therapy. Corresponding to their unusual profile of activities, their side effects result from cholinomimetic activity mainly and focus on the gastrointestinal tract. These aspects together with their bone marrow sparing features render APCs well suited for modern combination therapy. Although the clinical success has been limited in cancer diseases so far, the use of miltefosine against leishmaniosis is leading the way to better understanding their optimized use. CONCLUSION Recent synthetic programs generate congeners with the increased therapeutic ratio, liposomal formulations, as well as diapeutic (or theranostic) derivatives with optimized properties. It is anticipated that these innovative modifications will pave the way for the further successful development of ALPs.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Faculty of Medicine, Near East University, Mersin 10, Turkey
| | - Maya M Zaharieva
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Microbiology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Spiro M Konstantinov
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University Sofia, Sofia, Bulgaria
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Shkondrov A, Krasteva I, Ionkova I, Popova P, Zarev Y, Mihaylova R, Konstantinov S. Production of saponins from in vitro cultures of Astragalus glycyphyllos and their antineoplastic activity. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1671222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Aleksandar Shkondrov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Ilina Krasteva
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Iliana Ionkova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Pavlinka Popova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Yancho Zarev
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Rositsa Mihaylova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Spiro Konstantinov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
13
|
Margaritova Zaharieva M, Dimitrov Kroumov A, Dimitrova L, Tsvetkova I, Trochopoulos A, Mihaylov Konstantinov S, Reinhold Berger M, Momchilova M, Yoncheva K, Miladinov Najdenski H. Micellar curcumin improves the antibacterial activity of the alkylphosphocholines erufosine and miltefosine against pathogenic Staphyloccocus aureus strains. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1533792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Maya Margaritova Zaharieva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Alexander Dimitrov Kroumov
- Department of Applied Microbiology, The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lyudmila Dimitrova
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iva Tsvetkova
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Antonios Trochopoulos
- Department of Pharmacology Pharmacotherapy and Toxicology Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Spiro Mihaylov Konstantinov
- Department of Pharmacology Pharmacotherapy and Toxicology Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | | | - Milena Momchilova
- Department of Pharmaceutical Technology and Biopharmaceutics Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Krassimira Yoncheva
- Department of Pharmaceutical Technology and Biopharmaceutics Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Hristo Miladinov Najdenski
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
14
|
Zhang L, Qiang P, Yu J, Miao Y, Chen Z, Qu J, Zhao Q, Chen Z, Liu Y, Yao X, Liu B, Cui L, Jing H, Sun G. Identification of compound CA-5f as a novel late-stage autophagy inhibitor with potent anti-tumor effect against non-small cell lung cancer. Autophagy 2018; 15:391-406. [PMID: 30145925 DOI: 10.1080/15548627.2018.1511503] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Currently, particular focus is placed on the implication of autophagy in a variety of human diseases, including cancer. Discovery of small-molecule modulators of autophagy as well as their potential use as anti-cancer therapeutic agents would be of great significance. To this end, a series of curcumin analogs previously synthesized in our laboratory were screened. Among these compounds, (3E,5E)-3-(3,4-dimethoxybenzylidene)-5-[(1H-indol-3-yl)methylene]-1-methylpiperidin-4-one (CA-5f) was identified as a potent late-stage macroautophagy/autophagy inhibitor via inhibiting autophagosome-lysosome fusion. We found that CA-5f neither impaired the hydrolytic function nor the quantity of lysosomes. Use of an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic screen in combination with bioinformatics analysis suggested that treatment of human umbilical vein endothelial cells (HUVECs) with CA-5f for 1 h suppressed the levels of cytoskeletal proteins and membrane traffic proteins. Subsequent studies showed that CA-5f exhibited strong cytotoxicity against A549 non-small cell lung cancer (NSCLC) cells, but low cytotoxicity to normal human umbilical vein endothelial cells (HUVECs), by increasing mitochondrial-derived reactive oxygen species (ROS) production. Moreover, CA-5f effectively suppressed the growth of A549 lung cancer xenograft as a single agent with an excellent tolerance in vivo. Results from western blot, immunofluorescence, and TdT-mediated dUTP nick end labeling (TUNEL) assays showed that CA-5f inhibited autophagic flux, induced apoptosis, and did not affect the level of CTSB (cathepsin B) and CTSD (cathepsin D) in vivo, which were consistent with the in vitro data. Collectively, these results demonstrated that CA-5f is a novel late-stage autophagy inhibitor with potential clinical application for NSCLC therapy. Abbreviations: 3-MA, 3-methyladenine; ANXA5, annexin A5; ATG, autophagy related; CA-5f, (3E,5E)-3-(3,4-dimethoxybenzylidene)-5-[(1H-indol-3-yl)methylene]-1-methylpiperidin-4-one; CQ, chloroquine; CTSB, cathepsin B; CTSD, cathepsin D; DMSO, dimethyl sulfoxide; DNM2, dynamin 2; EBSS, Earle's balanced salt solution; GFP, green fluorescent protein; HCQ, hydroxyl CQ; HEK293, human embryonic kidney 293; HUVEC, human umbilical vein endothelial cells; LAMP1, lysosomal associated membrane protein 1; LC-MS/MS, liquid chromatography coupled to tandem mass spectrometry; LDH, lactic acid dehydrogenase; LMO7, LIM domain 7; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; NAC, N-acetyl cysteine; MYO1E, myosin IE; NSCLC, non-small cell lung cancer; PARP1, poly(ADP-ribose) polymerase 1; PI, propidium iodide; RFP, red fluorescent protein; ROS, reactive oxygen species; SQSTM1, sequestosome 1; TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling.
Collapse
Affiliation(s)
- Lu Zhang
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - PengFei Qiang
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - JingTing Yu
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - YiMing Miao
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - ZhiQiang Chen
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - Ju Qu
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - QianBing Zhao
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - Zhuo Chen
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - Yachao Liu
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - Xin Yao
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - Bin Liu
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - LiuQing Cui
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - HongJuan Jing
- a College of Bioengineering , Henan University of Technology , Zhengzhou , China
| | - Gangchun Sun
- b College of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou , China
| |
Collapse
|
15
|
Characteristics of Curcumin-Loaded Bacterial Cellulose Films and Anticancer Properties against Malignant Melanoma Skin Cancer Cells. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071188] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Curcumin-loaded bacterial cellulose films were developed in this study. Curcumin was absorbed into never-dried bacterial cellulose pellicles by 24-h immersion in solutions of curcumin in the range of 0.2–1.0 mg /mL. The curcumin-loaded bacterial cellulose pellicles were then air-dried and characterized. The mechanical properties of curcumin-loaded bacterial cellulose films, particularly the stretching properties, appeared to be lower than those of bacterial cellulose film. This was especially evident when the loading concentration of curcumin was higher than 0.4 mg/mL. Fourier-transform infrared spectroscopy analysis indicated an interaction between bacterial cellulose microfibrils and curcumin. Controlled release of curcumin was achieved in buffer solutions containing Tween 80 and methanol additives, at pH 5.5 and 7.4. Curcumin-loaded bacterial cellulose films prepared with curcumin solutions at concentrations of 0.5 and 1.0 mg/mL displayed antifungal activities against Aspergillus niger. They also exhibited anticancer activity against A375 malignant melanoma cells. No significant cytotoxic effect was observed against normal dermal cells, specifically, human keratinocytes and human dermal fibroblasts.
Collapse
|
16
|
Xiao W, Li B, Sun X, Yu D, Xie Y, Wu H, Chang S, Zhou Y, Wang H, Lan X, Xu Z, Shi J, Zhu W. DCZ3301, a novel aryl-guanidino inhibitor, induces cell apoptosis and cell cycle arrest via suppressing the PI3K/AKT pathway in T-cell leukemia/lymphoma. Acta Biochim Biophys Sin (Shanghai) 2018; 50:643-650. [PMID: 29688264 DOI: 10.1093/abbs/gmy047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Indexed: 12/25/2022] Open
Abstract
DCZ3301, a novel aryl-guanidino compound, was previously found to have potent anti-tumor activity in myeloma and B-cell lymphoma. In the present study, we investigated the effects of DCZ3301 on T-cell leukemia/lymphoma cells both in vitro and in vivo via cell proliferation, cell cycle analysis, apoptosis assay, mitochondrial membrane potential (MMP) assay, western blot analysis and tumor xenograft models. We found that DCZ3301 inhibited the viability of T-cell leukemia/lymphoma cells in a dose- and time-dependent manner. DCZ3301-induced G2/M cell cycle arrest, associated with downregulation of CDK1, cyclin B1, and cdc25C. DCZ3301 also induced cell apoptosis by decreasing MMP in T-cell leukemia/lymphoma cells, but had no significant pro-apoptotic effect on normal peripheral blood mononuclear cells (PBMCs). In addition, DCZ3301-induced apoptosis may be mediated by the caspase-dependent pathway and suppressing the phosphoinositide 3-kinase (PI3K)/AKT pathway. Finally, we showed that DCZ3301 treatment effectively inhibited tumor growth, with no significant side effects, in xenograft mouse models. In conclusion, these results suggest that DCZ3301 may be regarded as a new therapeutic strategy for T-cell leukemia/lymphoma patients.
Collapse
Affiliation(s)
- Wenqin Xiao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bo Li
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xi Sun
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dandan Yu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongsheng Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huiqun Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuaikang Chang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yunfei Zhou
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Houcai Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiucai Lan
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Gao M, Chen G, Wang H, Xie B, Hu L, Kong Y, Yang G, Tao Y, Han Y, Wu X, Zhang Y, Dai B, Shi J. Therapeutic potential and functional interaction of carfilzomib and vorinostat in T-cell leukemia/lymphoma. Oncotarget 2018; 7:29102-15. [PMID: 27074555 PMCID: PMC5045381 DOI: 10.18632/oncotarget.8667] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
We previously showed that the proteasome inhibitor carfilzomib and the histone deacetylase inhibitor (HDACI) vorinostat cooperated to induce cell apoptosis in one T-cell leukemia cell line in vitro, implying the possibility of the combination treatment of carfilzomib and vorinostat as a potential therapeutic strategy in human T-cell leukemia/lymphoma. Here we report that combination treatment of carfilzomib and vorinostat enhanced cell apoptosis and induced a marked increase in G2-M arrest, reactive oxygen species (ROS) generation, and activated the members of mitogen-activated protein kinases (MAPK) family, including the stress-activated kinases JNK, p38MAPK, and ERK1/2. Carfilzomib/vorinostat-mediated apoptosis was blocked by the ROS scavenger N-acetylcysteine (NAC). The JNK inhibitor SP600125 and the p38MAPK inhibitor SB203580 but not the MEK1/2 inhibitor U0126 significantly attenuated carfilzomib/vorinostat-induced apoptosis, suggesting that p38MAPK and JNK activation contribute to carfilzomib and vorinostat-induced apoptosis. This was further confirmed via short hairpin (shRNA) RNA knockdown of p38MAPK and JNK. Interestingly, the ROS scavenger NAC attenuated carfilzomib/vorinostat-mediated activation of p38MAPK and JNK. However, p38MAPK shRNA but not JNK shRNA diminished carfilzomib/vorinostat-mediated ROS generation. In contrast, overexpression of p38MAPK significantly increased carfilzomib/vorinostat-mediated ROS generation, suggesting that an amplification loop exists between ROS and p38MAPK pathway. Combination treatment of carfilzomib and vorinostat enhanced their individual antitumor activity in both a human xenograft model as well as human primary T-cell leukemia/lymphoma cells. These data suggest the potential clinical benefit and underlying molecular mechanism of combining carfilzomib with vorinostat in the treatment of human T-cell leukemia/lymphoma.
Collapse
Affiliation(s)
- Minjie Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gege Chen
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Houcai Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingqian Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangning Hu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanyuan Kong
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Tao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Han
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiwen Zhang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bojie Dai
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,College of Life Science and Technology, Tongji University, Shanghai, China
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Zhang Y, Chen P, Hong H, Wang L, Zhou Y, Lang Y. JNK pathway mediates curcumin-induced apoptosis and autophagy in osteosarcoma MG63 cells. Exp Ther Med 2017; 14:593-599. [PMID: 28672972 PMCID: PMC5488399 DOI: 10.3892/etm.2017.4529] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022] Open
Abstract
Human osteosarcoma is a common primary malignancy of the bone in children and adolescents. It has been reported that curcumin is able to induce apoptosis in osteosarcoma MG63 cells through the mitochondrial pathway. However, whether curcumin is able to induce autophagy and the interaction between apoptosis and autophagy in osteosarcoma cells has yet to be fully elucidated. In the current study, it was determined that curcumin was able to significantly induce apoptosis, and lead to autophagy in MG63 cells. Notably, inhibition of apoptosis enhanced curcumin-induced autophagy due to upregulation of the c-Jun N-terminal kinase (JNK) signaling pathway. This finding was confirmed by the use of JNK-specific inhibitor, SP600125. Furthermore, our data showed that curcumin-induced apoptosis was increased when autophagy was completely inhibited by 3-methyladenine in MG63 cells. These results suggest that autophagy may have an important role in resistance to apoptosis when MG63 cells are incubated with curcumin. Thus, these results provide important insights into the interaction between apoptosis and autophagy in osteosarcoma cells and clinical treatment strategies using curcumin.
Collapse
Affiliation(s)
- Yaowu Zhang
- Department of Orthopedic Surgery, Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Pingbo Chen
- Department of Orthopedic Surgery, Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Hangang Hong
- Department of Orthopedic Surgery, Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Lei Wang
- Department of Orthopedic Surgery, Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Yubo Zhou
- Department of Orthopedic Surgery, Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Yi Lang
- Department of Orthopedic Surgery, Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| |
Collapse
|
19
|
Guo S, Long M, Li X, Zhu S, Zhang M, Yang Z. Curcumin activates autophagy and attenuates oxidative damage in EA.hy926 cells via the Akt/mTOR pathway. Mol Med Rep 2016; 13:2187-93. [PMID: 26781771 DOI: 10.3892/mmr.2016.4796] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 11/05/2015] [Indexed: 11/05/2022] Open
Abstract
Curcumin, which is the effective component of turmeric (Curcuma longa), has previously been shown to exert potent antioxidant, antitumor and anti‑inflammatory activities in vitro and in vivo. However, the mechanism underlying the protective effects of curcumin against oxidative damage in endothelial cells remains unclear. The present study aimed to examine the effects of curcumin on hydrogen peroxide (H2O2)‑induced apoptosis and autophagy in EA.hy926 cells, and to determine the underlying molecular mechanism. Cultured EA.hy926 cells were treated with curcumin (5‑20 µmol/l) 4 h prior to and for 4 h during exposure to H2O2 (200 µmol/l). Oxidative stress resulted in a significant increase in the rate of cell apoptosis, which was accompanied by an increase in the expression levels of caspase‑3 and B‑cell lymphoma 2 (Bcl‑2)‑associated X protein (Bax), and a decrease in the expression levels of Bcl‑2. Treatment with curcumin (5 or 20 µmol/l) significantly inhibited apoptosis, and reversed the alterations in caspase‑3, Bcl‑2 and Bax expression. Furthermore, curcumin induced autophagy and microtubule‑associated protein 1A/1B‑light chain 3‑Ⅱ expression, and suppressed the phosphorylation of Akt and mammalian target of rapamycin (mTOR). These results indicated that curcumin may protect cells against oxidative stress‑induced damage through inhibiting apoptosis and inducing autophagy via the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Shouyu Guo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingzhi Long
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Xiuzhen Li
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Shushu Zhu
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Min Zhang
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Zhijian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|