1
|
Arora M, Singh AK, Kumar A, Singh H, Pathak P, Grishina M, Yadav JP, Verma A, Kumar P. Semisynthetic phytochemicals in cancer treatment: a medicinal chemistry perspective. RSC Med Chem 2024; 15:3345-3370. [PMID: 39430100 PMCID: PMC11484407 DOI: 10.1039/d4md00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 10/22/2024] Open
Abstract
Cancer is the uncontrolled proliferation of abnormal cells that invade other areas, spread to other organs, and cause metastases, which is the most common cause of death. A review of all FDA-approved new molecular entities (NMEs) shows that natural products and derivatives account for over one-third of all NMEs. Before 1940, unmodified products and derivatives accounted for 43% and 14% of NME registrations, respectively. Since then, the share of unmodified products has decreased to 9.5% of all approved NMEs, while the share of derivatives has increased to 28%. Since the 1940s, semi-synthetic and synthetic derivatives of natural substances have gained importance, and this trend continues to date. In this study, we have discussed in detail isolated phytoconstituents with chemical modifications that are either FDA-approved or under clinical trials, such as podophyllotoxin, Taxol (paclitaxel, docetaxel), vinca alkaloids (vincristine, vinblastine), camptothecin, genistein, cephalotaxine, rohitukine, and many more, which may act as essential leads to the development of novel anticancer agents. Furthermore, we have also discussed recent developments in the most potent semisynthetic phytoconstituents, their unique properties, and their importance in cancer treatment.
Collapse
Affiliation(s)
- Meghna Arora
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Prateek Pathak
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to be University) Hyderabad Campus India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
| | - Jagat Pal Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University Kanpur 209217 India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
2
|
Guo C, Lv X, Zhang Q, Yi L, Ren Y, Li Z, Yan J, Zheng S, Sun M, Liu S. CRKL but not CRKII contributes to hemin-induced erythroid differentiation of CML. J Cell Mol Med 2024; 28:e18308. [PMID: 38683131 PMCID: PMC11057422 DOI: 10.1111/jcmm.18308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Destruction of erythropoiesis process leads to various diseases, including thrombocytopenia, anaemia, and leukaemia. miR-429-CT10 regulation of kinase-like (CRKL) axis involved in development, progression and metastasis of cancers. However, the exact role of miR-429-CRKL axis in leukaemic cell differentiation are still unknown. The current work aimed to uncover the effect of miR-429-CRKL axis on erythropoiesis. In the present study, CRKL upregulation was negatively correlated with miR-429 downregulation in both chronic myeloid leukaemia (CML) patient and CR patient samples. Moreover, CRKL expression level was significantly decreased while miR-429 expression level was increased during the erythroid differentiation of K562 cells following hemin treatment. Functional investigations revealed that overexpression and knockdown of CRKL was remarkably effective in suppressing and promoting hemin-induced erythroid differentiation of K562 cells, whereas, miR-429 exhibited opposite effects to CRKL. Mechanistically, miR-429 regulates erythroid differentiation of K562 cells by downregulating CRKL via selectively targeting CRKL-3'-untranslated region (UTR) through Raf/MEK/ERK pathway. Conversely, CRKII had no effect on erythroid differentiation of K562 cells. Taken together, our data demonstrated that CRKL (but not CRKII) and miR-429 contribute to development, progression and erythropoiesis of CML, miR-429-CRKL axis regulates erythropoiesis of K562 cells via Raf/MEK/ERK pathway, providing novel insights into effective diagnosis and therapy for CML patients.
Collapse
MESH Headings
- Humans
- 3' Untranslated Regions
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Cell Differentiation/drug effects
- Erythroid Cells/metabolism
- Erythroid Cells/drug effects
- Erythroid Cells/pathology
- Erythroid Cells/cytology
- Erythropoiesis/genetics
- Erythropoiesis/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- Hemin/pharmacology
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- MAP Kinase Signaling System/drug effects
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Proto-Oncogene Proteins c-crk/metabolism
- Proto-Oncogene Proteins c-crk/genetics
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Xinxin Lv
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Qiuling Zhang
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Lina Yi
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Yingying Ren
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Zhaopeng Li
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Jinsong Yan
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical UniversityInstitute of Stem Cell Transplantation of Dalian Medical UniversityDalianLiaoningChina
| | - Shanliang Zheng
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Ming‐Zhong Sun
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| |
Collapse
|
3
|
Wu A, Liu X, Fruhstorfer C, Jiang X. Clinical Insights into Structure, Regulation, and Targeting of ABL Kinases in Human Leukemia. Int J Mol Sci 2024; 25:3307. [PMID: 38542279 PMCID: PMC10970269 DOI: 10.3390/ijms25063307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
Chronic myeloid leukemia is a multistep, multi-lineage myeloproliferative disease that originates from a translocation event between chromosome 9 and chromosome 22 within the hematopoietic stem cell compartment. The resultant fusion protein BCR::ABL1 is a constitutively active tyrosine kinase that can phosphorylate multiple downstream signaling molecules to promote cellular survival and inhibit apoptosis. Currently, tyrosine kinase inhibitors (TKIs), which impair ABL1 kinase activity by preventing ATP entry, are widely used as a successful therapeutic in CML treatment. However, disease relapses and the emergence of resistant clones have become a critical issue for CML therapeutics. Two main reasons behind the persisting obstacles to treatment are the acquired mutations in the ABL1 kinase domain and the presence of quiescent CML leukemia stem cells (LSCs) in the bone marrow, both of which can confer resistance to TKI therapy. In this article, we systemically review the structural and molecular properties of the critical domains of BCR::ABL1 and how understanding the essential role of BCR::ABL1 kinase activity has provided a solid foundation for the successful development of molecularly targeted therapy in CML. Comparison of responses and resistance to multiple BCR::ABL1 TKIs in clinical studies and current combination treatment strategies are also extensively discussed in this article.
Collapse
MESH Headings
- Humans
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Signal Transduction
Collapse
Affiliation(s)
- Andrew Wu
- Collings Stevens Chronic Leukemia Research Laboratory, Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.W.); (X.L.)
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xiaohu Liu
- Collings Stevens Chronic Leukemia Research Laboratory, Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.W.); (X.L.)
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Clark Fruhstorfer
- Collings Stevens Chronic Leukemia Research Laboratory, Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.W.); (X.L.)
| | - Xiaoyan Jiang
- Collings Stevens Chronic Leukemia Research Laboratory, Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.W.); (X.L.)
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
4
|
Gao C, Zhang L, Xu Y, Ma X, Chen P, Chen ZS, Wei L. I13 overrides resistance mediated by the T315I mutation in chronic myeloid leukemia by direct BCR-ABL inhibition. Front Pharmacol 2023; 14:1183052. [PMID: 37124196 PMCID: PMC10130674 DOI: 10.3389/fphar.2023.1183052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by a BCR-ABL fusion gene. Imatinib has significantly improved the treatment of CML as a first-generation tyrosine kinase inhibitor (TKIs). The T315I mutant form of BCR-ABL is the most common mutation that confers resistance to imatinib or the second-generation TKIs, resulting in poor clinical prognosis. In this work, we assessed the effect of a potent histone deacetylase (HDAC) inhibitor, I13, on the differentiation blockade in CML cells harboring T315I-mutated and wild-type BCR-ABL by MTT assay, flow cytometery, cell colony formation assay, mRNA Sequencing, Quantitative real-time PCR and Western blotting analysis. We found that I13 possessed highly potent activity against T315I-mutated BCR-ABL mutant-expressing cells and wild-type BCR-ABL-expressing cells. I13 induced cell differentiation and significantly suppressed the proliferation of these CML cells via the cell cycle G0/G1-phase accumulation. Moreover, it was revealed that I13 triggered the differentiation of BaF3-T315I cells, which was attributed to the block of the chronic myeloid leukemia signaling pathway via the depletion of BCR-ABL that was mediated by the inhibition of HDAC activity presented by the acetylation of histones H3 and H4. Taken together, I13 efficiently depleted BCR-ABL in CML cells expressing the BCR-ABL-T315I mutation, which blocked its function, serving as a scaffold protein that modulated the chronic myeloid leukemia signaling pathway mediating cell differentiation. The present findings demonstrate that I13 is a BCR-ABL modulator for the development of CML therapy that can override resistance caused by T315I-mutated BCR-ABL.
Collapse
Affiliation(s)
- Congying Gao
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lei Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yun Xu
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Xiangyu Ma
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Peilei Chen
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
- *Correspondence: Zhe-Sheng Chen, ; Liuya Wei,
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, China
- *Correspondence: Zhe-Sheng Chen, ; Liuya Wei,
| |
Collapse
|
5
|
Narlı Özdemir Z, Kılıçaslan NA, Yılmaz M, Eşkazan AE. Guidelines for the treatment of chronic myeloid leukemia from the NCCN and ELN: differences and similarities. Int J Hematol 2023; 117:3-15. [PMID: 36064839 DOI: 10.1007/s12185-022-03446-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023]
Abstract
Patients diagnosed with chronic myeloid leukemia (CML) in chronic phase can now have a life expectancy comparable to that of the general population thanks to the use of tyrosine kinase inhibitor (TKI) therapies. Although most patients with CML require lifelong TKI therapy, it is possible for some patients to achieve treatment-free remission. These spectacular results have been made possible by the development of superior treatment modalities as well as clinicians' efforts in strictly adhering to clinical guidelines such as the National Comprehensive Cancer Network (NCCN) and European Leukemia Network (ELN). CML treatment recommendations reported in these guidelines are the result of years of selecting and incorporating the most reliable evidence. In this review, we provide a synopsis of the differences and similarities that exist between the NCCN and ELN guidelines.
Collapse
Affiliation(s)
- Zehra Narlı Özdemir
- Department of Hematology, Izmir Bozyaka Training and Research Hospital, Izmir, Turkey
| | | | - Musa Yılmaz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Fatih, Istanbul, Turkey.
| |
Collapse
|
6
|
Ye X, Wang L, Yang X, Yang J, Zhou J, Lan C, Kantawong F, Kumsaiyai W, Wu J, Zeng J. Integrated Chemical Characterization, Network Pharmacology and Transcriptomics to Explore the Mechanism of Sesquiterpenoids Isolated from Gynura divaricata (L.) DC. against Chronic Myelogenous Leukemia. Pharmaceuticals (Basel) 2022; 15:1435. [PMID: 36422564 PMCID: PMC9693606 DOI: 10.3390/ph15111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 08/30/2023] Open
Abstract
Chronic myelogenous leukemia (CML) is a serious threat to human health, while drugs for CML are limited. Herbal medicines with structural diversity, low toxicity and low drug resistance are always the most important source for drug discoveries. Gynura divaricata (L.) DC. is a well-known herbal medicine whose non-alkaline ingredients (GD-NAIs) were isolated. The GD-NAIs demonstrated potential anti-CML activity in our preliminary screening tests. However, the chemical components and underlying mechanism are still unknown. In this study, GD-NAIs were tentatively characterized using UHPLC-HRMS combined with molecular networking, which were composed of 75 sesquiterpenoids. Then, the anti-CML activities of GD-NAIs were evaluated and demonstrated significant suppression of proliferation and promotion of apoptosis in K562 cells. Furthermore, the mechanism of GD-NAIs against CML were elucidated using network pharmacology combined with RNA sequencing. Four sesquiterpenoids would be the main active ingredients of GD-NAIs against CML, which could regulate PD-L1 expression and the PD-1 checkpoint pathway in cancer, PI3K/AKT, JAK/STAT, TGF-β, estrogen, Notch and Wnt signaling pathways. In conclusion, our study reveals the composition of GD-NAIs, confirms its anti-CML activity and elucidates their underlying mechanism, which is a potential countermeasure for the treatment of CML.
Collapse
Affiliation(s)
- Xinyuan Ye
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xin Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jie Yang
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Faculty Associated Medical Sciences, Department of Medical Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jie Zhou
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Cai Lan
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fahsai Kantawong
- Faculty Associated Medical Sciences, Department of Medical Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warunee Kumsaiyai
- Faculty Associated Medical Sciences, Department of Medical Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
- Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
7
|
Ye W, Wu X, Wang X, Wei X, Tang Y, Ouyang X, Gong Y. The proteolysis targeting chimera GMB-475 combined with dasatinib for the treatment of chronic myeloid leukemia with BCR::ABL1 mutants. Front Pharmacol 2022; 13:931772. [PMID: 36263131 PMCID: PMC9574342 DOI: 10.3389/fphar.2022.931772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Patients with chronic myeloid leukemia (CML) show resistance to tyrosine kinase inhibitors (TKIs) targeting ABL1 due to the emergence of BCR::ABL1 mutants, especially compound mutants during the treatment, which brings great challenges to clinical practice. Combination therapy is an effective strategy for drug resistance. GMB-475, a proteolysis targeting chimera (PROTAC) targeting the myristoyl pocket of ABL1 in an allosteric manner, degrades the BCR::ABL1 through the ubiquitin–proteasome pathway. In this study, we combined GMB-475 with orthosteric TKIs targeting ABL1 to overcome resistance. We constructed Ba/F3 cells carrying BCR::ABL1 mutants by gene cloning technology and compared the effects of combination therapy with those of monotherapy on the biological characteristics and signaling pathways in CML cells. We found that the effects of ABL1 inhibitors, including imatinib, dasatinib, ponatinib, and ABL001, on growth inhibition and promoting apoptosis of Ba/F3 cells with BCR::ABL1 mutants, especially compound mutants, were weakened. GMB-475 combined with TKIs, especially dasatinib, synergistically inhibited growth, promoted apoptosis, and blocked the cell cycle of Ba/F3 cells carrying BCR::ABL1 mutants and synergistically blocked multiple molecules in the JAK-STAT pathway. In conclusion, dasatinib enhanced the antitumor effect of GMB-475; that is, the combination of PROTAC targeting ABL1 in an allosteric manner and orthosteric TKIs, especially dasatinib, provides a novel idea for the treatment of CML patients with BCR::ABL1 mutants in clinical practice.
Collapse
|
8
|
Mancini M, De Santis S, Monaldi C, Castagnetti F, Lonetti A, Bruno S, Dan E, Sinigaglia B, Rosti G, Cavo M, Gugliotta G, Soverini S. Polo-like kinase-1, Aurora kinase A and WEE1 kinase are promising druggable targets in CML cells displaying BCR::ABL1-independent resistance to tyrosine kinase inhibitors. Front Oncol 2022; 12:901132. [PMID: 35992847 PMCID: PMC9391055 DOI: 10.3389/fonc.2022.901132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
In chronic myeloid leukemia (CML), Aurora kinase A and Polo like kinase 1 (PLK1), two serine-threonine kinases involved in the maintenance of genomic stability by preserving a functional G2/M checkpoint, have been implicated in BCR::ABL1-independent resistance to the tyrosine kinase inhibitor (TKI) imatinib mesylate and in leukemic stem cell (LSC) persistence. It can be speculated that the observed deregulated activity of Aurora A and Plk1 enhances DNA damage, promoting the occurrence of additional genomic alterations contributing to TKI resistance and ultimately driving progression from chronic phase to blast crisis (BC). In this study, we propose a new therapeutic strategy based on the combination of Aurora kinase A or PLK1 inhibition with danusertib or volasertib, respectively, and WEE1 inhibition with AZD1775. Danusertib and volasertib used as single drugs induced apoptosis and G2/M-phase arrest, associated with accumulation of phospho-WEE1. Subsequent addition of the WEE1 inhibitor AZD1775 in combination significantly enhanced the induction of apoptotic cell death in TKI-sensitive and -resistant cell lines as compared to both danusertib and volasertib alone and to the simultaneous combination. This schedule indeed induced a significant increase of the DNA double-strand break marker γH2AX, forcing the cells through successive replication cycles ultimately resulting in apoptosis. Finally, combination of danusertib or volasertib+AZD1775 significantly reduced the clonogenic potential of CD34+ CML progenitors from BC patients. Our results may have implications for the development of innovative therapeutic approaches aimed to improve the outcomes of patients with multi-TKI-resistant or BC CML.
Collapse
Affiliation(s)
- Manuela Mancini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- *Correspondence: Manuela Mancini,
| | - Sara De Santis
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Cecilia Monaldi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Fausto Castagnetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Samantha Bruno
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Elisa Dan
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Barbara Sinigaglia
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Gianantonio Rosti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Michele Cavo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Gabriele Gugliotta
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Simona Soverini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| |
Collapse
|
9
|
Yılmaz U, Bulan B, Belli Ç, Eşkazan AE. Management of chronic myeloid leukemia in myeloid blastic phase with novel therapies: a systematic literature review. Expert Rev Hematol 2022; 15:423-429. [PMID: 35536916 DOI: 10.1080/17474086.2022.2076669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Chronic myeloid leukemia at myeloid blastic phase (CML-MBP) is a rapidly lethal illness, and its prognosis is dismal with standard therapy. As the clinical and histological characteristics of CML-MBP closely resemble acute myeloid leukemia (AML), the management of these two entities has historically gone hand in hand. The remarkable success of tyrosine kinase inhibitors (TKI) for chronic phase CML significantly reduced the incidence of CML-MBP. AREA COVERED We performed a systematic literature review to aggregate the clinical data of CML-MBP patients who have been treated with the new drugs approved for use in AML, including decitabine, azacytidine, venetoclax, omecetaxine, glasdegib, gemtuzumab, IDH, and FLT3 inhibitors. The literature review revealed 14 articles directly contributing relevant data. We analyzed them according to the type of regimen each studied. This review will highlight selected findings from these papers. EXPERT OPINION Hypomethylating agent and TKI combination with or without the addition of venetoclax appear to be highly promising and have produced comparable outcomes with intensive chemotherapy and TKI combinations. Current evidence is insufficient to reach conclusions prompting dedicated research to improve the care of patients with CML-MBP.
Collapse
Affiliation(s)
- Umut Yılmaz
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Batuhan Bulan
- Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Çağrı Belli
- Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
10
|
Benchikh S, Bousfiha A, El Hamouchi A, Soro SGC, Malki A, Nassereddine S. Chronic myeloid leukemia: cytogenetics and molecular biology’s part in the comprehension and management of the pathology and treatment evolution. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00248-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Background
Chronic myelogenous leukemia (CML) is a type of blood cancer that affects hematopoietic stem cells and is often characterized by the presence of the Philadelphia chromosome. The Philadelphia chromosome encodes for a protein with high tyrosine kinase activity which acts as a tumorigenic factor.
Main body
This review article reports an update on the pathophysiology of CML and highlights the role of cytogenetic and molecular biology in screening, diagnosis, therapeutic monitoring as well as evaluating patients’ response to treatment. Additionally, these genetic tests allow identifying additional chromosomal abnormalities (ACA) and BCR-ABL tyrosine kinase domain mutations in intolerant or resistant patients. Thus, therapeutic advances have enabled this pathology to become manageable and almost curable in its clinical course. The scientific literature search used in the synthesis of this paper was carried out in the PubMed database, and the figures were generated using online software named BioRender.
Conclusion
The role of cytogenetic and molecular biology is crucial for the diagnosis and medical monitoring of patients. In-depth knowledge of molecular mechanisms of the BCR-ABL kinase facilitated the development of new targeted therapies that have improved the vital prognosis in patients. However, the emergence of ACA and new mutations resistant to tyrosine kinase inhibitors constitutes a real challenge in the quest for adequate therapy.
Collapse
|
11
|
Al Hamad M. Contribution of BCR-ABL molecular variants and leukemic stem cells in response and resistance to tyrosine kinase inhibitors: a review. F1000Res 2022; 10:1288. [PMID: 35284066 PMCID: PMC8886173 DOI: 10.12688/f1000research.74570.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm generated by reciprocal chromosomal translocation, t (9; 22) (q34; q11) in the transformed hematopoietic stem cell. Tyrosine kinase inhibitors (TKIs) target the mature proliferating BCR-ABL cells, the major CML driver, and increase overall and disease-free survival. However, mutant clones, pre-existing or due to therapy, develop resistance against TKIs. BCR-ABL1 oncoprotein activates various molecular pathways including the RAS/RAF/MEK/ERK pathway, JAK2/STAT pathway, and PI3K/AKT/mTOR pathway. Stimulation of these pathways in TKI resistant CML patients, make them a new target. Moreover, a small proportion of CML cells, leukemic stem cells (LSCs), persist during the TKI therapy and sustain the disease in the patient. Engraftment of LSCs in the bone marrow niche and dysregulation of miRNA participate greatly in the TKI resistance. Current efforts are needed for determining the reason behind TKI resistance, identification, and elimination of CML LSC might be of great need for cancer cure.
Collapse
Affiliation(s)
- Mohammad Al Hamad
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Dammam, 31441, Saudi Arabia
| |
Collapse
|
12
|
Andretta E, Costa C, Longobardi C, Damiano S, Giordano A, Pagnini F, Montagnaro S, Quintiliani M, Lauritano C, Ciarcia R. Potential Approaches Versus Approved or Developing Chronic Myeloid Leukemia Therapy. Front Oncol 2022; 11:801779. [PMID: 34993151 PMCID: PMC8724906 DOI: 10.3389/fonc.2021.801779] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 12/22/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of patients with chronic myeloid leukemia (CML). However, continued use of these inhibitors has contributed to the increase in clinical resistance and the persistence of resistant leukemic stem cells (LSCs). So, there is an urgent need to introduce additional targeted and selective therapies to eradicate quiescent LSCs, and to avoid the relapse and disease progression. Here, we focused on emerging BCR-ABL targeted and non-BCR-ABL targeted drugs employed in clinical trials and on alternative CML treatments, including antioxidants, oncolytic virus, engineered exosomes, and natural products obtained from marine organisms that could pave the way for new therapeutic approaches for CML patients.
Collapse
Affiliation(s)
- Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Caterina Costa
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Largo Madonna delle Grazie, Naples, Italy
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Francesco Pagnini
- Unit of Radiology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | | | - Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
13
|
Ismail MA, Sorio C, Al-Dewik N. Protein Tyrosine Phosphatase Receptor Gamma as Potential Therapeutic Target for Chronic Myeloid Leukemia Patients. Cancer Control 2022; 29:10732748221140201. [DOI: 10.1177/10732748221140201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The worldwide CML incidence expects 100,000 patients every year thus representing a substantial health burden. A year 2000 is notable year, where Tyrosine kinase inhibitors (TKIs) had been introduced to the CML treatment plan. However, despite the dramatically reduce in mortality rate of CML patients due to TKIs, still over 25% of CML patients need to switch TKIs at least once during treatment timeline for many reasons. On the other hand, PTPRG behave as a tumor suppressor gene in different neoplasms and is strongly down-regulated in CML patients. We discussed briefly in series of articles the possible reasons of it is down regulation. Here, we discuss its role as potential therapeutic target in treatment plan.
Collapse
Affiliation(s)
- Mohamed A. Ismail
- School of Life Science, Pharmacy and Chemistry, Faculty of Science, Engineering and Computing, Kingston University London, London, UK
- Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Claudio Sorio
- Department of Medicine, University of Verona, Verona, Italy
| | - Nader Al-Dewik
- Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation, Doha, Qatar
- Faculty of Health and Social Care Sciences, Kingston University, St. George’s University of London, London, UK
| |
Collapse
|
14
|
Mojtahedi H, Yazdanpanah N, Rezaei N. Chronic myeloid leukemia stem cells: targeting therapeutic implications. Stem Cell Res Ther 2021; 12:603. [PMID: 34922630 PMCID: PMC8684082 DOI: 10.1186/s13287-021-02659-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm driven by BCR-ABL1 oncoprotein, which plays a pivotal role in CML pathology, diagnosis, and treatment as confirmed by the success of tyrosine kinase inhibitor (TKI) therapy. Despite advances in the development of more potent tyrosine kinase inhibitors, some mechanisms particularly in terms of CML leukemic stem cell (CML LSC) lead to intrinsic or acquired therapy resistance, relapse, and disease progression. In fact, the maintenance CML LSCs in patients who are resistance to TKI therapy indicates the role of CML LSCs in resistance to therapy through survival mechanisms that are not completely dependent on BCR-ABL activity. Targeting therapeutic approaches aim to eradicate CML LSCs through characterization and targeting genetic alteration and molecular pathways involving in CML LSC survival in a favorable leukemic microenvironment and resistance to apoptosis, with the hope of providing a functional cure. In other words, it is possible to develop the combination therapy of TKs with drugs targeting genes or molecules more specifically, which is required for survival mechanisms of CML LSCs, while sparing normal HSCs for clinical benefits along with TKIs.
Collapse
Affiliation(s)
- Hanieh Mojtahedi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Al Hamad M. Contribution of BCR-ABL molecular variants and leukemic stem cells in response and resistance to tyrosine kinase inhibitors: a review. F1000Res 2021; 10:1288. [PMID: 35284066 PMCID: PMC8886173 DOI: 10.12688/f1000research.74570.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 08/28/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm generated by reciprocal chromosomal translocation, t (9; 22) (q34; q11) in the transformed hematopoietic stem cell. Tyrosine kinase inhibitors (TKIs) target the mature proliferating BCR-ABL cells, the major CML driver, and increase overall and disease-free survival. However, mutant clones, pre-existing or due to therapy, develop resistance against TKIs. BCR-ABL1 oncoprotein activates various molecular pathways including the RAS/RAF/MEK/ERK pathway, JAK2/STAT pathway, and PI3K/AKT/mTOR pathway. Stimulation of these pathways in TKI resistant CML patients, make them a new target. Moreover, a small proportion of CML cells, leukemic stem cells (LSCs), persist during the TKI therapy and sustain the disease in the patient. Engraftment of LSCs in the bone marrow niche and dysregulation of miRNA participate greatly in the TKI resistance. Current efforts are needed for determining the reason behind TKI resistance, identification, and elimination of CML LSC might be of great need for cancer cure.
Collapse
Affiliation(s)
- Mohammad Al Hamad
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Dammam, 31441, Saudi Arabia
| |
Collapse
|
16
|
İbiş B, Tiribelli M, Eşkazan AE. Asciminib as a new option in the treatment of chronic myeloid leukemia. Future Oncol 2021; 17:5003-5005. [PMID: 34791894 DOI: 10.2217/fon-2021-1174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Betül İbiş
- Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Mario Tiribelli
- Division of Hematology and Blood and Marrow Transplantation, Department of Medical Area, University of Udine, Udine, Italy
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
17
|
Corral Alaejos Á, Zarzuelo Castañeda A, Jiménez Cabrera S, Sánchez-Guijo F, Otero MJ, Pérez-Blanco JS. External evaluation of population pharmacokinetic models of imatinib in adults diagnosed with chronic myeloid leukaemia. Br J Clin Pharmacol 2021; 88:1913-1924. [PMID: 34705297 DOI: 10.1111/bcp.15122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/29/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
AIMS Imatinib is considered the standard first-line treatment in newly diagnosed patients with chronic-phase myeloid leukaemia (CML). Several imatinib population pharmacokinetic (popPK) models have been developed. However, their predictive performance has not been well established when extrapolated to different populations. Therefore, this study aimed to perform an external evaluation of available imatinib popPK models developed mainly in adult patients, and to evaluate the improvement in individual model-based predictions through Bayesian forecasting computed by each model at different treatment occasions. METHODS A literature review was conducted through PubMed and Scopus to identify popPK models. Therapeutic drug monitoring data collected in adult CML patients treated with imatinib was used for external evaluation, including prediction- and simulated-based diagnostics together with Bayesian forecasting analysis. RESULTS Fourteen imatinib popPK studies were included for model-performance evaluation. A total of 99 imatinib samples were collected from 48 adult CML patients undergoing imatinib treatment with a minimum of one plasma concentration measured at steady-state between January 2016 and December 2020. The model proposed by Petain et al showed the best performance concerning prediction-based diagnostics in the studied population. Bayesian forecasting demonstrated a significant improvement in predictive performance at the second visit. Inter-occasion variability contributed to reducing bias and improving individual model-based predictions. CONCLUSIONS Imatinib popPK studies developed in Caucasian subjects including α1-acid glycoprotein showed the best model performance in terms of overall bias and precision. Moreover, two imatinib samples from different visits appear sufficient to reach an adequate model-based individual prediction performance trough Bayesian forecasting.
Collapse
Affiliation(s)
| | | | | | - Fermín Sánchez-Guijo
- Institute for Biomedical Research of Salamanca, Salamanca, Spain.,Haematology Department, University Hospital of Salamanca, Salamanca, Spain.,Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María José Otero
- Pharmacy Service, University Hospital of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Jonás Samuel Pérez-Blanco
- Department of Pharmaceutical Sciences, Pharmacy Faculty, University of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca, Salamanca, Spain
| |
Collapse
|
18
|
Amir M, Javed S. A Review on the Therapeutic Role of TKIs in Case of CML in Combination With Epigenetic Drugs. Front Genet 2021; 12:742802. [PMID: 34745216 PMCID: PMC8569791 DOI: 10.3389/fgene.2021.742802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/30/2021] [Indexed: 01/09/2023] Open
Abstract
Chronic myeloid leukemia is a malignancy of bone marrow that affects white blood cells. There is strong evidence that disease progression, treatment responses, and overall clinical outcomes of CML patients are influenced by the accumulation of other genetic and epigenetic abnormalities, rather than only the BCR/ABL1 oncoprotein. Both genetic and epigenetic factors influence the efficacy of CML treatment strategies. Targeted medicines known as tyrosine-kinase inhibitors have dramatically improved long-term survival rates in CML patients during the previous 2 decades. When compared to earlier chemotherapy treatments, these drugs have revolutionized CML treatment and allowed most people to live longer lives. Although epigenetic inhibitors' activity is disrupted in many cancers, including CML, but when combined with TKI, they may offer potential therapeutic strategies for the treatment of CML cells. The epigenetics of tyrosine kinase inhibitors and resistance to them is being studied, with a particular focus on imatinib, which is used to treat CML. In addition, the use of epigenetic drugs in conjunction with TKIs has been discussed. Resistance to TKIs is still a problem in curing the disease, necessitating the development of new therapies. This study focused on epigenetic pathways involved in CML pathogenesis and tumor cell resistance to TKIs, both of which contribute to leukemic clone breakout and proliferation.
Collapse
Affiliation(s)
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
19
|
Malik S, Hassan S, Eşkazan AE. Novel BCR-ABL1 tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia. Expert Rev Hematol 2021; 14:975-978. [PMID: 34608829 DOI: 10.1080/17474086.2021.1990034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sara Malik
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shahzeb Hassan
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
20
|
Bartoló-Ibars A, Uribe-Herranz M, Muñoz-Sánchez G, Arnaldos-Pérez C, Ortiz-Maldonado V, Urbano-Ispizua Á, Pascal M, Juan M. CAR-T after Stem Cell Transplantation in B-Cell Lymphoproliferative Disorders: Are They Really Autologous or Allogenic Cell Therapies? Cancers (Basel) 2021; 13:4664. [PMID: 34572890 PMCID: PMC8470158 DOI: 10.3390/cancers13184664] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Allogenic hematopoietic stem cell transplantation (allo-HSCT) is one of the standard treatments for B-cell lymphoproliferative disorders; however, deep relapses are common after an allo-HSCT, and it is associated with poor prognosis. A successful approach to overcome these relapses is to exploit the body's own immune system with chimeric antigen receptor (CAR) T-cells. These two approaches are potentially combinatorial for treating R/R B-cell lymphoproliferative disorders. Several clinical trials have described different scenarios in which allo-HSCT and CAR-T are successively combined. Further, for all transplanted patients, assessment of chimerism is important to evaluate the engraftment success. Nonetheless, for those patients who previously received an allo-HSCT there is no monitorization of chimerism before manufacturing CAR T-cells. In this review, we focus on allo-HSCT and CAR-T treatments and the different sources of T-cells for manufacturing CAR T-cells.
Collapse
Affiliation(s)
- Ariadna Bartoló-Ibars
- Immunology Service—CDB, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.B.-I.); (G.M.-S.); (C.A.-P.); (M.P.)
| | - Mireia Uribe-Herranz
- Institut d’ Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (M.U.-H.); (Á.U.-I.)
| | - Guillermo Muñoz-Sánchez
- Immunology Service—CDB, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.B.-I.); (G.M.-S.); (C.A.-P.); (M.P.)
| | - Cristina Arnaldos-Pérez
- Immunology Service—CDB, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.B.-I.); (G.M.-S.); (C.A.-P.); (M.P.)
| | | | - Álvaro Urbano-Ispizua
- Institut d’ Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (M.U.-H.); (Á.U.-I.)
- Hematology Service—ICMHO, Hospital Clínic de Barcelona, 08036 Barcelona, Spain;
- Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Mariona Pascal
- Immunology Service—CDB, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.B.-I.); (G.M.-S.); (C.A.-P.); (M.P.)
- Institut d’ Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (M.U.-H.); (Á.U.-I.)
- Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Manel Juan
- Immunology Service—CDB, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.B.-I.); (G.M.-S.); (C.A.-P.); (M.P.)
- Institut d’ Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (M.U.-H.); (Á.U.-I.)
- Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
21
|
Chi HT, Thuong NTL, Ly BTK. Sphagneticola Trilobata (L.) Pruski (Asteraceae) Methanol Extract Induces Apoptosis in Leukemia Cells through Suppression of BCR/ABL. PLANTS 2021; 10:plants10050980. [PMID: 34068907 PMCID: PMC8156756 DOI: 10.3390/plants10050980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
We will study the effects of the methanol extract of Sphagneticola trilobata (L.) Pruski (Asteraceae) (MeST) on the growth of leukemia cells that may contain the BCR/ABL gene. This study also clarifies the mechanism of this effect on these cells. For this purpose, the cells harboring wild-type BCR/ABL, imatinib-resistant BCR/ABL (K562 and TCCYT315I), or Ba/F3 cells transfected with wild-type or mutant BCR/ABL genes were used. The results showed that MeST effectively inhibited the viability of leukemia cells in both a dose- and time-dependent manner. The effect of MeST seems to be more sensitive in the cells that carry imatinib-resistant BCR/ABL (especially the T315I BCR/ABL mutation) than those with wild-type BCR/ABL. Furthermore, we have demonstrated that the death caused by MeST is apoptosis and the treatment with MeST could suppress the expression of BCR/ABL, subsequently altering the downstream cascade of BCR/ABL such as AKT and MAPK signaling. In conclusion, MeST has been able to suppress the growth of leukemia cells harboring BCR/ABL. The mechanism of the anti-leukemic effect of MeST on cells harboring imatinib-resistant BCR/ABL mutations could be due to the disruption of the BCR/ABL oncoprotein signaling cascade.
Collapse
|
22
|
Asciminib in chronic myeloid leukemia: many questions still remain to be answered. Blood Cancer J 2021; 11:81. [PMID: 33927187 PMCID: PMC8085192 DOI: 10.1038/s41408-021-00475-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023] Open
|
23
|
Lin X, Wang J, Huang X, Wang H, Li F, Ye W, Huang S, Pan J, Ling Q, Wei W, Mao S, Qian Y, Jin J, Huang J. Global, regional, and national burdens of leukemia from 1990 to 2017: a systematic analysis of the global burden of disease 2017 study. Aging (Albany NY) 2021; 13:10468-10489. [PMID: 33820874 PMCID: PMC8064161 DOI: 10.18632/aging.202809] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/23/2021] [Indexed: 01/19/2023]
Abstract
We described the spatial and temporal trends of the annual leukemia incidence, prevalence, mortality, and disability-adjusted life years (DALYs) from 1990 to 2017. Leukemia case numbers and age-standardized rates (ASRs) were extracted from the Global Burden of Disease (GBD) study 2017. The estimated annual percentage change (EAPC) in the ASR was calculated using a generalized linear model with a Gaussian distribution. The risk factors for death and DALYs due to leukemia were estimated within the comparative risk assessment framework of the GBD study. Globally, the prevalence, age-standardized prevalence rate (ASPR), and EAPC in leukemia cases in 2017 were 2.43 (95% uncertainty interval (UI) 2.19 to 2.59) million, 32.26 (95% UI 29.02 to 34.61), and 0.22% (95% CI 0.13 to 0.31, P<0.01), respectively, during 1990-2017. The trends of the age-standardized incidence, deaths, and DALY rate all significantly decreased globally. The burden of leukemia was higher in males than in female. An increasing leukemia burden was found in high-middle-sociodemographic index (SDI) countries and territories. The burden of leukemia tended to be lower in high-SDI regions than that in lower SDI regions. The rapid increases in the prevalent cases and prevalence rate of leukemia is urgent to be solved in the future.
Collapse
Affiliation(s)
- Xiangjie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qing Ling
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenwen Wei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shihui Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Cortes J, Lang F. Third-line therapy for chronic myeloid leukemia: current status and future directions. J Hematol Oncol 2021; 14:44. [PMID: 33736651 PMCID: PMC7976694 DOI: 10.1186/s13045-021-01055-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic myeloid leukemia (CML) is driven by the BCR-ABL1 fusion protein, formed by a translocation between chromosomes 9 and 22 that creates the Philadelphia chromosome. The BCR-ABL1 fusion protein is an optimal target for tyrosine kinase inhibitors (TKIs) that aim for the adenosine triphosphate (ATP) binding site of ABL1. While these drugs have greatly improved the prognosis for CML, many patients ultimately fail treatment, some requiring multiple lines of TKI therapy. Mutations can occur in the ATP binding site of ABL1, causing resistance by preventing the binding of many of these drugs and leaving patients with limited treatment options. The approved TKIs are also associated with adverse effects that may lead to treatment discontinuation in some patients. Efficacy decreases with each progressive line of therapy; data suggest little clinical benefit of treatment with a third-line (3L), second-generation tyrosine kinase inhibitor (2GTKI) after failure of a first-generation TKI and a 2GTKI. Novel treatment options are needed for the patient population that requires treatment in the 3L setting and beyond. This review highlights the need for clear guidelines and new therapies for patients requiring 3L treatment and beyond.
Collapse
Affiliation(s)
- Jorge Cortes
- Georgia Cancer Center at Augusta University, 1410 Laney Walker Rd., CN2222, Augusta, GA, 30912, USA.
| | - Fabian Lang
- Department of Medicine, Hematology and Oncology, Goethe University Hospital, Building 33, 3rd floor, Room 246, Theodor-Stern-Kai 7, 60590, Frankfurt a. Main, Germany
| |
Collapse
|
25
|
Breccia M, Abruzzese E, Annunziata M, Luciano L, Sica S. Clinical and Psychological Factors to Consider in Achieving Treatment-Free Remission in Patients With Chronic Myeloid Leukemia. Front Oncol 2021; 11:631570. [PMID: 33777785 PMCID: PMC7987948 DOI: 10.3389/fonc.2021.631570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Treatment of chronic myeloid leukemia (CML) has evolved dramatically in recent years. In this regard, the introduction of second-generation tyrosine kinase inhibitors (TKI) has revolutionized therapeutic goals, and it is now desirable to obtain treatment-free remission (TFR), i.e. when a patient who has stopped TKI therapy maintains a major molecular response and does not need to restart treatment. This report summarizes the main findings from a group of expert hematologists in Italy who met to discuss treatment and management of patients with CML with focus on broad-ranging aspects of TFR. A survey was used to obtain information about the clinicians' experience with TFR and to better understand the clinical and psychological issues that patients and physicians face when considering TFR. The overall goal was to explore the possibility of discontinuing treatment from multiple points of view, considering both clinical aspects of TFR as well as psychological management of patients. Practical information is provided on aspects associated with initiating TFR, clinical data supporting it, the role of monitoring, and management of discontinuation-related adverse events. This publication outlines many of the shortcomings and highlights proposed solutions for routine clinical practice, and provides an overview of the literature relative to TFR.
Collapse
Affiliation(s)
- Massimo Breccia
- Hematology, Department of Precision and Translational Medicine, Policlinico Umberto 1, Sapienza University, Rome, Italy
| | - Elisabetta Abruzzese
- Division of Hematology, Ospedale S. Eugenio, Tor Vergata University, Roma, Italy
| | - Mario Annunziata
- Hematology Division, Azienda Ospedaliera di Rilievo Nazionale Cardarelli, Naples, Italy
| | - Luigia Luciano
- Hematology - Department of Clinical Medicine and Surgery, Federico II University, Napoli, Italy
| | - Simona Sica
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico, Roma, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
26
|
Bueno MLP, Roversi FM. Tyrosine kinase inhibitor resistance: a case report on chronic myeloid leukemia and Gilbert's syndrome. AME Case Rep 2021; 5:1. [PMID: 33634241 DOI: 10.21037/acr-20-107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/25/2020] [Indexed: 11/06/2022]
Abstract
Although tyrosine kinase inhibitors (TKI) are commonly used as targeted treatment options for chronic myeloid leukemia (CML), its use is associated to UGT1A1 polymorphisms and, consequently, are related to a higher risk of manifesting Gilbert's syndrome, a genetic disorder associated to hyperbilirubinemia. The report of concomitant condition of CML and Gilbert's Syndrome is uncommon. Therefore, the aim of this study was to report the clinical case of a patient diagnosed with CML and subsequently, with Gilbert's Syndrome. A 34-year-old female was diagnosed with CML. On physical examination, spleen and liver were palpable, indicating hepatosplenomegaly. Laboratory findings of peripheral blood showed leukocytosis (165,190/mm3), 6% of blasts and a bone marrow biopsy showed hypercellularity by granulocytic series with moderate maturation delay. After diagnosis, the patient immediately started chemotherapy with the TKI Imatinib. One year after treatment, due to the partial response, the therapy was changed to Nilotinib, resulting in a complete response. Despite the absence of hyperbilirubinemia, a genetic study by polymerase chain reaction (PCR) verified a positivity for Gilbert's Syndrome. TKIs are also inhibitors of the enzyme UDPGT1, leading to deficient glucuronidation, causing manifestation of Gilbert's Syndrome. This report demonstrates the case of a patient that, besides having two coexisting conditions that could cause hyperbilirubinemia, did not have bilirubin alterations and it highlights the importance of having genetic investigations in cancer patients, in order to identify secondary diseases that could worsen the course of treatment.
Collapse
Affiliation(s)
- Maura Lima Pereira Bueno
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro-Unicamp, Campinas, São Paulo, Brazil.,Faculty of Biomedicine, Universidade São Francisco, Bragança Paulista, São Paulo, Brazil
| | - Fernanda Marconi Roversi
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro-Unicamp, Campinas, São Paulo, Brazil.,Faculty of Biomedicine, Universidade São Francisco, Bragança Paulista, São Paulo, Brazil
| |
Collapse
|
27
|
Yung Y, Lee E, Chu HT, Yip PK, Gill H. Targeting Abnormal Hematopoietic Stem Cells in Chronic Myeloid Leukemia and Philadelphia Chromosome-Negative Classical Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22020659. [PMID: 33440869 PMCID: PMC7827471 DOI: 10.3390/ijms22020659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/02/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are unique hematopoietic stem cell disorders sharing mutations that constitutively activate the signal-transduction pathways involved in haematopoiesis. They are characterized by stem cell-derived clonal myeloproliferation. The key MPNs comprise chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). CML is defined by the presence of the Philadelphia (Ph) chromosome and BCR-ABL1 fusion gene. Despite effective cytoreductive agents and targeted therapy, complete CML/MPN stem cell eradication is rarely achieved. In this review article, we discuss the novel agents and combination therapy that can potentially abnormal hematopoietic stem cells in CML and MPNs and the CML/MPN stem cell-sustaining bone marrow microenvironment.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Autophagy
- Biomarkers, Tumor
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/genetics
- Combined Modality Therapy
- Disease Susceptibility
- Genetic Predisposition to Disease
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Molecular Targeted Therapy
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/pathology
- Myeloproliferative Disorders/therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Philadelphia Chromosome
- Signal Transduction/drug effects
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
| | | | | | | | - Harinder Gill
- Correspondence: ; Tel.: +852-2255-4542; Fax: +852-2816-2863
| |
Collapse
|