1
|
Qu M, He Q, Bao H, Ji X, Shen T, Barkat MQ, Wu X, Zeng LH. Multiple roles of arsenic compounds in phase separation and membraneless organelles formation determine their therapeutic efficacy in tumors. J Pharm Anal 2024; 14:100957. [PMID: 39253293 PMCID: PMC11381784 DOI: 10.1016/j.jpha.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 09/11/2024] Open
Abstract
Arsenic compounds are widely used for the therapeutic intervention of multiple diseases. Ancient pharmacologists discovered the medicinal utility of these highly toxic substances, and modern pharmacologists have further recognized the specific active ingredients in human diseases. In particular, Arsenic trioxide (ATO), as a main component, has therapeutic effects on various tumors (including leukemia, hepatocellular carcinoma, lung cancer, etc.). However, its toxicity limits its efficacy, and controlling the toxicity has been an important issue. Interestingly, recent evidence has pointed out the pivotal roles of arsenic compounds in phase separation and membraneless organelles formation, which may determine their toxicity and therapeutic efficacy. Here, we summarize the arsenic compounds-regulating phase separation and membraneless organelles formation. We further hypothesize their potential involvement in the therapy and toxicity of arsenic compounds, highlighting potential mechanisms underlying the clinical application of arsenic compounds.
Collapse
Affiliation(s)
- Meiyu Qu
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hangyang Bao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xing Ji
- Department of Pharmacology, Hangzhou City University School of Medicine, Hangzhou, 310015, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Hangzhou City University School of Medicine, Hangzhou, 310015, China
| |
Collapse
|
2
|
Yuan L, Jiang X, Gong Q, Gao N. Arsenic resistance protein 2 and microRNA biogenesis: Biological implications in cancer development. Pharmacol Ther 2023; 244:108386. [PMID: 36933704 DOI: 10.1016/j.pharmthera.2023.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Arsenic resistance protein 2 (Ars2) is a nuclear protein that plays a critical role in the regulation of microRNA (miRNA) biogenesis. Ars2 is required for cell proliferation and for the early stages of mammalian development through a possible effect on miRNA processing. Increasing evidence reveal that Ars2 is highly expressed in proliferating cancer cells, suggesting that Ars2 may be a potential therapeutic target for cancer. Therefore, development of the novel Ars2 inhibitors could represent the novel therapeutic strategies for treatment of cancer. In this review, we briefly discuss the mechanisms by which Ars2 regulates miRNA biogenesis and its impact on cell proliferation and cancer development. Particularly, we mainly discuss the role of Ars2 in the regulation of cancer development and highlight pharmacological targeting of Ars2 as a promising cancer therapeutic strategy.
Collapse
Affiliation(s)
- Liang Yuan
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Xiuxing Jiang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China.
| | - Ning Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China.
| |
Collapse
|
3
|
Thurner L, Hartmann S, Bewarder M, Fadle N, Regitz E, Schormann C, Quiroga N, Kemele M, Klapper W, Rosenwald A, Trümper L, Bohle RM, Nimmesgern A, Körbel C, Lascke MW, Menger MD, Barth S, Kubuschok B, Mottok A, Kaddu-Mulindwa D, Hansmann ML, Pöschel V, Held G, Murawski N, Stilgenbauer S, Neumann F, Preuss KD, Pfreundschuh M. Identification of the atypically modified autoantigen Ars2 as the target of B-cell receptors from activated B-cell-type diffuse large B-cell lymphoma. Haematologica 2021; 106:2224-2232. [PMID: 32675228 PMCID: PMC8327713 DOI: 10.3324/haematol.2019.241653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
It has been suggested that stimulation of B-cell receptors (BCR) by specific antigens plays a pathogenic role in diffuse large B-cell lymphoma (DLBCL). Here, it was the aim to screen for specific reactivities of DLBCL-BCR in the spectrum of autoantigens and antigens of infectious origin. Arsenite resistance protein 2 (Ars2) was identified as the BCR target of three of five activated B-cell type DLBCL cell lines and two of 11 primary DLBCL cases. Compared to controls, Ars2 was hypophosphorylated exclusively in cases and cell lines with Ars2-specific BCR. In a validation cohort, hypophosphorylated Ars2 was found in eight of 31 activated B-cell type DLBCL, but in only one of 20 germinal center B-cell like type DLBCL. Incubation with Ars2 induced BCR-pathway activation and increased proliferation, while an Ars2/ETA’ toxin conjugate induced killing of cell lines with Ars2-reactive BCR. Ars2 appears to play a role in a subgroup of activated B-cell-type DLBCL. Moreover, transformed DLBCL lines with Ars2-reactive BCR still showed growth advantage after incubation with Ars2. These results provide knowledge about the pathogenic role of a specific antigen stimulating the BCR pathway in DLCBL.
Collapse
Affiliation(s)
- Lorenz Thurner
- Saarland Medical School, Internal Medicine I, Homburg/Saar, Germany
| | | | - Moritz Bewarder
- Saarland Medical School, Internal Medicine I, Homburg/Saar, Germany
| | - Natalie Fadle
- Saarland Medical School, Internal Medicine I, Homburg/Saar, Germany
| | - Evi Regitz
- Saarland Medical School, Internal Medicine I, Homburg/Saar, Germany
| | | | - Natalia Quiroga
- Saarland Medical School, Internal Medicine I, Homburg/Saar, Germany
| | - Maria Kemele
- Saarland Medical School, Internal Medicine I, Homburg/Saar, Germany
| | | | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and CCC Mainfranken, Würzburg, Germany
| | - Lorenz Trümper
- Department of Hematology and Medical Oncology, University Hospital Göttingen, Germany
| | - Rainer Maria Bohle
- Saarland University Medical School, Institute of Pathology, Homburg/Saar, Germany
| | - Anna Nimmesgern
- Institute of Medical Microbiology and Hygiene, University of Saarland, Homburg, Germany
| | - Christina Körbel
- Institute for Clinical and Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | - Matthias W Lascke
- Institute for Clinical and Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | - Stefan Barth
- Institute for Infectious disease and Molecular Medicine, University of Cape Town, South Africa
| | - Boris Kubuschok
- Department of Internal Medicine II, Augsburg University Medical Center, Augsburg, Germany
| | - Anja Mottok
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Germany
| | | | | | - Viola Pöschel
- Saarland Medical School, Internal Medicine I, Homburg/Saar, Germany
| | - Gerhard Held
- Department of Hematology/Oncology, Westpfalzklinikum Kaiserslautern, Germany
| | - Niels Murawski
- Saarland Medical School, Internal Medicine I, Homburg/Saar, Germany
| | | | - Frank Neumann
- Saarland Medical School, Internal Medicine I, Homburg/Saar, Germany
| | | | | |
Collapse
|
4
|
Su Y, Zeng Z, Rong D, Yang Y, Wu B, Cao Y. PSMC2, ORC5 and KRTDAP are specific biomarkers for HPV-negative head and neck squamous cell carcinoma. Oncol Lett 2021; 21:289. [PMID: 33732365 PMCID: PMC7905686 DOI: 10.3892/ol.2021.12550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
The prognosis of patients with human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) is poorer than those with HPV-positive HNSCC. The present study aimed to identify novel and specific biomarkers of HPV-negative HNSCC using bioinformatics analysis and associated experiments. The gene expression profiles of HPV-negative HNSCC tissues and corresponding clinical data were downloaded from The Cancer Genome Atlas database and used in a weighted gene co-expression network analysis. Genes in clinically significant co-expression modules were used to construct a protein-protein interaction (PPI) network. The genes demonstrating a high degree score in the PPI network and a high correlation with tumor grade were considered hub genes. The diagnostic value of the hub genes associated with HPV-negative and HPV-positive HNSCC was analyzed using differential expression gene (DEG) analysis, immunohistochemical (IHC) staining and a receiver operating characteristic (ROC) curve analysis. Seven genes [Serrate RNA effector molecule (SRRT), checkpoint kinase 2 (CHEK2), small nuclear ribonucleoprotein polypeptide E (SNRPE), proteasome 26S subunit ATPase 2 (PSMC2), origin recognition complex subunit 5 (ORC5), S100 calcium binding protein A7 and keratinocyte differentiation associated protein (KRTDAP)] were demonstrated to be hub genes in clinically significant co-expression modules. DEG, IHC and ROC curve analyses revealed that SRRT, CHEK2 and SNRPE were significantly upregulated in HPV-negative and HPV-positive HNSCC tissues compared with in adjacent tissues, and these genes demonstrated a high diagnostic value for distinguishing HNSCC tissues. However, PSMC2, ORC5 and KRTDAP were the only differentially expressed genes identified in HPV-negative HNSCC tissues, and these genes demonstrated a high diagnostic value for HPV-negative HNSCC. PSMC2, ORC5 and KRTDAP may therefore serve as novel and specific biomarkers for HPV-negative HNSCC, potentially improving the diagnosis and treatment of patients with HPV-negative HNSCC.
Collapse
Affiliation(s)
- Yushen Su
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Zhirui Zeng
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Dongyun Rong
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Public Health School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yushi Yang
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Bei Wu
- Department of Obstetrics and Gynecology, 925 Hospital of The Joint Logistics Support Force of The Chinese People's Liberation Army, Guiyang, Guizhou 550004, P.R. China
| | - Yu Cao
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
5
|
Cui L, Gao C, Wang CJ, Liu SG, Wu MY, Zhang RD, Li ZG. Low expression of CTBP2 and CASP8AP2 predicts risk of relapse in childhood B-cell precursor acute lymphoblastic leukemia: a retrospective cohort study. Pediatr Hematol Oncol 2020; 37:732-746. [PMID: 32804017 DOI: 10.1080/08880018.2020.1798572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
CtBP is a known corepressor abundantly expressed in cancer and regulates genes involved in cancer initiation, progression, and metastasis. This study aimed to investigate the prognostic significance of CTBP2 expression in a cohort of pediatric patients with B cell precursor acute lymphoblastic leukemia (BCP-ALL). It further evaluated the role of combined CTBP2 and CASP8AP2 expression in risk of relapse of BCP-ALL. The expression of CTBP2 mRNA was retrospectively detected by a qRT-PCR approach in bone marrow samples from 104 children with newly diagnosed BCP-ALL. CASP8AP2 was assessed simultaneously in the 100 patients included in this study. The receiver operating characteristic (ROC) curve analysis determined the cut off levels for CTBP2 and CASP8AP2 expression with good predictive significance for relapse of BCP-ALL. Patients with low CTBP2 expression had inferior relapse-free survival (RFS) and event-free survival (EFS) when compared to patients with high-CTBP2 expression. The expression level of CTBP2 was significantly associated with CASP8AP2 expression (r = 0.449, P < 0.001). Patients were stratified into three groups according to the combined evaluation of the two gene expression, and patients with simultaneous low-expression had the worst outcome (6-year RFS: 64.6%±12.8%, P < 0.001). Multivariate analysis demonstrated the expression of CTBP2 and CASP8AP2, minimal residual disease (MRD) at day 33 remained as independent prognostic factors for RFS. Based on the final Cox hazards model, we proposed an algorithm to calculate the risk index, which was more precise for predicting relapse. In conclusion, low expression of CTBP2 and CASP8AP2 correlated with poor outcome and predicted risk of relapse in pediatric BCP-ALL.
Collapse
Affiliation(s)
- Lei Cui
- Laboratory of Hematologic Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chao Gao
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chan-Juan Wang
- Laboratory of Hematologic Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shu-Guang Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Min-Yuan Wu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Rui-Dong Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhi-Gang Li
- Laboratory of Hematologic Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
6
|
Alsagaby SA. Omics-based insights into therapy failure of pediatric B-lineage acute lymphoblastic leukemia. Oncol Rev 2019; 13:435. [PMID: 31565196 PMCID: PMC6747058 DOI: 10.4081/oncol.2019.435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/20/2019] [Indexed: 11/23/2022] Open
Abstract
B-lineage acute lymphoblastic leukemia (B-ALL) is the most common type of cancer seen in children and is characterized by a variable clinical course. Although there have been remarkable improvements in the therapy outcomes of pediatric B-ALL, treatment failure remains the leading-cause of death in 18% of the afflicted patients during the first 5 years after diagnosis. Molecular heterogeneities of pediatric B-ALL play important roles as determinants of the therapy response. Therefore, many of these molecular abnormalities have an established prognostic value in the disease. The present review discusses the omics-based revelations from epigenomics, genomics, transcriptomics and proteomics about treatment failure in pediatric B-ALL. Next it highlights the promise of the molecular aberration-targeted therapy to improve the treatment outcomes.
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Majmaah University, Saudi Arabia
| |
Collapse
|
7
|
Hu X, Xu S, Chen Y, Gao Z, Li Y, Hu J, Huang X, Zhang Y, Jiang X, Li L, Yang C, Chen J, Gao N. Depletion of Ars2 inhibits cell proliferation and leukemogenesis in acute myeloid leukemia by modulating the miR-6734-3p/p27 axis. Leukemia 2018; 33:1090-1101. [PMID: 30518811 PMCID: PMC6756072 DOI: 10.1038/s41375-018-0301-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/03/2018] [Accepted: 09/20/2018] [Indexed: 01/16/2023]
Abstract
Ars2 is a component of the nuclear cap-binding complex (CBC) that contributes to microRNA biogenesis and is required for cellular proliferation. Little is known regarding the functional role of Ars2 in cell proliferation and leukemogenesis of acute myeloid leukemia. Here, we show that the elevated expression of Ars2 was observed in acute myeloid leukemia (AML) cell lines and bone marrow samples from AML patients and was correlated with poorer overall survival. Overexpression of Ars2 promoted cell proliferation and colony formation in AML cells, whereas depletion of Ars2 inhibited cell proliferation and colony formation. Mechanistic studies reveal that depletion of Ars2 suppressed the interaction of Ars2 with CBC and led to alterations in miRNA processing. Furthermore, Ars2 depletion reduced the levels of miR-6734-3p, resulting in upregulation of p27 and culminating in cell cycle arrest at the G1 phase. In vivo studies indicate that depletion of Ars2 significantly reduced leukemic cell burden and prolonged the survival time of the leukemia-bearing mice. These findings indicate that Ars2 may not only play a crucial role in the regulation of cell proliferation and leukemogenesis, but could also be identified as a critical therapeutic target for treatment of AML.
Collapse
Affiliation(s)
- Xiaoye Hu
- College of Pharmacy, Army Medical University, Chongqing, China
| | - Shuangnian Xu
- Department of Hematology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yibiao Chen
- College of Pharmacy, Army Medical University, Chongqing, China
| | - Ziyi Gao
- Greater Philadelphia Pharmacy, Philadelphia, PA, USA
| | - Yunong Li
- College of Pharmacy, Army Medical University, Chongqing, China
| | - Jinjiao Hu
- College of Pharmacy, Army Medical University, Chongqing, China
| | - Xiuning Huang
- College of Pharmacy, Army Medical University, Chongqing, China
| | - Yanhao Zhang
- College of Pharmacy, Army Medical University, Chongqing, China
| | - Xiuxing Jiang
- College of Pharmacy, Army Medical University, Chongqing, China
| | - Lirong Li
- College of Pharmacy, Army Medical University, Chongqing, China
| | - Chong Yang
- College of Pharmacy, Army Medical University, Chongqing, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Army Medical University, Chongqing, China.
| | - Ning Gao
- College of Pharmacy, Army Medical University, Chongqing, China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
8
|
Yue ZX, Gao RQ, Gao C, Liu SG, Zhao XX, Xing TY, Niu J, Li ZG, Zheng HY, Ding W. The prognostic potential of coilin in association with p27 expression in pediatric acute lymphoblastic leukemia for disease relapse. Cancer Cell Int 2018; 18:106. [PMID: 30065619 PMCID: PMC6062948 DOI: 10.1186/s12935-018-0600-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
Background Cajal body (CB) is a nucleic organelle where small nuclear ribonucleoproteins undergo modification, maturation, splicing and/or assembly. Coilin is the marker structural protein of CBs. The expression level and cellular localization of coilin is sensitive to chemotherapeutic reagents, such as cisplatin. The gene of cyclin-dependent kinase inhibitor 1B (p27) is located with a high incidence translocation region of leukemic chromosomes, and its expression was of prognosis values in a variety of adult leukemia types. The exact profile and associated functions of coilin, as well as p27, in children’s acute lymphoblastic leukemia (ALL) is obscure. Methods Bone marrow samples from 144 patients with ALL were collected. The expression levels of coilin and p27 were detected by qRT-PCR. The patient cohort was divided into low and high groups of coilin and p27 respectively. The prognosis and clinicobiological characteristics of different groups were investigated, especially focused on the treatment outcome. Leukemia cells of Reh or RS4;11 were exposed to different concentrations of DNR, prior to the detection for morphological changes of coilin by immunofluorescence. In Reh cells, lentivirus sh-coilin was used to silence coilin expression. Western blotting was used to detect coilin and p27 expression; flow cytometry was used for cell cycle and apoptosis assay; MTS method was used for measuring cell viability to examine the drug sensitivity of DNR. Results In this study, we found that daunorubicin was able to induce significant morphological changes of CBs in Reh and RS4;11 cells. Knockdown the expression of coilin increased the sensitivity to daunorubicin and inhibited the expression of p27 in Reh cells, and led to increased apoptosis. Importantly, not only the levels of coilin and p27 mRNA expression at initial diagnosis ALL children are markedly higher than those at complete remission (CR), but also both coilin and p27 expression in the relapsed patients was observed significantly higher comparing to the continuous CR patients. The 4-year EFS and RFS indicated that low levels of both coilin and p27 group favored better prognosis (p < 0.05). Conclusions Our results indicated that consideration of coilin and p27 levels could be a prognostic reference for predicting the outcome of pediatric ALL patients, especially for disease recurrence. Reduction of coilin expression was sufficient to increase the sensitivity of leukemic cells to daunorubicin treatments, and during which possibly involved functions of p27 in cell cycle regulation and its effects on cell apoptosis.
Collapse
Affiliation(s)
- Zhi-Xia Yue
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China.,Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Rui-Qi Gao
- 3Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Chao Gao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Shu-Guang Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Xiao-Xi Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Tian-Yu Xing
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Jing Niu
- 3Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China.,4Beijing Key Laboratory for Tumor Invasion and Metastasis Research, Cancer Institute of Capital Medical University, Beijing, 100069 China
| | - Zhi-Gang Li
- Key Laboratory of Major Diseases in Children (Capital Medical University), Ministry of Education, National Key Discipline of Pediatrics, Ministry of Education, Hematology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - Hu-Yong Zheng
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Wei Ding
- 3Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China.,4Beijing Key Laboratory for Tumor Invasion and Metastasis Research, Cancer Institute of Capital Medical University, Beijing, 100069 China
| |
Collapse
|
9
|
The RNA binding protein Ars2 supports hematopoiesis at multiple levels. Exp Hematol 2018; 64:45-58.e9. [PMID: 29775646 DOI: 10.1016/j.exphem.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022]
Abstract
Recent biochemical characterization of arsenic resistance protein 2 (Ars2) has established it as central in determining the fate of nascent ribonucleic acid (RNA) polymerase II (RNAPII) transcripts. Through interactions with the nuclear 5'-7-methylguanosine cap-binding complex, Ars2 promotes cotranscriptional processing coupled with nuclear export or degradation of several classes of RNAPII transcripts, allowing for gene expression programs that facilitate rapid and sustained proliferation of immortalized cells in culture. However, rapidly dividing cells in culture do not represent the physiological condition of the vast majority of cells in an adult mammal. To examine functions of Ars2 in a physiological setting, we generated inducible Ars2 knockout mice and found that deletion of Ars2 from adult mice resulted in defective hematopoiesis in bone marrow and thymus. Importantly, only some of this defect could be explained by the requirement of Ars2 for rapid proliferation, which we found to be cell-type specific in vivo. Rather, Ars2 was required for survival of developing thymocytes and for limiting differentiation of bone marrow resident long-term hematopoietic stem cells. As a result, Ars2 knockout led to rapid thymic involution and loss of the ability of mice to regenerate peripheral blood after myeloablation. These in vivo data demonstrate that Ars2 expression is important at several steps of hematopoiesis, likely because Ars2 acts on gene expression programs underlying essential cell fate decisions such as the decision to die,proliferate, or differentiate.
Collapse
|
10
|
Ma Y, An X, Guan X, Kong Q, Wang Y, Li P, Meng Y, Cui Y, Wen X, Guo Y, Shen Y, Yu J. High expression of PRPS1 induces an anti-apoptotic effect in B-ALL cell lines and predicts an adverse prognosis in Chinese children with B-ALL. Oncol Lett 2018. [PMID: 29541198 PMCID: PMC5835884 DOI: 10.3892/ol.2018.7903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phosphoribosyl pyrophosphate synthetase 1 (PRPS1) is closely associated with a number of diseases; however, its influence in B-cell acute lymphoblastic leukemia (B-ALL) and the potential molecular mechanisms involved remain unclear. The present study aimed to evaluate the expression of PRPS1 in Chinese children with B-ALL and to investigate the mechanism of action of PRPS1 in this disease. A Cell Counting Kit-8 (CCK-8) assay was performed to examine the proliferation of B-ALL Sup-B15 and Raji cells, and flow cytometric analysis was conducted to determine the cell cycle distribution and rate of apoptosis. The mRNA and protein expression levels of PRPS1, MYC proto-oncogene, bHLH transcription factor, cyclin E1, B-cell lymphoma-2 (Bcl-2), cyclin dependent kinase 2 and caspase-3 were detected by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Elevated PRPS1 expression was associated with a high-risk stratification and poor prognosis in patients with B-ALL. Furthermore, overexpression of PRPS1 accelerated the growth of and inhibited apoptosis in Sup-B15 and Raji cells as well as increasing the expression of Bcl-2 to induce an anti-apoptotic effect in B-ALL cell lines. The results of the present study indicate that PRPS1 regulates multiple processes in B-ALL and may be an attractive therapeutic target.
Collapse
Affiliation(s)
- Yimei Ma
- Department of Hematology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China.,China International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing Medical University, Chongqing 400014, P.R. China
| | - Xizhou An
- Department of Hematology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China.,China International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing Medical University, Chongqing 400014, P.R. China
| | - Xianmin Guan
- Department of Hematology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China.,China International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing Medical University, Chongqing 400014, P.R. China
| | - Qinglin Kong
- Department of Hematology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China.,China International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yanzhen Wang
- Department of Hematology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China.,China International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing Medical University, Chongqing 400014, P.R. China
| | - Pengfei Li
- Department of Hematology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China.,China International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yan Meng
- Department of Hematology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China.,China International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yinghui Cui
- Department of Hematology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China.,China International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing Medical University, Chongqing 400014, P.R. China
| | - Xianhao Wen
- Department of Hematology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China.,China International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yuxia Guo
- Department of Hematology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China.,China International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yali Shen
- Department of Hematology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China.,China International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jie Yu
- Department of Hematology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China.,China International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
11
|
Lee SI, Celik S, Logsdon BA, Lundberg SM, Martins TJ, Oehler VG, Estey EH, Miller CP, Chien S, Dai J, Saxena A, Blau CA, Becker PS. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat Commun 2018; 9:42. [PMID: 29298978 PMCID: PMC5752671 DOI: 10.1038/s41467-017-02465-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/30/2017] [Indexed: 02/06/2023] Open
Abstract
Cancers that appear pathologically similar often respond differently to the same drug regimens. Methods to better match patients to drugs are in high demand. We demonstrate a promising approach to identify robust molecular markers for targeted treatment of acute myeloid leukemia (AML) by introducing: data from 30 AML patients including genome-wide gene expression profiles and in vitro sensitivity to 160 chemotherapy drugs, a computational method to identify reliable gene expression markers for drug sensitivity by incorporating multi-omic prior information relevant to each gene’s potential to drive cancer. We show that our method outperforms several state-of-the-art approaches in identifying molecular markers replicated in validation data and predicting drug sensitivity accurately. Finally, we identify SMARCA4 as a marker and driver of sensitivity to topoisomerase II inhibitors, mitoxantrone, and etoposide, in AML by showing that cell lines transduced to have high SMARCA4 expression reveal dramatically increased sensitivity to these agents. Identification of markers of drug response is essential for precision therapy. Here the authors introduce an algorithm that uses prior information about each gene’s importance in AML to identify the most predictive gene-drug associations from transcriptome and drug response data from 30 AML samples.
Collapse
Affiliation(s)
- Su-In Lee
- Paul G. Allen School of Computer Science and Engineering, University of Washington, 185 E Stevens Way NE, Seattle, WA, 98195, USA. .,Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA. .,Center for Cancer Innovation, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA.
| | - Safiye Celik
- Paul G. Allen School of Computer Science and Engineering, University of Washington, 185 E Stevens Way NE, Seattle, WA, 98195, USA
| | | | - Scott M Lundberg
- Paul G. Allen School of Computer Science and Engineering, University of Washington, 185 E Stevens Way NE, Seattle, WA, 98195, USA
| | - Timothy J Martins
- Quellos High Throughput Screening Core, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - Vivian G Oehler
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.,Division of Hematology, Department of Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - Elihu H Estey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.,Division of Hematology, Department of Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - Chris P Miller
- Division of Hematology, Department of Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - Sylvia Chien
- Division of Hematology, Department of Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - Jin Dai
- Division of Hematology, Department of Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - Akanksha Saxena
- Division of Hematology, Department of Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - C Anthony Blau
- Center for Cancer Innovation, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA.,Division of Hematology, Department of Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - Pamela S Becker
- Center for Cancer Innovation, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.,Division of Hematology, Department of Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| |
Collapse
|
12
|
Gao C, Zhang RD, Liu SG, Zhao XX, Cui L, Yue ZX, Li WJ, Chen ZP, Li ZG, Rao Q, Wang M, Zheng HY, Wang JX. Low CREBBP expression is associated with adverse long-term outcomes in paediatric acute lymphoblastic leukaemia. Eur J Haematol 2017; 99:150-159. [PMID: 28452416 DOI: 10.1111/ejh.12897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES CREBBP alterations are associated with many diseases including leukaemia. However, CREBBP expression and its clinical relevance in paediatric acute lymphoblastic leukaemia have not been elucidated. METHODS We studied CREBBP mRNA expression in 349 patients treated with either the BCH-2003 or CCLG-2008 protocol. Using a receiver operating characteristic curve, patients were divided into low- or high-CREBBP. The association among clinicobiological characteristics, outcomes and CREBBP level was analysed. RESULTS Low expression of CREBBP (<1.0) at diagnosis was found in 97.7% of patients and increased significantly after complete remission. Low-CREBBP patients were associated with unfavourable clinical presentations, poor prednisone response and high minimal residual disease (>10-2 ) after induction. We found significantly poorer event-free survival (EFS) and overall survival (OS) in low-CREBBP group whether administered BCH-2003 or CCLG-2008. Low-CREBBP was an inferior independent prognostic factor in BCH-2003; patients with low-CREBBP had better outcomes on an intermediate-risk regimen than a standard-risk regimen involving the CCLG-2008 protocol. Patients stratified to high-risk with low-CREBBP had the worst EFS and OS. CONCLUSIONS These findings indicate that low-CREBBP is predictive of unfavourable outcomes; thus, a more intensive treatment protocol is necessitated for standard-risk patients with insufficient CREBBP and that a specific target therapy is necessitated for high-risk patients.
Collapse
Affiliation(s)
- Chao Gao
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,National Key Discipline of Pediatrics, Ministry of Education, Beijing, China.,Hematology and Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Rui-Dong Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,National Key Discipline of Pediatrics, Ministry of Education, Beijing, China.,Hematology and Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shu-Guang Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,National Key Discipline of Pediatrics, Ministry of Education, Beijing, China.,Hematology and Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiao-Xi Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,National Key Discipline of Pediatrics, Ministry of Education, Beijing, China.,Hematology and Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lei Cui
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,National Key Discipline of Pediatrics, Ministry of Education, Beijing, China.,Hematology and Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhi-Xia Yue
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,National Key Discipline of Pediatrics, Ministry of Education, Beijing, China.,Hematology and Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wei-Jing Li
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,National Key Discipline of Pediatrics, Ministry of Education, Beijing, China.,Hematology and Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhen-Ping Chen
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,National Key Discipline of Pediatrics, Ministry of Education, Beijing, China.,Hematology and Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhi-Gang Li
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,National Key Discipline of Pediatrics, Ministry of Education, Beijing, China.,Hematology and Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Qing Rao
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Min Wang
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hu-Yong Zheng
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,National Key Discipline of Pediatrics, Ministry of Education, Beijing, China.,Hematology and Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jian-Xiang Wang
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
13
|
Hu W, Wang X, Yang R. Evaluation of D-dimer and lactate dehydrogenase plasma levels in patients with relapsed acute leukemia. Oncol Lett 2016; 12:591-596. [PMID: 27347185 DOI: 10.3892/ol.2016.4657] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/16/2016] [Indexed: 11/06/2022] Open
Abstract
Despite the outstanding advances made over the past decade regarding our knowledge of acute leukemia (AL), relapsed AL remains to be associated with a dismal prognosis. A better understanding of AL relapse and monitoring of the D-dimer and lactate dehydrogenase (LDH) plasma levels following chemotherapy may aid clinicians in determining whether relapse may occur in the subsequent phases of the disease. The present study evaluated D-dimer and LDH levels in 204 patients with relapsed AL. Data were collected at the initial onset of AL, at complete remission (CR) and in patients with relapsed AL. D-dimer plasma levels were significantly increased in patients with initial AL and in patients with relapsed AL (P=0.005 and P=0.007, respectively) but not in those with CR. LDH levels were significantly increased in AL patients at the initial onset of disease and at relapse compared with patients achieving CR, irrespective of cell type. Plasma prothrombin time, activated partial thromboplastin time and fibrinogen levels were not significantly different across patients (with the exception of acute promyelocytic leukemia patients) at the initial onset, relapsed AL or CR. Routine hematological parameters (white blood cell count, hemoglobin, platelet count) were significantly different at the initial onset of AL (P=0.002, P<0.001 and P=0.001, respectively) and during relapsed AL (P=0.009, P=0.003 and P<0.001, respectively) compared with patients achieving CR, suggesting an association between D-dimer, LDH and relapsed AL. These results also indicate that determination of D-dimer and LDH levels may be useful for predicting the probability of relapse during chemotherapy, but should also be combined with routine hematological parameters.
Collapse
Affiliation(s)
- Wangqiang Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaoxia Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Rongrong Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|