1
|
Epigenetic Modification of Death Receptor Genes for TRAIL and TRAIL Resistance in Childhood B-Cell Precursor Acute Lymphoblastic Leukemia. Genes (Basel) 2021; 12:genes12060864. [PMID: 34198757 PMCID: PMC8229974 DOI: 10.3390/genes12060864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Immunotherapies specific for B-cell precursor acute lymphoblastic leukemia (BCP-ALL), such as anti-CD19 chimeric antigen receptor (CAR) T-cells and blinatumomab, have dramatically improved the therapeutic outcome in refractory cases. In the anti-leukemic activity of those immunotherapies, TNF-related apoptosis-inducing ligand (TRAIL) on cytotoxic T-cells plays an essential role by inducing apoptosis of the target leukemia cells through its death receptors (DR4 and DR5). Since there are CpG islands in the promoter regions, hypermethylation of the DR4 and DR5 genes may be involved in resistance of leukemia cells to immunotherapies due to TRAIL-resistance. We analyzed the DR4 and DR5 methylation status in 32 BCP-ALL cell lines by sequencing their bisulfite PCR products with a next-generation sequencer. The DR4 and DR5 methylation status was significantly associated with the gene and cell-surface expression levels and the TRAIL-sensitivities. In the clinical samples at diagnosis (459 cases in the NOPHO study), both DR4 and DR5 genes were unmethylated in the majority of cases, whereas methylated in several cases with dic(9;20), MLL-rearrangement, and hypodiploidy, suggesting that evaluation of methylation status of the DR4 and DR5 genes might be clinically informative to predict efficacy of immunotherapy in certain cases with such unfavorable karyotypes. These observations provide an epigenetic rational for clinical efficacy of immunotherapy in the vast majority of BCP-ALL cases.
Collapse
|
2
|
Gu M, Jia Y, Xu M, Feng J, Tian Z, Ma X, Wang M, Wang J, Xu Y, Rao Q, Hao L, Mi Y, Yang W. Effects of different aberrations in the CRLF2 gene on the biological characteristics and drug sensitivities of Nalm6 cells. Int J Lab Hematol 2020; 43:441-449. [PMID: 33615710 DOI: 10.1111/ijlh.13419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION To investigate the effects and mechanism of action of upregulated CRLF2 expression resulting from different aberrations in the CRLF2 gene (CRLF2, CRLF2 + IK6, P2RY8-CRLF2 and CRLF2 F232C) in the B cell ALL cell line Nalm6. METHODS Cell proliferation was measured using cell counting kit-8. Transcriptome sequencing technology (RNA-seq) was used to compare changes in gene expression resulting from different aberrations in CRLF2. High-throughput drug sensitivity testing was used to determine the drug sensitivity of cells. RESULTS All four aberrations in CRLF2 upregulated CRLF2 expression and promoted the proliferation of Nalm6 cells. The RNA-seq results showed the upregulation of genes in the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway and the downregulation of genes in the cell cycle pathway in the CRLF2 F232C-overexpressing cells. Western blotting showed that the expression of p-STAT5 protein was significantly higher in the CRLF2 F232C-overexpressing cells. Cells with aberrations in CRLF2 were more resistant to cyclophosphamide and drugs commonly used during treatment than cells in the vector group. The half-maximal inhibitory concentration (IC50 or GI50 ) of dexamethasone was significantly higher in the CRLF2 F232C-overexpressing cell line. CONCLUSIONS The overexpression of CRLF2, CRLF2 + IK6, P2RY8-CRLF2 and CRLF2 F232C promotes the proliferation of Nalm6 cells, activates the JAK/STAT signalling pathway and leads to a reduction in sensitivity towards various chemotherapeutic drugs.
Collapse
Affiliation(s)
- Min Gu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yannan Jia
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Meizhen Xu
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Juan Feng
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zheng Tian
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaotong Ma
- State Key Laboratory of Experimental Hematology National Clinical Research Center for Blood Diseases, Tianjin, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology National Clinical Research Center for Blood Diseases, Tianjin, China
| | - Jianxiang Wang
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,State Key Laboratory of Experimental Hematology National Clinical Research Center for Blood Diseases, Tianjin, China
| | - Yingxi Xu
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology National Clinical Research Center for Blood Diseases, Tianjin, China
| | - Liangchun Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingchang Mi
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,State Key Laboratory of Experimental Hematology National Clinical Research Center for Blood Diseases, Tianjin, China
| | - Wei Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Al Ageeli E. Alterations of Mitochondria and Related Metabolic Pathways in Leukemia: A Narrative Review. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2019; 8:3-11. [PMID: 31929772 PMCID: PMC6945320 DOI: 10.4103/sjmms.sjmms_112_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/12/2019] [Accepted: 07/21/2019] [Indexed: 12/14/2022]
Abstract
Dysregulation of mitochondrial function often precedes malignant transformation of hematopoietic stem cells (HSCs). Mitochondria have a direct role in the maintenance of HSC functions. For example, D-2-hydroxyglutarate, generated due to the activity of mutated mitochondrial isocitrate dehydrogenase (IDH), has been implicated in the pathogenesis of leukemia. Furthermore, disturbances in the fatty acid breakdown and pyruvate oxidation are often seen in leukemic cells. These and other abnormalities expedite leukemogenesis and chemoresistance of leukemic cells. However, it needs to be elucidated whether these aberrations are the result or cause of leukemogenesis. Accordingly, for this review, a search was carried out in PubMed and Google Scholar databases until June 2019 to assess the relationship between metabolic pathways in altered mitochondria and leukemia development. In the present review, an overview of mitochondria-related mechanisms and their abnormalities in leukemia is presented, with mitochondrial pathways and factors, such as mitophagy, intermediary metabolism enzymes, oncometabolites and reactive oxygen species' generation, discussed as potential diagnostic and therapeutic targets in leukemia.
Collapse
Affiliation(s)
- Essam Al Ageeli
- Department of Medical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
4
|
Watanabe A, Inukai T, Kagami K, Abe M, Takagi M, Fukushima T, Fukushima H, Nanmoku T, Terui K, Ito T, Toki T, Ito E, Fujimura J, Goto H, Endo M, Look T, Kamps M, Minegishi M, Takita J, Inaba T, Takahashi H, Ohara A, Harama D, Shinohara T, Somazu S, Oshiro H, Akahane K, Goi K, Sugita K. Resistance of t(17;19)-acute lymphoblastic leukemia cell lines to multiagents in induction therapy. Cancer Med 2019; 8:5274-5288. [PMID: 31305009 PMCID: PMC6718581 DOI: 10.1002/cam4.2356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/08/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
t(17;19)(q21‐q22;p13), responsible for TCF3‐HLF fusion, is a rare translocation in childhood B‐cell precursor acute lymphoblastic leukemia(BCP‐ALL). t(1;19)(q23;p13), producing TCF3‐PBX1 fusion, is a common translocation in childhood BCP‐ALL. Prognosis of t(17;19)‐ALL is extremely poor, while that of t(1;19)‐ALL has recently improved dramatically in intensified chemotherapy. In this study, TCF3‐HLF mRNA was detectable at a high level during induction therapy in a newly diagnosed t(17;19)‐ALL case, while TCF3‐PBX1 mRNA was undetectable at the end of induction therapy in most newly diagnosed t(1;19)‐ALL cases. Using 4 t(17;19)‐ALL and 16 t(1;19)‐ALL cell lines, drug response profiling was analyzed. t(17;19)‐ALL cell lines were found to be significantly more resistant to vincristine (VCR), daunorubicin (DNR), and prednisolone (Pred) than t(1;19)‐ALL cell lines. Sensitivities to three (Pred, VCR, and l‐asparaginase [l‐Asp]), four (Pred, VCR, l‐Asp, and DNR) and five (Pred, VCR, l‐Asp, DNR, and cyclophosphamide) agents, widely used in induction therapy, were significantly poorer for t(17;19)‐ALL cell lines than for t(1;19)‐ALL cell lines. Consistent with poor responses to VCR and DNR, gene and protein expression levels of P‐glycoprotein (P‐gp) were higher in t(17;19)‐ALL cell lines than in t(1;19)‐ALL cell lines. Inhibitors for P‐gp sensitized P‐gp‐positive t(17;19)‐ALL cell lines to VCR and DNR. Knockout of P‐gp by CRISPRCas9 overcame resistance to VCR and DNR in the P‐gp‐positive t(17;19)‐ALL cell line. A combination of cyclosporine A with DNR prolonged survival of NSG mice inoculated with P‐gp‐positive t(17;19)‐ALL cell line. These findings indicate involvement of P‐gp in resistance to VCR and DNR in Pgp positive t(17;19)‐ALL cell lines. In all four t(17;19)‐ALL cell lines, RAS pathway mutation was detected. Furthermore, among 16 t(1;19)‐ALL cell lines, multiagent resistance was usually observed in the cell lines with RAS pathway mutation in comparison to those without it, suggesting at least a partial involvement of RAS pathway mutation in multiagent resistance of t(17;19)‐ALL.
Collapse
Affiliation(s)
- Atsushi Watanabe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Keiko Kagami
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Masako Abe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Fukushima
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Fukushima
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toru Nanmoku
- Department of Clinical Laboratory, University of Tsukuba Hospital, Tsukuba, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Tatsuya Ito
- Department of Pediatrics, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Junya Fujimura
- Department of Pediatrics and Adolescent Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroaki Goto
- Hematology/Oncology & Regenerative Medicine, Kanagawa Children's Medical Center
| | - Mikiya Endo
- Department of Pediatrics, Iwate Medical University School of Medicine, Morioka, Japan
| | - Thomas Look
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mark Kamps
- Department of Pathology, University of California School of Medicine, La Jolla, California
| | | | - Junko Takita
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | | | - Akira Ohara
- Tokyo Children's Cancer Study Group, Tokyo, Japan
| | - Daisuke Harama
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Tamao Shinohara
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Shinpei Somazu
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Hiroko Oshiro
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kumiko Goi
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kanji Sugita
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
5
|
Ito Y, Umezu T, Tadokoro K, Saito Y, Katagiri S, Suguro T, Asano M, Yoshizawa S, Akahane D, Tanaka Y, Fujimoto H, Okabe S, Gotoh M, Tauchi T, Kawana C, Ohyashiki JH, Nakamura N, Ohyashiki K. BIM deletion polymorphism accounts for lack of favorable outcome in Japanese females with follicular lymphoma. Leuk Lymphoma 2018; 60:1283-1288. [DOI: 10.1080/10428194.2018.1529310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yoshikazu Ito
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Tomohiro Umezu
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Japan
| | | | - Yuu Saito
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | | | - Tamiko Suguro
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Michiyo Asano
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | | | - Daigo Akahane
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Yuko Tanaka
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Hiroaki Fujimoto
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Seiichi Okabe
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Moritaka Gotoh
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Tetsuzo Tauchi
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Chiaki Kawana
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Japan
| | - Junko H. Ohyashiki
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Kanagawa, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
6
|
Huang M, Inukai T, Miyake K, Tanaka Y, Kagami K, Abe M, Goto H, Minegishi M, Iwamoto S, Sugihara E, Watanabe A, Somazu S, Shinohara T, Oshiro H, Akahane K, Goi K, Sugita K. Clofarabine exerts antileukemic activity against cytarabine-resistant B-cell precursor acute lymphoblastic leukemia with low deoxycytidine kinase expression. Cancer Med 2018; 7:1297-1316. [PMID: 29473342 PMCID: PMC5911575 DOI: 10.1002/cam4.1323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022] Open
Abstract
Cytosine arabinoside (Ara-C) is one of the key drugs for the treatment of acute myeloid leukemia. It is also used for consolidation therapy of acute lymphoblastic leukemia (ALL). Ara-C is a deoxyadenosine analog and is phosphorylated to form cytosine arabinoside triphosphate (Ara-CTP) as an active form. In the first step of the metabolic pathway, Ara-C is phosphorylated to Ara-CMP by deoxycytidine kinase (DCK). However, the current cumulative evidence in the association of the Ara-C sensitivity in ALL appears inconclusive. We analyzed various cell lines for the possible involvement of DCK in the sensitivities of B-cell precursor ALL (BCP-ALL) to Ara-C. Higher DCK expression was associated with higher Ara-C sensitivity. DCK knockout by genome editing with a CRISPR-Cas9 system in an Ara-C-sensitive-ALL cell line induced marked resistance to Ara-C, but not to vincristine and daunorubicin, indicating the involvement of DCK expression in the Ara-C sensitivity of BCP-ALL. DCK gene silencing due to the hypermethylation of a CpG island and reduced DCK activity due to a nonsynonymous variant allele were not associated with Ara-C sensitivity. Clofarabine is a second-generation deoxyadenosine analog rationally synthesized to improve stability and reduce toxicity. The IC50 of clofarabine in 79 BCP-ALL cell lines was approximately 20 times lower than that of Ara-C. In contrast to Ara-C, although the knockout of DCK induced marked resistance to clofarabine, sensitivity to clofarabine was only marginally associated with DCK gene expression level, suggesting a possible efficacy of clofarabine for BCP-ALL that shows relative Ara-C resistance due to low DCK expression.
Collapse
Affiliation(s)
- Meixian Huang
- Department of PediatricsSchool of MedicineUniversity of YamanashiYamanashiJapan
| | - Takeshi Inukai
- Department of PediatricsSchool of MedicineUniversity of YamanashiYamanashiJapan
| | - Kunio Miyake
- Department of Health SciencesSchool of MedicineUniversity of YamanashiYamanashiJapan
| | - Yoichi Tanaka
- Department of Clinical PharmacySchool of PharmacyKitasato UniversityTokyoJapan
| | - Keiko Kagami
- Department of PediatricsSchool of MedicineUniversity of YamanashiYamanashiJapan
| | - Masako Abe
- Department of PediatricsSchool of MedicineUniversity of YamanashiYamanashiJapan
| | - Hiroaki Goto
- Hematology/Oncology and Regenerative MedicineKanagawa Children's Medical CenterYokohamaJapan
| | | | - Shotaro Iwamoto
- Department of PediatricsMie University Graduate School of MedicineTsuJapan
| | - Eiji Sugihara
- Division of Gene RegulationInstitute for Advanced Medical ResearchSchool of MedicineKeio UniversityTokyoJapan
| | - Atsushi Watanabe
- Department of PediatricsSchool of MedicineUniversity of YamanashiYamanashiJapan
| | - Shinpei Somazu
- Department of PediatricsSchool of MedicineUniversity of YamanashiYamanashiJapan
| | - Tamao Shinohara
- Department of PediatricsSchool of MedicineUniversity of YamanashiYamanashiJapan
| | - Hiroko Oshiro
- Department of PediatricsSchool of MedicineUniversity of YamanashiYamanashiJapan
| | - Koshi Akahane
- Department of PediatricsSchool of MedicineUniversity of YamanashiYamanashiJapan
| | - Kumiko Goi
- Department of PediatricsSchool of MedicineUniversity of YamanashiYamanashiJapan
| | - Kanji Sugita
- Department of PediatricsSchool of MedicineUniversity of YamanashiYamanashiJapan
| |
Collapse
|