1
|
Pentostatin Biosynthesis Pathway Elucidation and Its Application. FERMENTATION 2022. [DOI: 10.3390/fermentation8090459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pentostatin (PNT), a nucleoside antibiotic with a 1,3-diazo ring structure, is distributed in several actinomycetes and fungi species. Its special structure makes PNT possess a wide spectrum of biological and pharmacological properties, such as antibacterial, antitrypanosomal, anticancer, antiviral, herbicidal, insecticidal, and immunomodulatory effects. Because of the promising adenosine deaminase inhibitory activity of PNT, its extensive application in the clinical treatment of malignant tumors has been extensively studied. However, the fermentation level of microbial-derived PNT is low and cannot meet medical needs. Because the biosynthesis pathway of PNT is obscure, only high-yield mutant screening and optimization of medium components and fermentation processes have been conducted for enhancing its production. Recently, the biosynthesis pathways of PNT in actinomycetes and fungi hosts have been revealed successively, and the large-scale production of PNT by systematic metabolic engineering will become an inevitable trend. Therefore, this review covers all aspects of PNT research, in which major advances in understanding the resource microorganisms, mechanism of action, and biosynthesis pathway of PNT were achieved and diverse clinical applications of PNT were emphasized, and it will lay the foundation for commercial transformation and industrial technology of PNT based on systematic metabolic engineering.
Collapse
|
2
|
IgA levels at diagnosis predict for infections, time to treatment, and survival in chronic lymphocytic leukemia. Blood Adv 2020; 3:2188-2198. [PMID: 31324639 DOI: 10.1182/bloodadvances.2018026591] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/01/2019] [Indexed: 01/29/2023] Open
Abstract
To better understand the relationship between baseline immunoglobulin measurements and subsequent clinical outcomes in chronic lymphocytic leukemia (CLL), we performed a retrospective analysis on 660 patients with CLL (72%), monoclonal B-cell lymphocytosis (MBL) (13%), and small lymphocytic lymphoma (SLL) (14%), diagnosed between 2005 and 2014 at CancerCare Manitoba. Of 511 patients who had their first immunoglobulin level determined within 3 months of diagnosis, abnormal (either increased or decreased) immunoglobulin M (IgM), IgG, and IgA values were observed in 58% of patients with CLL, 27% of patients with MBL, and 20% of patients with SLL. Immunoglobulin deviances were similar for MBL and CLL Rai stage 0 and for SLL and Rai stages I and II; for CLL, IgG and IgA abnormalities occurred with increasing frequency with advancing Rai stage. In contrast, the frequency of IgM abnormalities was similar in all patient groups. IgA abnormalities significantly correlated with high β2-microglobulin (B2M) expression, whereas abnormal IgG and IgA levels were associated with the use of IGHV1-69, 3-21, and 3-49 subtypes. Increases in IgG or IgM were commonly associated with the presence of a CLL-type M-band, whereas oligoclonal bands were frequently observed with increased IgA levels. Although abnormal levels of IgG and IgA at diagnosis were independent predictors for future immunoglobulin replacement, only abnormal IgA levels were associated with shorter time to first treatment and overall survival. These findings indicate that both reduced and elevated levels of IgG and IgA at diagnosis are important and independent prognostic markers for infection in CLL, with IgA being more relevant as a marker of disease progression and survival.
Collapse
|
3
|
Roy Chowdhury S, Bouchard EDJ, Saleh R, Nugent Z, Peltier C, Mejia E, Hou S, McFall C, Squires M, Hewitt D, Davidson L, Shen GX, Johnston JB, Doucette C, Hatch GM, Fernyhough P, Marshall A, Gibson SB, Dawe DE, Banerji V. Mitochondrial Respiration Correlates with Prognostic Markers in Chronic Lymphocytic Leukemia and Is Normalized by Ibrutinib Treatment. Cancers (Basel) 2020; 12:cancers12030650. [PMID: 32168755 PMCID: PMC7139649 DOI: 10.3390/cancers12030650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial bioenergetics profiling, a measure of oxygen consumption rates, correlates with prognostic markers and can be used to assess response to therapy in chronic lymphocytic leukemia (CLL) cells. In this study, we measured mitochondrial respiration rates in primary CLL cells using respirometry to evaluate mitochondrial function. We found significant increases in mitochondrial respiration rates in CLL versus control B lymphocytes. We also observed amongst CLL patients that advanced age, female sex, zeta-chain-associated protein of 70 kD (ZAP-70+), cluster of differentiation 38 (CD38+), and elevated β2-microglobulin (β2-M) predicted increased maximal respiration rates. ZAP-70+ CLL cells exhibited significantly higher bioenergetics than B lymphocytes or ZAP-70− CLL cells and were more sensitive to the uncoupler, carbonyl cyanide-p-trifluoro-methoxyphenylhydrazone (FCCP). Univariable and multivariable linear regression analysis demonstrated that ZAP-70+ predicted increased maximal respiration. ZAP-70+ is a surrogate for B cell receptor (BCR) activation and can be targeted by ibrutinib, which is a clinically approved Bruton’s tyrosine kinase (BTK) inhibitor. Therefore, we evaluated the oxygen consumption rates (OCR) of CLL cells and plasma chemokine (C-C motif) ligands 3 and 4 (CCL3/CCL4) levels from ibrutinib-treated patients and demonstrated decreased OCR similar to control B lymphocytes, suggesting that ibrutinib treatment resets the mitochondrial bioenergetics, while diminished CCL3/CCL4 levels indicate the down regulation of the BCR signaling pathway in CLL. Our data support evaluation of mitochondrial respiration as a preclinical tool for the response assessment of CLL cells.
Collapse
Affiliation(s)
- Subir Roy Chowdhury
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
| | - Eric D. J. Bouchard
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
| | - Ryan Saleh
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
| | - Zoann Nugent
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
| | - Cheryl Peltier
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
| | - Edgard Mejia
- Departments of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (E.M.); (S.H.); (A.M.)
| | - Sen Hou
- Departments of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (E.M.); (S.H.); (A.M.)
| | - Carly McFall
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
| | - Mandy Squires
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
| | - Donna Hewitt
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
| | - Linda Davidson
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
| | - Garry X. Shen
- Departments of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; (C.D.); (G.M.H.)
| | - James B. Johnston
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
- Departments of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Department of Medical Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Christine Doucette
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; (C.D.); (G.M.H.)
- Departments of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Grant M. Hatch
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; (C.D.); (G.M.H.)
- St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Paul Fernyhough
- Departments of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Departments of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3N4, Canada
| | - Aaron Marshall
- Departments of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (E.M.); (S.H.); (A.M.)
- Departments of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
| | - Spencer B. Gibson
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
- Departments of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (E.M.); (S.H.); (A.M.)
- Departments of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
| | - David E. Dawe
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
- Departments of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Department of Medical Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Versha Banerji
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
- Departments of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Department of Medical Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Departments of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Correspondence: ; Tel.: +1-204-7871-884; Fax: +1-204-7870-196
| |
Collapse
|
5
|
Ishdorj G, Beiggi S, Nugent Z, Streu E, Banerji V, Dhaliwal D, Mahmud SM, Marshall AJ, Gibson SB, Wiseman MC, Johnston JB. Risk factors for skin cancer and solid tumors in newly diagnosed patients with chronic lymphocytic leukemia and the impact of skin surveillance on survival. Leuk Lymphoma 2019; 60:3204-3213. [DOI: 10.1080/10428194.2019.1620941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ganchimeg Ishdorj
- CancerCare Manitoba Research Institute (formerly, Manitoba Institute of Cell Biology), University of Manitoba, Winnipeg, Canada
| | - Sara Beiggi
- CancerCare Manitoba Research Institute (formerly, Manitoba Institute of Cell Biology), University of Manitoba, Winnipeg, Canada
| | - Zoann Nugent
- CancerCare Manitoba Research Institute (formerly, Manitoba Institute of Cell Biology), University of Manitoba, Winnipeg, Canada
- Department of Epidemiology and Cancer Registry, CancerCare Manitoba, Winnipeg, Canada
| | - Erin Streu
- Department of Nursing, CancerCare Manitoba, Winnipeg, Canada
| | - Versha Banerji
- CancerCare Manitoba Research Institute (formerly, Manitoba Institute of Cell Biology), University of Manitoba, Winnipeg, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Dhali Dhaliwal
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Salah M. Mahmud
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | | | - Spencer B. Gibson
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada
| | - Marni C. Wiseman
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - James B. Johnston
- CancerCare Manitoba Research Institute (formerly, Manitoba Institute of Cell Biology), University of Manitoba, Winnipeg, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
Schmidt A, Wolf M, Rothmiller S, Worek F, Steinritz D, Thiermann H. Cytostatic resistance profile of the sulfur mustard resistant keratinocyte cell line HaCaT/SM. Toxicol Lett 2018; 293:16-20. [PMID: 29551593 DOI: 10.1016/j.toxlet.2018.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/05/2018] [Accepted: 03/09/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND The cell line HaCaT/SM was developed as a sulfur mustard (SM) resistant cell line from the human keratinocyte cell line HaCaT. This cell line was established to learn more about the effect of SM and possible therapeutic approaches to counteract the cytotoxic effects of SM. The aim of this study was to clarify whether the SM-resistant cell line HaCaT/SM exhibit also resistance to other alkylating agents or cytotoxic drugs with different mechanism of action. MATERIAL AND METHOD The chemosensitivity of SM-resistant human keratinocyte cell line HaCaT/SM and the original cell line HaCaT were tested using the XTT assay. Nine cytotoxic drugs from five different substance groups were investigated. RESULTS HaCaT/SM showed a significant increase in resistance against all tested drugs. From the substance class of the alkylating agents, HaCaT/SM showed the strongest resistance increase against chlorambucil (1.7 fold increase). Whereas over all substances strongest increase was observed against cisplatin (5.1 fold increase). DISCUSSION The highest resistance was observed for cisplatin. The SM resistant cells revealed changes in the miRNA profile as described before. The resistance to cisplatin is also connected to a specific miRNA profile. Interestingly, changes of miRNA-203 and miRNA-21 levels were found in HaCaT/SM as well as in cisplatin resistant cells. It is therefore conceivable that the same resistance pathways are involved for both substances.
Collapse
Affiliation(s)
- Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany; Universität der Bundeswehr München, Faculty of Human Sciences, Department for Sports Sciences, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany.
| | - Markus Wolf
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximillians- University of Munich, Goethestr. 33, 80336 Munich, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximillians- University of Munich, Goethestr. 33, 80336 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany
| |
Collapse
|