1
|
Yan M, Chen X, Ye Q, Li H, Zhang L, Wang Y. IL-33-dependent NF-κB activation inhibits apoptosis and drives chemoresistance in acute myeloid leukemia. Cytokine 2024; 180:156672. [PMID: 38852492 DOI: 10.1016/j.cyto.2024.156672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Despite recent advances in therapeutic regimens, the prognosis of acute myeloid leukemia (AML) remains poor. Following our previous finding that interleukin-33 (IL-33) promotes cell survival along with activated NF-κB in AML, we further investigated the role of NF-κB during leukemia development. METHODS Flow cytometry was performed to value the apoptosis and proliferation. qRT-PCR and western blot were performed to detect the expression of IL-6, active caspase 3, BIRC2, Bcl-2, and Bax, as well as activated NF-κB p65 and AKT. Finally, xenograft mouse models and AML patient samples were used to verify the findings observed in AML cell lines. RESULTS IL-33-mediated NF-κB activation in AML cell lines contributes to a reduction in apoptosis, an increase in proliferation rate as well as a decrease in drug sensitivity, which were reversed by NF-κB inhibitor, Bay-117085. Moreover, IL-33 decreased the expression of active caspase-3 while increasing the levels of BIRC2, Bcl-2, and Bax, and these effects were blocked by Bay-117085. Additionally, NF-κB activation induced by IL-33 increases the production of IL-6 and autocrine activation of AKT. Co-culture of bone marrow stroma with AML cells resulted in increased IL-33 expression by leukemia cells, along with decreased apoptosis level and reduced drug sensitivity. Finally, we confirmed the in vivo pro-tumor effect mediated by IL-33/ NF-κB axis using a xenograft model of AML. CONCLUSION Our data indicate that IL-33/IL1RL1-dependent signaling contributes to AML cell activation of NF-κB, which in turn causes autocrine IL-6-induced activation of pAKT, supporting IL-33/NF-κB/pAKT as a potential target for AML therapy.
Collapse
Affiliation(s)
- Muxia Yan
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xuexin Chen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Qian Ye
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huating Li
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Yiqian Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Naef P, Radpour R, Jaeger-Ruckstuhl CA, Bodmer N, Baerlocher GM, Doehner H, Doehner K, Riether C, Ochsenbein AF. IL-33-ST2 signaling promotes stemness in subtypes of myeloid leukemia cells through the Wnt and Notch pathways. Sci Signal 2023; 16:eadd7705. [PMID: 37643244 DOI: 10.1126/scisignal.add7705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Cell stemness is characterized by quiescence, pluripotency, and long-term self-renewal capacity. Therapy-resistant leukemic stem cells (LSCs) are the primary cause of relapse in patients with chronic and acute myeloid leukemia (CML and AML). However, the same signaling pathways frequently support stemness in both LSCs and normal hematopoietic stem cells (HSCs), making LSCs difficult to therapeutically target. In cell lines and patient samples, we found that interleukin-33 (IL-33) signaling promoted stemness only in leukemia cells in a subtype-specific manner. The IL-33 receptor ST2 was abundant on the surfaces of CD34+ BCR/ABL1 CML and CD34+ AML cells harboring AML1/ETO and DEK/NUP214 translocations or deletion of chromosome 9q [del(9q)]. The cell surface abundance of ST2, which was lower or absent on other leukemia subtypes and HSCs, correlated with stemness, activated Wnt signaling, and repressed Notch signaling. IL-33-ST2 signaling promoted the maintenance and expansion of AML1/ETO-, DEK/NUP214-, and BCR/ABL1-positive LSCs in culture and in mice by activating Wnt, MAPK, and NF-κB signaling. Wnt signaling and its inhibition of the Notch pathway up-regulated the expression of the gene encoding ST2, thus forming a cell-autonomous loop. IL-33-ST2 signaling promoted the resistance of CML cells to the tyrosine kinase inhibitor (TKI) nilotinib and of AML cells to standard chemotherapy. Thus, inhibiting IL-33-ST2 signaling may target LSCs to overcome resistance to chemotherapy or TKIs in these subtypes of leukemia.
Collapse
Affiliation(s)
- Pascal Naef
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Ramin Radpour
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Carla A Jaeger-Ruckstuhl
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Nils Bodmer
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Gabriela M Baerlocher
- Laboratory for Hematopoiesis and Molecular Genetics, Experimental Hematology, Department of BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Hartmut Doehner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm 89081, Germany
| | - Konstanze Doehner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm 89081, Germany
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Adrian F Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| |
Collapse
|
3
|
Wang Y, Tang X, Zhu Y, Yang XX, Liu B. Role of interleukins in acute myeloid leukemia. Leuk Lymphoma 2023; 64:1400-1413. [PMID: 37259867 DOI: 10.1080/10428194.2023.2218508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with strong heterogeneity. Immune disorders are a feature of various malignancies, including AML. Interleukins (ILs) and other cytokines participate in a series of biological processes of immune disorders in the microenvironment, and serve as a bridge for communication between various cellular components in the immune system. The role of ILs in AML is complex and pleiotropic. It can not only play an anti-AML role by enhancing anti-leukemia immunity and directly inducing AML cell apoptosis, but also promote the growth, proliferation and drug resistance of AML. These properties of ILs can be used to explore their potential efficacy in disease monitoring, prognosis assessment, and development of new treatment strategies for AML. This review aims to clarify some of the complex roles of ILs in AML and their clinical applications.
Collapse
Affiliation(s)
- Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao-Xiao Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Toll-like Receptor 4, Osteoblasts and Leukemogenesis; the Lesson from Acute Myeloid Leukemia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030735. [PMID: 35163998 PMCID: PMC8838156 DOI: 10.3390/molecules27030735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022]
Abstract
Toll-like receptor 4 (TLR4) is a pattern-recognizing receptor that can bind exogenous and endogenous ligands. It is expressed by acute myeloid leukemia (AML) cells, several bone marrow stromal cells, and nonleukemic cells involved in inflammation. TLR4 can bind a wide range of endogenous ligands that are present in the bone marrow microenvironment. Furthermore, the TLR4-expressing nonleukemic bone marrow cells include various mesenchymal cells, endothelial cells, differentiated myeloid cells, and inflammatory/immunocompetent cells. Osteoblasts are important stem cell supporting cells localized to the stem cell niches, and they support the proliferation and survival of primary AML cells. These supporting effects are mediated by the bidirectional crosstalk between AML cells and supportive osteoblasts through the local cytokine network. Finally, TLR4 is also important for the defense against complicating infections in neutropenic patients, and it seems to be involved in the regulation of inflammatory and immunological reactions in patients treated with allogeneic stem cell transplantation. Thus, TLR4 has direct effects on primary AML cells, and it has indirect effects on the leukemic cells through modulation of their supporting neighboring bone marrow stromal cells (i.e., modulation of stem cell niches, regulation of angiogenesis). Furthermore, in allotransplant recipients TLR4 can modulate inflammatory and potentially antileukemic immune reactivity. The use of TLR4 targeting as an antileukemic treatment will therefore depend both on the biology of the AML cells, the biological context of the AML cells, aging effects reflected both in the AML and the stromal cells and the additional antileukemic treatment combined with HSP90 inhibition.
Collapse
|
5
|
Wang Y, Hou H, Liang Z, Chen X, Lian X, Yang J, Zhu Z, Luo H, Su H, Gong Q. P38 MAPK/AKT signalling is involved in IL-33-mediated anti-apoptosis in childhood acute lymphoblastic leukaemia blast cells. Ann Med 2021; 53:1461-1469. [PMID: 34435521 PMCID: PMC8405111 DOI: 10.1080/07853890.2021.1970217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/13/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Acute lymphoblastic leukaemia (ALL) is often characterized by broad clinical and biological heterogeneity, as well as recurrent genetic aberrations. Despite remarkable improvements in the treatment outcome in paediatric ALL over the past several decades, it remains a leading cause of morbidity and mortality among children. Cytokines have been extensively studied in haematologic diseases; however, the mechanisms by which cytokines contribute to ALL pathogenesis remain poorly understood. METHODS IL-33 levels were measured by enzyme-linked immunosorbent assay (ELISA). IL1RL1 expression on ALL cell surface was accessed by flow cytometry. Expression of phosphorylated p38 MAPK, p38, pAKT, AKT and GAPDH were quantified by western blot. Cell survival signals were evaluated by apoptosis using flow cytometry. RESULTS BM samples from ALL patients at diagnosis upregulated their cell surface expression of IL1RL1, and a higher interleukin (IL)-33 level in the serum was observed as compared to the healthy individuals. Moreover, exogenous IL-33 treatment significantly inhibited apoptosis by activating p38 mitogen-activated protein kinase (MAPK) and AKT pathway, while the inhibitor for p38 MAPK, SB203580, counteracted IL-33-induced anti-apoptosis via inactivation of p38 MAPK and AKT. Furthermore, IL-33 negatively regulates cyclin B1 protein level while increasing the expression of CDK1, with SB203580 inhibiting the effect. CONCLUSION Our study reveals an important role for IL-33/IL1RL1 axis in supporting ALL which may represent a novel treatment for paediatric patients.KEY MESSAGESBoth IL-33 and IL1RL1 levels are upregulated in primary ALL samples.IL-33 increased both p38 MAPK and AKT activation in ALL.IL-33 promotes survival and cell cycle progression of ALL cells via activating p38 MAPK.
Collapse
Affiliation(s)
- Yiqian Wang
- The Sixed Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hanyi Hou
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Zhongping Liang
- The Sixed Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xuexin Chen
- The Sixed Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xindan Lian
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Jie Yang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zeyu Zhu
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Huanmin Luo
- The Third Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Haibo Su
- The Sixed Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qing Gong
- The Sixed Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Wu Z, Guan Q, Han X, Liu X, Li L, Qiu L, Qian Z, Zhou S, Wang X, Zhang H. A novel prognostic signature based on immune-related genes of diffuse large B-cell lymphoma. Aging (Albany NY) 2021; 13:22947-22962. [PMID: 34610582 PMCID: PMC8544299 DOI: 10.18632/aging.203587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/18/2021] [Indexed: 11/25/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) presents a great clinical challenge and has a poor prognosis, with immune-related genes playing a crucial role. We aimed to develop an immune-related prognostic signature for improving prognosis prediction in DLBCL. Samples from the GSE31312 dataset were randomly allocated to discovery and internal validation cohorts. Univariate Cox, random forest, LASSO regression and multivariate Cox analyses were utilized to develop a prognostic signature, which was verified in the internal validation cohort, entire validation cohort and external validation cohort (GSE10846). The tumor microenvironment was investigated using the CIBERSORT and ESTIMATE tools. Gene set enrichment analysis (GSEA) was further applied to analyze the entire GSE31312 cohort. We identified four immune-related genes (CD48, IL1RL, PSDM3, RXFP3) significantly associated with overall survival. Based on discovery and validation cohort analyses, this four-gene signature could classify patients into high- and low-risk groups, with significantly different prognoses. Activated memory CD4 T cells and activated dendritic cells were significantly decreased in the high-risk group, and these patients had lower immune scores. GSEA revealed enrichment of signaling pathways, such as T cell receptor, antigen receptor-mediated, antigen processing and presentation of peptide antigen via MHC class I, in the low-risk group. In conclusion, a robust signature based on four immune-related genes was successfully constructed for predicting prognosis in DLBCL patients.
Collapse
Affiliation(s)
- Zizheng Wu
- Departments of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Qingpei Guan
- Departments of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Xue Han
- Departments of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Xianming Liu
- Departments of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Lanfang Li
- Departments of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Lihua Qiu
- Departments of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Zhengzi Qian
- Departments of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Shiyong Zhou
- Departments of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Xianhuo Wang
- Departments of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Huilai Zhang
- Departments of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| |
Collapse
|
7
|
Ke J, Cai G. Effect of IL-33 on pyroptosis of macrophages in mice with sepsis via NF-κB/p38 MAPK signaling pathway. Acta Cir Bras 2021; 36:e360501. [PMID: 34133503 PMCID: PMC8205443 DOI: 10.1590/acb360501] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To demonstrate the effect of IL-33 on the macrophage pyroptosis in mice with sepsis through the NF-kB/p38 MAPK signal pathway. METHODS In total, 24 C57BL/6 mice were divided into the sham operation group (sham) and the cecal ligation and puncture group (CLP). After CLP, 24 IL-33-/- mice were divided into the IL-33-/- group and the IL-33-/- intervention group. The latter group was intraperitoneally injected with IL-33. Mouse mortality was observed after CLP. Macrophage apoptosis in peritoneal lavage fluid was detected by flow cytometry. Serum inflammatory factor level was detected by ELISA. Apoptotic protein expression and NF-κB/p38 MAKP signaling pathway protein expression were detected by qRT-PCR and Western blot. RESULTS Knocking out IL-33 significantly reduced the mortality of CLP mice, as well as the mRNA expression of IL-33 and the levels of serum inflammatory factors, including IL-33, IL-1β, and IL-18. It also reduced the rate of macrophage apoptosis and the expression of the apoptotic protein caspase-1 p10; increased the expression of IκBα; and reduced the protein expression of NF-κB and p38 MAPK. These effects were reversed after exogenous injection of IL-33. CONCLUSIONS IL-33 can increase the level of macrophage pyroptosis in mice with sepsis (by activating the NF-kB/p38MAPK signal pathway) and the mortality of these mice.
Collapse
|
8
|
Wang Y, Su H, Yan M, Zhang L, Tang J, Li Q, Gu X, Gong Q. Interleukin-33 Promotes Cell Survival via p38 MAPK-Mediated Interleukin-6 Gene Expression and Release in Pediatric AML. Front Immunol 2020; 11:595053. [PMID: 33324412 PMCID: PMC7726021 DOI: 10.3389/fimmu.2020.595053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022] Open
Abstract
Acute myeloid leukemia (AML) is a fatal disease characterized by the accumulation of immature myeloid blasts in the bone marrow (BM). Cytokine provide signals for leukemia cells to improve their survival in the BM microenvironment. Previously, we identified interleukin-33 (IL-33) as a promoter of cell survival in a human AML cell line and primary mouse leukemia cells. In this study, we report that the cell surface expression of IL-33–specific receptor, Interleukin 1 Receptor Like 1 (IL1RL1), is elevated in BM cells from AML patients at diagnosis, and the serum level of IL-33 in AML patients is higher than that of healthy donor controls. Moreover, IL-33 levels are found to be positively associated with IL-6 levels in pediatric patients with AML. In vitro, IL-33 treatment increased IL-6 mRNA expression and protein level in BM and peripheral blood (PB) cells from AML patients. Evidence was also provided that IL-33 inhibits cell apoptosis by activating p38 mitogen-activated protein kinase (MAPK) pathway using human AML cell line and AML patient samples. Finally, we confirmed that IL-33 activated IL-6 expression in a manner that required p38 MAPK pathway using clinical AML samples. Taken together, we identified a potential mechanism of IL-33–mediated survival involving p38 MAPK in pediatric AML patients that would facilitate future drug development.
Collapse
Affiliation(s)
- Yiqian Wang
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Haibo Su
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Muxia Yan
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiancheng Tang
- Department of Anesthesiology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Quanxin Li
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqiong Gu
- Department of Blood Transfusion, Clinical Biological Resource Bank and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qing Gong
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|