1
|
Dalgetty M, Leurinda C, Cortes J. A comparative safety review of targeted therapies for acute myeloid leukemia. Expert Opin Drug Saf 2023; 22:1225-1236. [PMID: 38014918 DOI: 10.1080/14740338.2023.2289176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/26/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) treatment has primarily focused on 7 + 3 chemotherapy, but in the last decade there has been a significant increase in new therapies, mostly targeted agents, approved for the treatment of AML. We performed a comparative analysis of the unique safety profile of each of these new agents. AREAS COVERED We conducted a review of the current literature on public databases (PubMed, ClinicalTrials.gov, and U.S. Food and Drug Administration) regarding new AML drugs that were approved from 2017 to 2023. EXPERT OPINION The diagnosis of AML typically carries a poor prognosis but with an increase in the number of drugs that are now available, patients' outcomes are improving. With novel mechanisms of action, the use of these agents introduces different safety profiles, occasionally with adverse events not previously seen with standard chemotherapy or at different frequencies. An understanding of the drugs available and the safety concerns associated with each one is crucial to selecting the best available option for each patient, and early recognition and appropriate management of drug-related adverse effects.
Collapse
Affiliation(s)
- Mark Dalgetty
- Department of Hematology/Oncology, Medical College of Georgia, Augusta, Georgia, USA
| | - Christian Leurinda
- Department of Hematology/Oncology, Medical College of Georgia, Augusta, Georgia, USA
| | - Jorge Cortes
- Department of Hematology/Oncology, Medical College of Georgia, Augusta, Georgia, USA
- Department of Hematology/Oncology, Georgia Cancer Center, Augusta, Georgia, USA
| |
Collapse
|
2
|
Salvatorelli E, Minotti G, Menna P. New Targeted Drugs for Acute Myeloid Leukemia and Antifungals: Pharmacokinetic Challenges and Opportunities. Chemotherapy 2023; 68:170-182. [PMID: 37004510 DOI: 10.1159/000530447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a life-threatening disease whose treatment is made difficult by a number of mutations or receptor overexpression in the proliferating cellular clones. Life expectancy of patients diagnosed with new, relapsed-refractory, or secondary AML has been improved by drugs targeted at such moieties. Regrettably, however, clinical use of new AML drugs is complicated by pharmacokinetic interactions with other drugs the patient is exposed to. SUMMARY The most relevant drug-drug interactions (DDI) with clinical implications build on competition for or induction/inhibition of CYP3A4, which is a versatile metabolizer of a plethora of pharmacological agents. Here, we review DDI between AML drugs and the agents used to prevent or treat invasive fungal infections (IFI). The pathophysiology of AML, characterized by functionally defective white blood cells and neutropenic/immunosuppressive effects of concomitant induction chemotherapy, can in fact increase the risk of infectious complications, with IFI causing high rates of morbidity and mortality. Triazole antifungals, such as posaconazole, are strong inhibitors of CYP3A4 and may thus cause patient's overexposure to AML drugs that are metabolized by CYP3A4. We describe potential strategies to minimize the consequences of DDI between triazole antifungals and targeted therapies for AML and the role that collaboration between clinical pharmacologists, hematologists, and clinical or laboratory microbiologists may have in these settings. KEY MESSAGES Therapeutic drug monitoring and clinical pharmacology stewardship could represent two strategies that best express multidisciplinary collaboration for improving patient management.
Collapse
Affiliation(s)
| | - Giorgio Minotti
- Department of Medicine, University Campus Bio-Medico, Rome, Italy
- Research Unit of Clinical Pharmacology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Pierantonio Menna
- Research Unit of Clinical Pharmacology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
3
|
Yang F, Tan Y, Wu C, Xin L, Huang Z, Zhou H, Zhou F. dSTORM-Based Single-Cell Protein Quantitative Analysis Can Effectively Evaluate the Degradation Ability of PROTACs. Chembiochem 2023; 24:e202200680. [PMID: 36564338 DOI: 10.1002/cbic.202200680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
As an emerging therapeutic strategy, proteolysis-targeting chimeras (PROTACs) have been proven to be superior to traditional drugs in many aspects. However, due to their unique mechanism of action, existing methods for evaluating the degradation still have many limitations, which seriously restricts the development of PROTACs. In this methodological study, using direct stochastic optical reconstruction microscopy (dSTORM)-based single-cell protein quantitative analysis, we systematically investigated the dynamic degradation characteristics of FLT3 protein during PROTACs treatment. We found that the distribution of FLT3 varies between FLT3-ITD mutation and FLT3-WT cells. PROTACs had an obvious time-course effect on protein degradation and present two distinct phases; this provided a basis for deciding when to evaluate protein degradation. High concentrations of PROTACs were more effective than long-time administration because a higher Dmax was achieved. Two-color dSTORM-based colocalization analysis efficiently detected the proportion of ternary complexes, making it very useful in screening PROTACs. Taken together, our findings show that the dSTORM method is an ideal tool for evaluating PROTACs and will accelerate the development of new PROTACs.
Collapse
Affiliation(s)
- Fuwei Yang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430000, P. R. China
| | - Yuxin Tan
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430000, P. R. China
| | - Cheng Wu
- Key Laboratory of Biomedical Engineering of Hainan Province School, of Biomedical Engineering, Hainan University, Haikou, Hainan, 570100, P. R. China
| | - Lilan Xin
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430000, P. R. China
| | - Zhenli Huang
- Key Laboratory of Biomedical Engineering of Hainan Province School, of Biomedical Engineering, Hainan University, Haikou, Hainan, 570100, P. R. China
| | - Haibing Zhou
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430000, P. R. China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430000, P. R. China
| |
Collapse
|
4
|
Tecik M, Adan A. Therapeutic Targeting of FLT3 in Acute Myeloid Leukemia: Current Status and Novel Approaches. Onco Targets Ther 2022; 15:1449-1478. [PMID: 36474506 PMCID: PMC9719701 DOI: 10.2147/ott.s384293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/19/2022] [Indexed: 08/13/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is mutated in approximately 30% of acute myeloid leukemia (AML) patients. The presence of FLT3-ITD (internal tandem duplication, 20-25%) mutation and, to a lesser extent, FLT3-TKD (tyrosine kinase domain, 5-10%) mutation is associated with poorer diagnosis and therapy response since the leukemic cells become hyperproliferative and resistant to apoptosis after continuous activation of FLT3 signaling. Targeting FLT3 has been the focus of many pre-clinical and clinical studies. Hence, many small-molecule FLT3 inhibitors (FLT3is) have been developed, some of which are approved such as midostaurin and gilteritinib to be used in different clinical settings, either in combination with chemotherapy or alone. However, many questions regarding the best treatment strategy remain to be answered. On the other hand, various FLT3-dependent and -independent resistance mechanisms could be evolved during FLT3i therapy which limit their clinical impact. Therefore, identifying molecular mechanisms of resistance and developing novel strategies to overcome this obstacle is a current interest in the field. In this review, recent studies of approved FLT3i and knowledge about major resistance mechanisms of clinically approved FLT3i's will be discussed together with novel treatment approaches such as designing novel FLT3i and dual FLT3i and combination strategies including approved FLT3i plus small-molecule agents targeting altered molecules in the resistant cells to abrogate resistance. Moreover, how to choose an appropriate FLT3i for the patients will be summarized based on what is currently known from available clinical data. In addition, strategies beyond FLT3i's including immunotherapeutics, small-molecule FLT3 degraders, and flavonoids will be summarized to highlight potential alternatives in FLT3-mutated AML therapy.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
5
|
Bayraktar EA, Küçükyurt S, Eşkazan AE. Recent Advances in the Therapeutic Armamentarium of Acute Myeloid Leukemia: A Focus on the 63rd American Society of Hematology Annual Meeting Abstracts. Curr Pharm Des 2022; 28:2687-2689. [PMID: 36093823 DOI: 10.2174/1381612828666220912092158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022]
Affiliation(s)
| | - Selin Küçükyurt
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
6
|
Numan Y, Abaza Y, Altman JK, Platanias LC. Advances in the pharmacological management of acute myeloid leukemia in adults. Expert Opin Pharmacother 2022; 23:1535-1543. [PMID: 35938317 PMCID: PMC9648129 DOI: 10.1080/14656566.2022.2111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/05/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION With advances in molecular medicine and precision approaches, there has been significant improvement in the treatment of acute myeloid leukemia (AML) in recent years. This reflects better understanding of molecular and metabolic pathways in leukemia cells, including BCL2 upregulation that prevents apoptosis, FLT3 tyrosine kinase activating mutations that allow uncontrolled proliferation, and IDH mutations that result in differentiation block. AREAS COVERED We performed a compressive review of important pre-clinical studies in AML that involve major molecular and metabolic pathways in AML, and we discussed standard therapeutic modalities and ongoing clinical trials for patients with AML, as well as an overall update of recent efforts in this area. EXPERT OPINION Targeting these pathways has resulted in improvement in the overall survival of some groups of AML patients. Secondary AML and TP53 mutated AML remain challenging subtypes of AML with limited treatment options and represent areas of unmet research need. Ongoing work with menin inhibitors in MLL rearranged leukemia, which comprise a large portion of secondary AML cases, the development of CAR T cell products and targeting the CD47 receptor on macrophages in myeloid neoplasms including in TP53 mutated AML have provided hope for these challenging subtypes of AML.
Collapse
Affiliation(s)
- Yazan Numan
- Division of Hematology Oncology, Department of Internal
Medicine, Northwestern University-Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center of Northwestern
University, Chicago, IL
| | - Yasmin Abaza
- Division of Hematology Oncology, Department of Internal
Medicine, Northwestern University-Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center of Northwestern
University, Chicago, IL
| | - Jessica K Altman
- Division of Hematology Oncology, Department of Internal
Medicine, Northwestern University-Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center of Northwestern
University, Chicago, IL
| | - Leonidas C Platanias
- Division of Hematology Oncology, Department of Internal
Medicine, Northwestern University-Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center of Northwestern
University, Chicago, IL
- Department of Medicine, Jesse Brown VA Medical Center,
Chicago, IL
| |
Collapse
|
7
|
Hatırnaz Ng Ö, Eşkazan AE. Tackling TKI resistance in AML: A commentary on “Inhibition of BCL2A1 by STAT5 inactivation overcomes resistance to targeted therapies of FLT3-ITD/D835 mutant AML.” by Yamatani et al. Transl Oncol 2022; 19:101394. [PMID: 35294914 PMCID: PMC8924416 DOI: 10.1016/j.tranon.2022.101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Özden Hatırnaz Ng
- Department of Medical Biology, School of Medicine, Acıbadem University, Istanbul, Turkey
| | - Ahmet Emre Eşkazan
- Department of Internal Medicine, Division of Hematology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Fatih, Istanbul, Turkey.
| |
Collapse
|