1
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
2
|
Miao L, Wang B, Zhang J, Yin L, Pu Y. Plasma metabolomic profiling in workers with noise-induced hearing loss: a pilot study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68539-68550. [PMID: 34275074 DOI: 10.1007/s11356-021-15468-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/12/2021] [Indexed: 05/09/2023]
Abstract
Noise-induced hearing loss (NIHL) remains a leading occupational related disease and is a serious public health problem. Hence, the identification of potential biomarkers for NIHL prevention and diagnosis has become an urgent work. To discover potential metabolic biomarkers of NIHL, plasma metabolomics analysis in 62 NIHL patients and 62 normal hearing controls was performed using ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF MS). Orthogonal partial least square-discriminant analysis (OPLS-DA) model was applied to distinguish metabolite profile alterations in plasma samples between the two groups. The metabolites with a variable importance of projection (VIP) value > 1 and P value < 0.05 were considered to be potential metabolic biomarkers. KEGG database was performed to explore the involved pathways of potential biomarkers. Three autophagy-related genes (PI3K, AKT, and ATG5) were selected for further verification, and mRNA levels were detected using RT-qPCR analysis. Twenty plasma metabolites with VIP > 1 and P < 0.05 were significantly altered between the two groups. Totally, seven metabolic pathways involving the glycerophospholipid metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, autophagy pathway, choline metabolism, the alpha-linolenic acid metabolism and linoleic acid metabolism, and retrograde endocannabinoid pathway were significantly related to NIHL. Furthermore, verification by RT-qPCR suggested that the mRNA expression levels of PI3K and AKT along with ATG5 were significantly lower in the NIHL patients compared with controls. In summary, the present study provides the first evidence that the identified aberrantly altered metabolites may be the potentially valuable biomarkers of NIHL for occupational noise-exposed workers. Autophagy signal pathway may be involved in the occurrence and development of NIHL. Moreover, this present study may be helpful to further better understand the metabolic changes in NIHL and be helpful for the understanding of pathogenic mechanism.
Collapse
Affiliation(s)
- Long Miao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health Southeast University, Nanjing, 210009, People's Republic of China
| | - Boshen Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health Southeast University, Nanjing, 210009, People's Republic of China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health Southeast University, Nanjing, 210009, People's Republic of China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health Southeast University, Nanjing, 210009, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
3
|
Fan L, Lin Q, Huang X, Fu D, Huang H. Prognostic significance of pretreatment serum free fatty acid in patients with diffuse large B-cell lymphoma in the rituximab era: a retrospective analysis. BMC Cancer 2021; 21:1255. [PMID: 34802440 PMCID: PMC8607655 DOI: 10.1186/s12885-021-08963-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/04/2021] [Indexed: 01/07/2023] Open
Abstract
Background Fatty acid metabolism is reportedly associated with various cancers. However, the role of pretreatment serum free fatty acid (FFA) levels in diffuse large B-cell lymphoma (DLBCL) prognosis is still unclear, and our study aimed to better elucidate its influence on clinical outcomes. Methods The medical records of 221 newly diagnosed DLBCL patients admitted to Fujian Medical University Union Hospital from January 2011 to December 2016 were analysed retrospectively. Receiver operating characteristic curve analysis was used to determine a cut-off value for pretreatment serum FFA levels for prognostic prediction in DLBCL patients. The relationship between pretreatment serum FFA levels and clinical and laboratory parameters was analysed. Univariate and multivariate analyses were used to assess prognostic factors for overall survival (OS) and progression-free survival (PFS). Results Newly diagnosed DLBCL patients with high pretreatment serum FFA levels (≥0.495 mmol/l) had more B symptoms, higher serum lactate dehydrogenase levels (> upper limit of normal), >1 extranodal site, and higher International Prognostic Index score (3–5) compared to those with low pretreatment serum FFA levels (<0.495 mmol/l). Higher serum FFA levels were independent prognostic factors for poor OS, but not PFS. Conclusions High pretreatment serum FFA levels are associated with lower survival in untreated DLBCL patients.
Collapse
Affiliation(s)
- Liping Fan
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Qiuyan Lin
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Xiaoling Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Danhui Fu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| | - Haobo Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| |
Collapse
|
4
|
Hakobyan G, Davtyan H, Harutyunyan K, Alexanyan K, Amirkhanyan Y, Gharibyan AL, Asatryan L, Tadevosyan Y. Similarities in Blood Mononuclear Cell Membrane Phospholipid Profiles During Malignancy. Med Sci (Basel) 2018; 6:medsci6040105. [PMID: 30477187 PMCID: PMC6313534 DOI: 10.3390/medsci6040105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022] Open
Abstract
Phospholipids (PLs), key elements of cellular membranes, are regulated reciprocally with membrane proteins and can act as sensors for alterations in physiological or pathological states of cells including initiation and development of cancer. On the other hand, peripheral blood mononuclear cells (MNCs) play an important role in antitumor immune response by reacting to cancerous modifications in distant organs. In the current study, we tested the hypothesis that tumor initiation and development are reflected in the alteration pattern of the MNC PL component. We analyzed MNC membrane PL fractions in samples from healthy individuals and from patients with diverse types of cancers to reveal possible alterations induced by malignancy. Compared to healthy controls, the cancer samples demonstrated shifts in several membrane PL profiles. In particular, when analyzing cancer data pooled together, there were significantly higher levels in lysophosphatidylcholine, phosphatidylcholine, and phosphatidylethanolamine fractions, and significantly lower quantities in phosphatidylinositol, phosphatidylserine, and phosphatidic acid fractions in cancer samples compared to controls. The levels of sphingomyelins and diphosphatidylglycerols were relatively unaffected. Most of the differences in PLs were sustained during the analysis of individual cancers such as breast cancer and chronic lymphocytic leukemia. Our findings suggest the presence of a common pattern of changes in MNC PLs during malignancy.
Collapse
Affiliation(s)
- Gohar Hakobyan
- Laboratory of Regulation of Cellular Activity, Institute of Molecular Biology, National Academy of Sciences, 0014 Yerevan, Armenia.
| | - Hasmik Davtyan
- Laboratory of Regulation of Cellular Activity, Institute of Molecular Biology, National Academy of Sciences, 0014 Yerevan, Armenia.
| | - Kristine Harutyunyan
- Laboratory of Regulation of Cellular Activity, Institute of Molecular Biology, National Academy of Sciences, 0014 Yerevan, Armenia.
| | - Knarik Alexanyan
- Center of Oncology after V. Fanarjyan, Ministry of Health RA, 0052 Yerevan, Armenia.
| | | | - Anna L Gharibyan
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden.
| | - Liana Asatryan
- School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA.
| | - Yuri Tadevosyan
- Laboratory of Regulation of Cellular Activity, Institute of Molecular Biology, National Academy of Sciences, 0014 Yerevan, Armenia.
| |
Collapse
|
5
|
Sun R, Xu K, Zhang Q, Jiang X, Man Z, Yin L, Zhang J, Pu Y. Plasma metabonomics investigation reveals involvement of fatty acid oxidation in hematotoxicity in Chinese benzene-exposed workers with low white blood cell count. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32506-32514. [PMID: 30238259 DOI: 10.1007/s11356-018-3160-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Benzene is an environmental and occupational contaminant. Health hazards associated with occupational benzene exposure is a major public health problem in China. In this study, we analyzed metabolite profiles among plasma samples collected from benzene-exposed workers with low white blood cell count (BLWs) and healthy controls using high-performance liquid chromatography-time-of-flight mass spectrometry. To screen potential benzene hematotoxicity biomarkers and metabolic pathways, principal component analysis was used to examine metabolite profile changes in plasma samples. The alterations in fatty acid oxidation (FAO) pathway were consistent with our previous findings in a mouse model; hence, two key genes were selected and verified in WBC samples. A total of nine identified metabolites were significantly changed in BLWs, which were involved in glutathione metabolism, porphyrin metabolism, lipid metabolism pathway, and FAO metabolism. Furthermore, compared with healthy controls, the mRNA expressions of carnitine acyltransferase (CRAT) and ACADVL were significantly increased in BLWs. Particularly, WBC counts was negatively correlated with the expression of AVADVL in BLWs. These aberrant metabolites could act as potential biomarkers for benzene hematotoxicity. In addition, fatty acid oxidation pathway may play a critical role in the development of hematotoxicity caused by benzene.
Collapse
Affiliation(s)
- Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Qiaoyun Zhang
- Jiangsu Province Center for Disease Prevention and Control, Nanjing, 210009, Jiangsu, China
| | - Xiaoyun Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhaodi Man
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|