1
|
Peng S, Zhou Y, Lu M, Wang Q. Review of Herbal Medicines for the Treatment of Depression. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221139082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Depression, a mental illness that is receiving increasing attention, is caused by multiple factors and genes and adversely affects social life and health. Several hypotheses have been proposed to clarify the pathogenesis of depression, and various synthetic antidepressants have been introduced to treat patients with depression. However, these drugs are effective only in a proportion of patients and fail to achieve complete remission. Recently, herbal medicines have received much attention as alternative treatments for depression because of their fewer side effects and lower costs. In this review, we have mainly focused on the herbal medicines that have been proven in clinical studies (especially randomized controlled trials and preclinical studies) to have antidepressant effects; we also describe the potential mechanisms of the antidepressant effects of those herbal medicines; the cellular and animal model of depression; and the development of novel drug delivery systems for herbal antidepressants. Finally, we objectively elaborate on the challenges of using herbal medicines as antidepressants and describe the benefits, adverse effects, and toxicity of these medicines.
Collapse
Affiliation(s)
- Siqi Peng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yalan Zhou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Lu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Oladeji OS, Oluyori AP, Dada AO. Genus Morinda: An insight to its ethnopharmacology, phytochemistry, pharmacology and Industrial Applications. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
|
3
|
Yang L, Wang Y, An L, Zhang X, Wang J, Wang Y, Cheng R, Li C, Ma W. Protective Effect of Schisandrin on CORT-Induced PC12 Depression Cell Model by Inhibiting Cell Apoptosis In Vitro. Appl Bionics Biomech 2022; 2022:6113352. [PMID: 35600845 PMCID: PMC9117060 DOI: 10.1155/2022/6113352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background In recent years, the incidence of depression is on the rise. Our paper proposed to study the protective effects of Schisandrin on CORT-induced PC12 depressive cell model and the underlying mechanisms. Methods The in vitro models of PC12 were established using corticosterone (CORT). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was used to screen the effective concentration of Schisandrin, and the models of PC12 were treated with low, medium, and high concentrations of Schisandrin. The cell activity of each group was detected by MTT assay. The LDH activity in each group of cells was detected by lactate dehydrogenase (LDH) kit. Apoptosis rate of each group was detected by Annexin V-FITC apoptosis assay kit. Mitochondrial membrane potential of each group of cells was detected by mitochondrial membrane potential kit. The protein expression levels of Caspase-3, Bax, and Bcl-2 in each group of cells were detected by western blot. Results The treatment of Schisandrin significantly increased the cell viability in models of PC12. In addition, the results of LDH activity suggested that Schisandrin significantly reduced LDH content in models of PC12. Consistently, Schisandrin reduced the mitochondrial membrane potential of CORT-induced PC12 depressive cell model. Furthermore, Schisandrin effectively reduced the number of apoptotic cells and inhibited the expression of proapoptotic-related proteins (cleaved Caspase-3 and Bax) but increased the antiapoptotic-related protein (Bcl-2) in the models of PC12. Conclusions Protective effects of Schisandrin on CORT-induced PC12 depressive cell model by inhibiting cells apoptosis in vitro.
Collapse
Affiliation(s)
- Liu Yang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang 154007, China
| | - Yeqiu Wang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang 154007, China
| | - Lifeng An
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang 154007, China
| | - Xinya Zhang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang 154007, China
| | - Jing Wang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang 154007, China
| | - Yi Wang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang 154007, China
| | - Ruyang Cheng
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang 154007, China
| | - Chenxiang Li
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang 154007, China
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| |
Collapse
|
4
|
Ebrahimi V, Tarhriz V, Talebi M, Rasouli A, Farjami A, Razi Soofiyani S, Soleimanian A, Forouhandeh H. A new insight on feasibility of pre-, pro-, and synbiotics-based therapies in Alzheimer’s disease. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2022. [DOI: 10.4103/jrptps.jrptps_170_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Lin R, Liu L, Silva M, Fang J, Zhou Z, Wang H, Xu J, Li T, Zheng W. Hederagenin Protects PC12 Cells Against Corticosterone-Induced Injury by the Activation of the PI3K/AKT Pathway. Front Pharmacol 2021; 12:712876. [PMID: 34721013 PMCID: PMC8551867 DOI: 10.3389/fphar.2021.712876] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022] Open
Abstract
Depression is a prevalent psychiatric disorder and a leading cause of disability worldwide. Despite a variety of available treatments currently being used in the clinic, a substantial proportion of patients is unresponsive to these treatments, urging the development of more effective therapeutic approaches. Hederagenin (Hed), a triterpenoid saponin extracted from Fructus Akebiae, has several biological activities including anti-apoptosis, anti-hyperlipidemic and anti-inflammatory properties. Over the years, its potential therapeutic effect in depression has also been proposed, but the information is limited and the mechanisms underlying its antidepressant-like effects are unclear. The present study explored the neuroprotective effects and the potential molecular mechanisms of Hederagenin action in corticosterone (CORT)-injured PC12 cells. Obtained results show that Hederagenin protected PC12 cells against CORT-induced damage in a concentration dependent manner. In adittion, Hederagenin prevented the decline of mitochondrial membrane potential, reduced the production of intracellular reactive oxygen species (ROS) and decreased the apoptosis induced by CORT. The protective effect of Hederagenin was reversed by a specific phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 and AKT (also known as protein kinase B) inhibitor MK2206, suggesting that the effect of Hederagenin is mediated by the PI3K/AKT pathway. In line with this, western blot analysis results showed that Hederagenin stimulated the phosphorylation of AKT and its downstream target Forkhead box class O 3a (FoxO3a) and Glycogen synthase kinase-3-beta (GSK3β) in a concentration dependent manner. Taken together, these results indicate that the neuroprotective effect of Hederagenin is likely to occur via stimulation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Ruohong Lin
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao, China
| | - Linlin Liu
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao, China
| | - Marta Silva
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao, China
| | - Jiankang Fang
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao, China
| | - Zhiwei Zhou
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao, China
| | - Haitao Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Tiejun Li
- Research and Development Department, Lansson Bio-Pharm Co., Ltd., Guangzhou, China
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao, China
| |
Collapse
|
6
|
Influence of Smallanthus sonchifolius (Yacon) on the Activity of Antidepressant Drugs in Mice. Life (Basel) 2021; 11:life11111117. [PMID: 34832993 PMCID: PMC8624190 DOI: 10.3390/life11111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Depression is one of the most common mental disorders in the world that negatively affects the daily functioning of patients. Numerous studies are currently being conducted to examine the antidepressant potential of innovative synthetic compounds and herbal substances. Yacon, Smallantchus sonchifolius, belongs to plants with numerous health-beneficial properties. Yacon-based products are regarded as a functional food. In our study, we attempted to check whether administration of Yacon tuber extract would have an antidepressant effect in the forced swim test (FST) in mice and whether its intake could influence the activity of conventional antidepressant drugs with different mechanisms of action, i.e., imipramine hydrochloride, fluoxetine hydrochloride, and reboxetine mesylate. The spontaneous locomotor activity of the tested mice was also investigated to eliminate any false-positive results. We demonstrated that an intragastric administration of the Yacon tuber extract at a dose of 100 mg/kg induced the antidepressant-like behavior in the FST in mice and that a combined administration of the sub-effective doses of the Yacon extract (50 mg/kg) with imipramine hydrochloride (7.5 mg/kg), fluoxetine hydrochloride (20 mg/kg), or reboxetine mesylate (5 mg/kg) significantly reduced the immobility time of animals in this behavioral test. The obtained results were not affected by the increased locomotor activity of the tested subjects. In conclusion, our findings suggest that Yacon tuber extract is promising as an alternative mood-improving product since it possesses an antidepressant potential and it can acts synergistically with conventional antidepressant drugs.
Collapse
|
7
|
Moragrega I, Ríos JL. Medicinal Plants in the Treatment of Depression: Evidence from Preclinical Studies. PLANTA MEDICA 2021; 87:656-685. [PMID: 33434941 DOI: 10.1055/a-1338-1011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Medicinal plants and their extracts are natural remedies with enormous potential for treating various diseases, including depression and anxiety. In the case of depression, hundreds of plants have traditionally been used in folk medicine for generations. Different plant extracts and natural products have been analyzed as potential antidepressant agents with validated models to test for antidepressant-like effects in animals, although other complementary studies have also been employed. Most of these studies focus on the possible mediators implicated in these potential effects, with dopamine, serotonin, and noradrenaline being the principal neurotransmitters implicated, both through interference with receptors and with their metabolism by monoamino oxidases, as well as through neuro-endocrine and neuroprotective effects. There are approximately 650 reports of antidepressant-like medicinal plants in PubMed; 155 of them have been compiled in this review, with a relevant group yielding positive results. Saffron and turmeric are the most relevant species studied in both preclinical and clinical studies; St. John's wort or kava have also been tested extensively. To the best of our knowledge, no review to date has provided a comprehensive understanding of the biomolecular mechanisms of action of these herbs or of whether their potential effects could have real benefits. The purpose of this narrative review is to provide an update regarding medicinal plants from the year 2000 to the present to examine the therapeutic potential of these antidepressant-like plants in order to contribute to the development of new therapeutic methods to alleviate the tremendous burden that depression causes worldwide.
Collapse
Affiliation(s)
- Inés Moragrega
- Departament de Psicobiologia, Facultat de Psicologia, Universitat de València
| | - José Luis Ríos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València
| |
Collapse
|
8
|
Liu M, Cai M, Ding P. Oligosaccharides from Traditional Chinese Herbal Medicines: A Review of Chemical Diversity and Biological Activities. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:577-608. [PMID: 33730992 DOI: 10.1142/s0192415x21500269] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Most of traditional Chinese herbal medicine (TCHM) substances come from medicinal plants, among which oligosaccharides have gradually attracted widespread attention at home and abroad due to their important biological activities and great medicinal potential. Numerous in vitro and in vivo experiments exhibited that oligosaccharides possess various activities, such as antitumor, anti-oxidation, modulate the gut microflora, anti-inflammatory, anti-infection, and immune-regulatory activities. Generally, biological activities are closely related to chemical structures, including molecular weight, monosaccharide composition, glycosidic bond connection, etc. The structural analysis of oligosaccharides is an important basis for studying their structure-activity relationship, but the structural diversity and complexity of carbohydrate compounds limit the study of oligosaccharides activities. Understanding the structures and biological functions of oligosaccharides is important for the development of new bioactive substances with natural oligosaccharides. This review provides a systematic introduction of the current knowledge of the chemical structures and biological activities of oligosaccharides. Most importantly, the reported chemical characteristics and biological activities of the famous TCHM oligosaccharides were briefly summarized, including Morinda officinalis, Rehmannia glutinosa, Arctium lappa, Polygala tenuifolia, Panax ginseng, Lycium barbarum and Astragalus membranaceus. TCHM oligosaccharides play an important role in nutrition, health care, disease diagnosis and prevention as well as have broad application prospects in the field of medicine.
Collapse
Affiliation(s)
- Mengyun Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Panyu District, Guangzhou 510006, P. R. China
| | - Miaomiao Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Panyu District, Guangzhou 510006, P. R. China
| | - Ping Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Panyu District, Guangzhou 510006, P. R. China
| |
Collapse
|
9
|
Zhu J, Peng Q, Xu Y, Xu H, Wan Y, Li Z, Qiu Y, Xia W, Guo Z, Li H, Jin H, Hu B. Morinda officinalis oligosaccharides ameliorate depressive-like behaviors in poststroke rats through upregulating GLUT3 to improve synaptic activity. FASEB J 2020; 34:13376-13395. [PMID: 32812265 DOI: 10.1096/fj.201902546rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 06/24/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Poststroke depression (PSD) is one of the most common psychiatric diseases afflicting stroke survivors, yet the underlying mechanism is poorly understood. The pathophysiology of PSD is presumably multifactorial, involving ischemia-induced disturbance in the context of psychosocial distress. The homeostasis of glucose metabolism is crucial to neural activity. In this study, we showed that glucose consumption was decreased in the medial prefrontal cortex (mPFC) of PSD rats. The suppressed glucose metabolism was due to decreased glucose transporter-3 (GLUT3) expression, the most abundant and specific glucose transporter of neurons. We also found Morinda officinalis oligosaccharides (MOOs), approved as an antidepressive Chinese medicine, through upregulating GLUT3 expression in the mPFC, improved glucose metabolism, and enhanced synaptic activity, which ultimately ameliorated depressive-like behavior in PSD rats. We further confirmed the mechanism that MOOs induce GLUT3 expression via the PKA/pCREB pathway in PSD rats. Our work showed that MOOs treatment is capable of restoring GLUT3 level to improve depressive-like behaviors in PSD rats. We also propose GLUT3 as a potential therapeutic target for PSD and emphasize the importance of metabolism disturbance in PSD pathology.
Collapse
Affiliation(s)
- Jiayi Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiwei Peng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Xu
- Beijing Tongrentang Co., Ltd. Institute of Science, Beijing, China
| | - Hexiang Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhifang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanmei Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenguang Xia
- Hubei Provincial Hospital of Integrated Chinese & Western medicine, Wuhan, Hubei, China
| | - Zhenli Guo
- Hubei Provincial Hospital of Integrated Chinese & Western medicine, Wuhan, Hubei, China
| | - Hongkai Li
- Beijing Tongrentang Co., Ltd. Institute of Science, Beijing, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Connexin 43: A novel ginsenoside Rg1-sensitive target in a rat model of depression. Neuropharmacology 2020; 170:108041. [DOI: 10.1016/j.neuropharm.2020.108041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022]
|
11
|
Yang D, Wu W, Gan G, Wang D, Gong J, Fang K, Lu F. (-)-Syringaresinol-4-O-β-D-glucopyranoside from Cortex Albizziae inhibits corticosterone-induced PC12 cell apoptosis and relieves the associated dysfunction. Food Chem Toxicol 2020; 141:111394. [PMID: 32360906 DOI: 10.1016/j.fct.2020.111394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023]
Abstract
The neuroprotective effects and potential mechanisms of (-)-Syringaresinol-4-O-β-D-glucopyranoside (SRG), a natural lignan glycoside extracted from Cortex Albizziae, were investigated using corticosterone (CORT)-induced PC12 cells as an in vitro anxiety model. PC12 cells were treated with 100 μM CORT and 5, 10, or 20 μM SRG for 48 h. Cell viability and lactate dehydrogenase (LDH) leakage were measured. Apoptosis were detected using FITC-coupled Annexin V (AV) and propidium iodide (PI) staining flow cytometric analyses and TUNEL assays. Rhodamine 123 and Fluo-3-AM staining flow cytometric analyses were used to detect mitochondrial membrane potential (ΔΨm) and intracellular calcium concentration ([Ca2+]i), respectively. Western blot was used to detect brain-derived neurotrophic factor (BDNF), Bax, Bcl-2, cAMP-response element binding protein (CREB), cytosolic cytochrome c (Cyt c), caspase-3, and cleaved caspase-3. Experimental data showed that SRG promoted cell proliferation, reduced LDH release, inhibited apoptosis, improved ΔΨm values, decreased [Ca2+]i, up-regulated CREB, BDNF, and Bcl-2, down-regulated Bax and Cyt c protein expression levels, and reduced caspase-3 activity. This suggests that SRG has neuroprotective and antiapoptotic effects in the pathogenesis of anxiety disorders, and its mechanisms are partly connecte to inhibition of the mitochondrial apoptotic pathway and activation of pathways involving CREB and BDNF.
Collapse
Affiliation(s)
- Desen Yang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, China; College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, Wuhan, 430065, Hubei Province, China.
| | - Wanqin Wu
- Hubei Provincial Institute for Food Supervision and Test, 1 Gaoxin Road, Jiangxia District, Wuhan, 430070, Hubei Province, China; Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, 1 Gaoxin Road, Jiangxia District, Wuhan, 430070, Hubei Province, China.
| | - Guoping Gan
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, Wuhan, 430065, Hubei Province, China; Chinese Materia Medica Processing Engineering Center of Hubei Province, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, Wuhan, 430065, Hubei Province, China.
| | - Dingkun Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, China.
| | - Jing Gong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, China.
| | - Ke Fang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, China.
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
12
|
Immunoregulation and antioxidant activities of a novel acidic polysaccharide from Radix Paeoniae Alba. Glycoconj J 2020; 37:361-371. [DOI: 10.1007/s10719-020-09916-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 02/09/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023]
|
13
|
The study of neuroprotective effect of ferulic acid based on cell metabolomics. Eur J Pharmacol 2019; 864:172694. [DOI: 10.1016/j.ejphar.2019.172694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 11/22/2022]
|
14
|
Zhang W, Chen L, Li P, Zhao J, Duan J. Antidepressant and immunosuppressive activities of two polysaccharides from Poria cocos (Schw.) Wolf. Int J Biol Macromol 2018; 120:1696-1704. [DOI: 10.1016/j.ijbiomac.2018.09.171] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 12/28/2022]
|
15
|
Zhang JH, Xin HL, Xu YM, Shen Y, He YQ, Lin B, Song HT, Yang HY, Qin LP, Zhang QY, Du J. Morinda officinalis How. - A comprehensive review of traditional uses, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:230-255. [PMID: 29126988 DOI: 10.1016/j.jep.2017.10.028] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The medicinal plant Morinda officinalisHow. (MO) and its root have long been used in traditional medicines in China and northeast Asia as tonics for nourishing the kidney, strengthening the bone and enhancing immunofunction in the treatment of impotence, osteoporosis, depression and inflammatory diseases such as rheumatoid arthritis and dermatitis. AIM OF THE REVIEW This review aims to sum up updated and comprehensive information about traditional usage, phytochemistry, pharmacology and toxicology of MO and provide insights into potential opportunities for future research and development of this plant. METHODS A bibliographic investigation was performed by analyzing the information available on MO in the internationally accepted scientific databases including Pubmed, Scopus and Web of Science, SciFinder, Google Scholar, Yahoo, Ph.D. and M.Sc. dissertations in Chinese. Information was also obtained from some local and foreign books on ethnobotany and ethnomedicines. RESULTS The literature supported the ethnomedicinal uses of MO as recorded in China for various purposes. The ethnomedical uses of MO have been recorded in many regions of China. More than 100 chemical compounds have been isolated from this plant, and the major constituents have been found to be polysaccharides, oligosaccharides, anthraquinones and iridoid glycosides. Crude extracts and pure compounds of this plant are used as effective agents in the treatment of depression, osteoporosis, fatigue, rheumatoid arthritis, and infertility due to their anti-depressant, anti-osteoporosis, pro-fertility, anti-radiation, anti-Alzheimer disease, anti-rheumatoid, anti-fatigue, anti-aging, cardiovascularprotective, anti-oxidation, immune-regulatory, and anti-inflammatory activities. Pharmacokinetic studies have demonstrated that the main components of MO including monotropein and deacetyl asperulosidic acid are distributed in various organs and tissues. The investigation on acute toxicity and genotoxicity indicated that MO is nontoxic. There have no reports on significant adverse effect at a normal dose in clinical application, but MO at dose of more than 1000mg/kg may cause irritability, insomnia and unpleasant sensations in individual cases. CONCLUSION MO has emerged as a good source of traditional medicines. Some uses of this plant in traditional medicines have been validated by pharmacological investigations. However, the molecular mechanism, structure-activity relationship, and potential synergistic and antagonistic effects of its multi-components such as polysaccharides, oligosaccharides, anthraquinones and iridoid glycosides need to be further elucidated, and the structural feature of polysaccharides also need to be further clarified. Sophisticated analytical technologies should be developed to comprehensively evaluate the quality of MO based on HPLC-fingerprint and content determination of the active constituents, knowing that these investigations will help further utilize this plant.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- Department of Pharmacognosy, School of Pharmacy, Jiamusi University, Jiamusi 154007,China; Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Hai-Liang Xin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yue-Ming Xu
- Department of Pharmacognosy, School of Pharmacy, Jiamusi University, Jiamusi 154007,China; Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yi Shen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, China
| | - Yu-Qiong He
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Bing Lin
- Fuzhou General Hospital of Nanjing Military Region, Fuzhou 350025, China
| | - Hong-Tao Song
- Fuzhou General Hospital of Nanjing Military Region, Fuzhou 350025, China
| | - Hai-Yue Yang
- Medical College of Xiamen University, Xiamen 361005, China
| | - Lu-Ping Qin
- Department of Pharmacy, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, China.
| | - Qiao-Yan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - Juan Du
- Department of Pharmacognosy, School of Pharmacy, Jiamusi University, Jiamusi 154007,China.
| |
Collapse
|
16
|
Chen D, Yang X, Yang J, Lai G, Yong T, Tang X, Shuai O, Zhou G, Xie Y, Wu Q. Prebiotic Effect of Fructooligosaccharides from Morinda officinalis on Alzheimer's Disease in Rodent Models by Targeting the Microbiota-Gut-Brain Axis. Front Aging Neurosci 2017; 9:403. [PMID: 29276488 PMCID: PMC5727096 DOI: 10.3389/fnagi.2017.00403] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
Gut microbiota influences the central nervous system disorders such as Alzheimer's disease (AD). The prebiotics and probiotics can improve the host cognition. A previous study demonstrated that fructooligosaccharides from Morinda officinalis (OMO) exert effective memory improvements in AD-like animals, thereby considered as potential prebiotics; however, the underlying mechanism still remains enigma. Thus, the present study investigated whether OMO is effective in alleviating AD by targeting the microbiota-gut-brain axis. OMO was administered in rats with AD-like symptoms (D-galactose- and Aβ1-42-induced deficient rats). Significant and systematic deterioration in AD-like animals were identified, including learning and memory abilities, histological changes, production of cytokines, and microbial community shifts. Behavioral experiments demonstrated that OMO administration can ameliorate the learning and memory abilities in both AD-like animals significantly. AD parameters showed that OMO administration cannot only improve oxidative stress and inflammation disorder, but also regulate the synthesis and secretion of neurotransmitter. Histological changes indicated that OMO administration ameliorates the swelling of brain tissues, neuronal apoptosis, and down-regulation of the expression of AD intracellular markers (Tau and Aβ1-42). 16S rRNA sequencing of gut microbiota indicated that OMO administration maintains the diversity and stability of the microbial community. In addition, OMO regulated the composition and metabolism of gut microbiota in inflammatory bowel disease (IBD) mice model treated by overdosed antibiotics and thus showed the prebiotic potential. Moreover, gut microbiota plays a major role in neurodevelopment, leading to alterations in gene expression in critical brain and intestinal regions, thereby resulting in perturbation to the programming of normal cognitive behaviors. Taken together, our findings suggest that the therapeutic effect of the traditional medicine, M. officinalis, on various neurological diseases such as AD, is at least partially contributed by its naturally occurring chemical constituent, OMO, via modulating the interaction between gut ecology and brain physiology.
Collapse
Affiliation(s)
- Diling Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Chinese Academy of Sciences, Guangzhou, China
| | - Xin Yang
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Chinese Academy of Sciences, Guangzhou, China
| | - Guoxiao Lai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Chinese Academy of Sciences, Guangzhou, China.,Guangxi University of Chinese Medicine, Nanning, China
| | - Tianqiao Yong
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaocui Tang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Chinese Academy of Sciences, Guangzhou, China
| | - Ou Shuai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, China
| | - Gailian Zhou
- Guangxi University of Chinese Medicine, Nanning, China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
17
|
Morinda Officinalis Polysaccharides Stimulate Hypothalamic GnRH Secretion in Varicocele Progression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9057959. [PMID: 29234440 PMCID: PMC5632491 DOI: 10.1155/2017/9057959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023]
Abstract
Varicoceles (VCs) are the predominant cause of male infertility and are a risk factor for chronic venous disease. Morinda officinalis (M. officinalis) is a traditional Chinese medicine used to tonify the kidney and strengthen yang. In this study, we evaluated the effects of water-soluble polysaccharides extracted from M. officinalis (MOPs) on gonadotropin-release hormone (GnRH) secretion in a classic experimental left VC (ELV) rat model. Intragastric administration of MOPs at a dose ranging from 50 mg kg−1 to 100 mg kg−1 facilitated improvements in sperm parameters and seminiferous epithelial structures, modulated serum hormone profiles, and stimulated GnRH synthesis and release in the hypothalamus. MOPs also promoted spinogenesis and functional spine maturation in the arcuate nuclei (Arc), wherein they acted mainly on Kiss1 and GnRH neurons. Moreover, MOP-mediated Kisspeptin-GPR54 pathway upregulation and MAPK phosphorylation activation may have been responsible for increases in GnRH synthesis and release. Collectively, the findings of this study indicate that MOPs were effective in stimulating GnRH secretion, possibly by upregulating the Kiss1/GPR54 pathway and enhancing synaptic plasticity, and that MOPs can serve as a therapy for early VCs.
Collapse
|
18
|
Bajijiasu Abrogates Osteoclast Differentiation via the Suppression of RANKL Signaling Pathways through NF-κB and NFAT. Int J Mol Sci 2017; 18:ijms18010203. [PMID: 28106828 PMCID: PMC5297833 DOI: 10.3390/ijms18010203] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 01/08/2023] Open
Abstract
Pathological osteolysis is commonly associated with osteoporosis, bone tumors, osteonecrosis, and chronic inflammation. It involves excessive resorption of bone matrix by activated osteoclasts. Suppressing receptor activator of NF-κB ligand (RANKL) signaling pathways has been proposed to be a good target for inhibiting osteoclast differentiation and bone resorption. Bajijiasu—a natural compound derived from Morinda officinalis F. C. How—has previously been shown to have anti-oxidative stress property; however, its effect and molecular mechanism of action on osteoclastogenesis and bone resorption remains unclear. In the present study, we found that Bajijiasu dose-dependently inhibited RANKL-induced osteoclast formation and bone resorption from 0.1 mM, and reached half maximal inhibitory effects (IC50) at 0.4 mM without toxicity. Expression of RANKL-induced osteoclast specific marker genes including cathepsin K (Ctsk), nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), tartrate resistant acid phosphatase (TRAcP), vacuolar-type H+-ATPase V0 subunit D2 (V-ATPase d2), and (matrix metalloproteinase-2 (MMP2) was inhibited by Bajijiasu treatment. Luciferase reporter gene studies showed that Bajijiasu could significantly reduce the expression and transcriptional activity of NFAT as well as RANKL-induced NF-κB activation in a dose-dependent manner. Further, Bajijiasu was found to decrease the RANKL-induced phosphorylation of extracellular signal-regulated kinases (ERK), inhibitor of κB-α (IκB-α), NFAT, and V-ATPase d2. Taken together, this study revealed Bajijiasu could attenuate osteoclast formation and bone resorption by mediating RANKL signaling pathways, indicative of a potential effect of Bajijiasu on osteolytic bone diseases.
Collapse
|
19
|
Bae D, Kim J, Oh DR, Kim Y, Choi EJ, Lee H, Jung MA, Lee SY, Jeong C, Lee M, Kang N, Lee J, Kim S. Multifunctional antistress effects of standardized aqueous extracts from Hippophae rhamnoides L. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1250816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
20
|
Xu LZ, Xu DF, Han Y, Liu LJ, Sun CY, Deng JH, Zhang RX, Yuan M, Zhang SZ, Li ZM, Xu Y, Li JS, Xie SH, Li SX, Zhang HY, Lu L. BDNF-GSK-3β-β-Catenin Pathway in the mPFC Is Involved in Antidepressant-Like Effects of Morinda officinalis Oligosaccharides in Rats. Int J Neuropsychopharmacol 2016; 20:83-93. [PMID: 27729466 PMCID: PMC5737867 DOI: 10.1093/ijnp/pyw088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Morinda officinalis oligosaccharides have been reported to exert neuroprotective and antidepressant-like effects in the forced swim test in mice. However, the mechanisms that underlie the antidepressant-like effects of Morinda officinalis oligosaccharides are unclear. METHODS Chronic unpredictable stress and forced swim test were used to explore the antidepressant-like effects of Morinda officinalis oligosaccharides and resilience to stress in rats. The phosphoinositide-3 kinase inhibitor LY294002 was microinjected in the medial prefrontal cortex to explore the role of glycogen synthase kinase-3β in the antidepressant-like effects of Morinda officinalis oligosaccharides. The expression of brain-derived neurotrophic factor, phosphorylated-Ser9-glycogen synthase kinase 3β, β-catenin, and synaptic proteins was determined in the medial prefrontal cortex and the orbitofrontal cortex by western blot. RESULTS We found that Morinda officinalis oligosaccharides effectively ameliorated chronic unpredictable stress-induced depression-like behaviors in the sucrose preference test and forced swim test. The Morinda officinalis oligosaccharides also significantly rescued chronic unpredictable stress-induced abnormalities in the brain-derived neurotrophic factor-glycogen synthase kinase-3β-β-catenin pathway and synaptic protein deficits in the medial prefrontal cortex but not orbitofrontal cortex. The activation of glycogen synthase kinase-3β by the phosphoinositide-3 kinase inhibitor LY294002 abolished the antidepressant-like effects of Morinda officinalis oligosaccharides in the forced swim test. Naïve rats that were treated with Morinda officinalis oligosaccharides exhibited resilience to chronic unpredictable stress, accompanied by increases in the expression of brain-derived neurotrophic factor, phosphorylated-Ser9-glycogen synthase kinase-3β, and β-catenin in the medial prefrontal cortex. CONCLUSION Our findings indicate that the brain-derived neurotrophic factor-glycogen synthase kinase-3β-β-catenin pathway in the medial prefrontal cortex may underlie the antidepressant-like effect of Morinda officinalis oligosaccharides and resilience to stress.
Collapse
Affiliation(s)
- Ling-Zhi Xu
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China (Dr L.-Z. Xu, Mr D.-F. Xu, Drs Sun, Deng, and R.-X. Zhang, Ms S.-Z. Zhang, Ms H.-Y. Zhang, and Dr Lu); National Institute on Drug Dependence, Peking University, Beijing, China (Dr L.-Z. Xu, Dr Han, Ms Liu, Drs Sun, Deng, and R.-X. Zhang, Ms Yuan, Dr S.-X. Li, and Dr Lu); Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Dr Lu); Beijing Zhong Yan Tongrentang Medicine R&D Co., Ltd, Beijing, China (Mr Z.-M. Li, and Dr Xu); Beijing Tong Ren Tang Co., Ltd, Beijing, China (Dr J.-S. Li, and Ms Xie)
| | - De-Feng Xu
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China (Dr L.-Z. Xu, Mr D.-F. Xu, Drs Sun, Deng, and R.-X. Zhang, Ms S.-Z. Zhang, Ms H.-Y. Zhang, and Dr Lu); National Institute on Drug Dependence, Peking University, Beijing, China (Dr L.-Z. Xu, Dr Han, Ms Liu, Drs Sun, Deng, and R.-X. Zhang, Ms Yuan, Dr S.-X. Li, and Dr Lu); Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Dr Lu); Beijing Zhong Yan Tongrentang Medicine R&D Co., Ltd, Beijing, China (Mr Z.-M. Li, and Dr Xu); Beijing Tong Ren Tang Co., Ltd, Beijing, China (Dr J.-S. Li, and Ms Xie)
| | - Ying Han
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China (Dr L.-Z. Xu, Mr D.-F. Xu, Drs Sun, Deng, and R.-X. Zhang, Ms S.-Z. Zhang, Ms H.-Y. Zhang, and Dr Lu); National Institute on Drug Dependence, Peking University, Beijing, China (Dr L.-Z. Xu, Dr Han, Ms Liu, Drs Sun, Deng, and R.-X. Zhang, Ms Yuan, Dr S.-X. Li, and Dr Lu); Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Dr Lu); Beijing Zhong Yan Tongrentang Medicine R&D Co., Ltd, Beijing, China (Mr Z.-M. Li, and Dr Xu); Beijing Tong Ren Tang Co., Ltd, Beijing, China (Dr J.-S. Li, and Ms Xie)
| | - Li-Jing Liu
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China (Dr L.-Z. Xu, Mr D.-F. Xu, Drs Sun, Deng, and R.-X. Zhang, Ms S.-Z. Zhang, Ms H.-Y. Zhang, and Dr Lu); National Institute on Drug Dependence, Peking University, Beijing, China (Dr L.-Z. Xu, Dr Han, Ms Liu, Drs Sun, Deng, and R.-X. Zhang, Ms Yuan, Dr S.-X. Li, and Dr Lu); Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Dr Lu); Beijing Zhong Yan Tongrentang Medicine R&D Co., Ltd, Beijing, China (Mr Z.-M. Li, and Dr Xu); Beijing Tong Ren Tang Co., Ltd, Beijing, China (Dr J.-S. Li, and Ms Xie)
| | - Cheng-Yu Sun
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China (Dr L.-Z. Xu, Mr D.-F. Xu, Drs Sun, Deng, and R.-X. Zhang, Ms S.-Z. Zhang, Ms H.-Y. Zhang, and Dr Lu); National Institute on Drug Dependence, Peking University, Beijing, China (Dr L.-Z. Xu, Dr Han, Ms Liu, Drs Sun, Deng, and R.-X. Zhang, Ms Yuan, Dr S.-X. Li, and Dr Lu); Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Dr Lu); Beijing Zhong Yan Tongrentang Medicine R&D Co., Ltd, Beijing, China (Mr Z.-M. Li, and Dr Xu); Beijing Tong Ren Tang Co., Ltd, Beijing, China (Dr J.-S. Li, and Ms Xie)
| | - Jia-Hui Deng
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China (Dr L.-Z. Xu, Mr D.-F. Xu, Drs Sun, Deng, and R.-X. Zhang, Ms S.-Z. Zhang, Ms H.-Y. Zhang, and Dr Lu); National Institute on Drug Dependence, Peking University, Beijing, China (Dr L.-Z. Xu, Dr Han, Ms Liu, Drs Sun, Deng, and R.-X. Zhang, Ms Yuan, Dr S.-X. Li, and Dr Lu); Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Dr Lu); Beijing Zhong Yan Tongrentang Medicine R&D Co., Ltd, Beijing, China (Mr Z.-M. Li, and Dr Xu); Beijing Tong Ren Tang Co., Ltd, Beijing, China (Dr J.-S. Li, and Ms Xie)
| | - Ruo-Xi Zhang
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China (Dr L.-Z. Xu, Mr D.-F. Xu, Drs Sun, Deng, and R.-X. Zhang, Ms S.-Z. Zhang, Ms H.-Y. Zhang, and Dr Lu); National Institute on Drug Dependence, Peking University, Beijing, China (Dr L.-Z. Xu, Dr Han, Ms Liu, Drs Sun, Deng, and R.-X. Zhang, Ms Yuan, Dr S.-X. Li, and Dr Lu); Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Dr Lu); Beijing Zhong Yan Tongrentang Medicine R&D Co., Ltd, Beijing, China (Mr Z.-M. Li, and Dr Xu); Beijing Tong Ren Tang Co., Ltd, Beijing, China (Dr J.-S. Li, and Ms Xie)
| | - Ming Yuan
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China (Dr L.-Z. Xu, Mr D.-F. Xu, Drs Sun, Deng, and R.-X. Zhang, Ms S.-Z. Zhang, Ms H.-Y. Zhang, and Dr Lu); National Institute on Drug Dependence, Peking University, Beijing, China (Dr L.-Z. Xu, Dr Han, Ms Liu, Drs Sun, Deng, and R.-X. Zhang, Ms Yuan, Dr S.-X. Li, and Dr Lu); Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Dr Lu); Beijing Zhong Yan Tongrentang Medicine R&D Co., Ltd, Beijing, China (Mr Z.-M. Li, and Dr Xu); Beijing Tong Ren Tang Co., Ltd, Beijing, China (Dr J.-S. Li, and Ms Xie)
| | - Su-Zhen Zhang
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China (Dr L.-Z. Xu, Mr D.-F. Xu, Drs Sun, Deng, and R.-X. Zhang, Ms S.-Z. Zhang, Ms H.-Y. Zhang, and Dr Lu); National Institute on Drug Dependence, Peking University, Beijing, China (Dr L.-Z. Xu, Dr Han, Ms Liu, Drs Sun, Deng, and R.-X. Zhang, Ms Yuan, Dr S.-X. Li, and Dr Lu); Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Dr Lu); Beijing Zhong Yan Tongrentang Medicine R&D Co., Ltd, Beijing, China (Mr Z.-M. Li, and Dr Xu); Beijing Tong Ren Tang Co., Ltd, Beijing, China (Dr J.-S. Li, and Ms Xie)
| | - Zhi-Meng Li
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China (Dr L.-Z. Xu, Mr D.-F. Xu, Drs Sun, Deng, and R.-X. Zhang, Ms S.-Z. Zhang, Ms H.-Y. Zhang, and Dr Lu); National Institute on Drug Dependence, Peking University, Beijing, China (Dr L.-Z. Xu, Dr Han, Ms Liu, Drs Sun, Deng, and R.-X. Zhang, Ms Yuan, Dr S.-X. Li, and Dr Lu); Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Dr Lu); Beijing Zhong Yan Tongrentang Medicine R&D Co., Ltd, Beijing, China (Mr Z.-M. Li, and Dr Xu); Beijing Tong Ren Tang Co., Ltd, Beijing, China (Dr J.-S. Li, and Ms Xie)
| | - Yi Xu
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China (Dr L.-Z. Xu, Mr D.-F. Xu, Drs Sun, Deng, and R.-X. Zhang, Ms S.-Z. Zhang, Ms H.-Y. Zhang, and Dr Lu); National Institute on Drug Dependence, Peking University, Beijing, China (Dr L.-Z. Xu, Dr Han, Ms Liu, Drs Sun, Deng, and R.-X. Zhang, Ms Yuan, Dr S.-X. Li, and Dr Lu); Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Dr Lu); Beijing Zhong Yan Tongrentang Medicine R&D Co., Ltd, Beijing, China (Mr Z.-M. Li, and Dr Xu); Beijing Tong Ren Tang Co., Ltd, Beijing, China (Dr J.-S. Li, and Ms Xie)
| | - Jin-Sheng Li
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China (Dr L.-Z. Xu, Mr D.-F. Xu, Drs Sun, Deng, and R.-X. Zhang, Ms S.-Z. Zhang, Ms H.-Y. Zhang, and Dr Lu); National Institute on Drug Dependence, Peking University, Beijing, China (Dr L.-Z. Xu, Dr Han, Ms Liu, Drs Sun, Deng, and R.-X. Zhang, Ms Yuan, Dr S.-X. Li, and Dr Lu); Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Dr Lu); Beijing Zhong Yan Tongrentang Medicine R&D Co., Ltd, Beijing, China (Mr Z.-M. Li, and Dr Xu); Beijing Tong Ren Tang Co., Ltd, Beijing, China (Dr J.-S. Li, and Ms Xie)
| | - Su-Hua Xie
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China (Dr L.-Z. Xu, Mr D.-F. Xu, Drs Sun, Deng, and R.-X. Zhang, Ms S.-Z. Zhang, Ms H.-Y. Zhang, and Dr Lu); National Institute on Drug Dependence, Peking University, Beijing, China (Dr L.-Z. Xu, Dr Han, Ms Liu, Drs Sun, Deng, and R.-X. Zhang, Ms Yuan, Dr S.-X. Li, and Dr Lu); Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Dr Lu); Beijing Zhong Yan Tongrentang Medicine R&D Co., Ltd, Beijing, China (Mr Z.-M. Li, and Dr Xu); Beijing Tong Ren Tang Co., Ltd, Beijing, China (Dr J.-S. Li, and Ms Xie)
| | - Su-Xia Li
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China (Dr L.-Z. Xu, Mr D.-F. Xu, Drs Sun, Deng, and R.-X. Zhang, Ms S.-Z. Zhang, Ms H.-Y. Zhang, and Dr Lu); National Institute on Drug Dependence, Peking University, Beijing, China (Dr L.-Z. Xu, Dr Han, Ms Liu, Drs Sun, Deng, and R.-X. Zhang, Ms Yuan, Dr S.-X. Li, and Dr Lu); Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Dr Lu); Beijing Zhong Yan Tongrentang Medicine R&D Co., Ltd, Beijing, China (Mr Z.-M. Li, and Dr Xu); Beijing Tong Ren Tang Co., Ltd, Beijing, China (Dr J.-S. Li, and Ms Xie),Correspondence: Su-Xia Li, MD, PhD, National Institute on Drug Dependence, Peking University, 38, Xue Yuan Road, Haidian District, Beijing 100191, China (); and Hong-Yan Zhang, BS and Lin Lu, MD, PhD, Peking University Sixth Hospital/Institute of Mental Health/National Clinical Research Center for Mental Disorder, Peking University, 51 Huayuan Bei Road, Haidian District, Beijing 100191, China () and ()
| | - Hong-Yan Zhang
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China (Dr L.-Z. Xu, Mr D.-F. Xu, Drs Sun, Deng, and R.-X. Zhang, Ms S.-Z. Zhang, Ms H.-Y. Zhang, and Dr Lu); National Institute on Drug Dependence, Peking University, Beijing, China (Dr L.-Z. Xu, Dr Han, Ms Liu, Drs Sun, Deng, and R.-X. Zhang, Ms Yuan, Dr S.-X. Li, and Dr Lu); Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Dr Lu); Beijing Zhong Yan Tongrentang Medicine R&D Co., Ltd, Beijing, China (Mr Z.-M. Li, and Dr Xu); Beijing Tong Ren Tang Co., Ltd, Beijing, China (Dr J.-S. Li, and Ms Xie),Correspondence: Su-Xia Li, MD, PhD, National Institute on Drug Dependence, Peking University, 38, Xue Yuan Road, Haidian District, Beijing 100191, China (); and Hong-Yan Zhang, BS and Lin Lu, MD, PhD, Peking University Sixth Hospital/Institute of Mental Health/National Clinical Research Center for Mental Disorder, Peking University, 51 Huayuan Bei Road, Haidian District, Beijing 100191, China () and ()
| | - Lin Lu
- Correspondence: Su-Xia Li, MD, PhD, National Institute on Drug Dependence, Peking University, 38, Xue Yuan Road, Haidian District, Beijing 100191, China (); and Hong-Yan Zhang, BS and Lin Lu, MD, PhD, Peking University Sixth Hospital/Institute of Mental Health/National Clinical Research Center for Mental Disorder, Peking University, 51 Huayuan Bei Road, Haidian District, Beijing 100191, China () and ()
| |
Collapse
|
21
|
Yang Y, Ang W, Long H, Chang Y, Li Z, Zhou L, Yang T, Deng Y, Luo Y. Scaffold Hopping Toward Agomelatine: Novel 3, 4-Dihydroisoquinoline Compounds as Potential Antidepressant Agents. Sci Rep 2016; 6:34711. [PMID: 27698414 PMCID: PMC5048153 DOI: 10.1038/srep34711] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/19/2016] [Indexed: 02/05/2023] Open
Abstract
A scaffold-hopping strategy toward Agomelatine based on in silico screening and knowledge analysis was employed to design novel antidepressant agents. A series of 3, 4-dihydroisoquinoline compounds were selected for chemical synthesis and biological assessment. Three compounds (6a-1, 6a-2, 6a-9) demonstrated protective effects on corticosterone-induced lesion of PC12 cells. Compound 6a-1 also displayed low inhibitory effects on the growth of HEK293 and L02 normal cells and it was further evaluated for its potential antidepressant effects in vivo. The forced swim test (FST) results revealed that compound 6a-1 remarkably reduced the immobility time of rats and the open field test (OFT) results indicated a better general locomotor activity of the rats treated with compound 6a-1 than those with Agomelatine or Fluoxetine. Mechanism studies implied that compound 6a-1 can significantly reduce PC12 cell apoptosis by up-regulation of GSH and down-regulation of ROS in corticosterone-induced lesion of PC12 cells. Meanwhile, the down-regulation of calcium ion concentration and up-regulation of BDNF level in PC12 cells may account for the neuroprotective effects. Furthermore, compound 6a-1 can increase cell survival and cell proliferation, promote cell maturation in the rat hippocampus after chronic treatment. The acute toxicity data in vivo indicated compound 6a-1 exhibited less hepatotoxicity than Agomelatine.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Biotherapy and Department of Neurosurgery/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wei Ang
- State Key Laboratory of Biotherapy and Department of Neurosurgery/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Haiyue Long
- State Key Laboratory of Biotherapy and Department of Neurosurgery/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ying Chang
- State Key Laboratory of Biotherapy and Department of Neurosurgery/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zicheng Li
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Department of Neurosurgery/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Department of Neurosurgery/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yong Deng
- State Key Laboratory of Biotherapy and Department of Neurosurgery/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Department of Neurosurgery/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
22
|
Xu WJ, Li RJ, Quasie O, Yang MH, Kong LY, Luo J. Polyprenylated Tetraoxygenated Xanthones from the Roots of Hypericum monogynum and Their Neuroprotective Activities. JOURNAL OF NATURAL PRODUCTS 2016; 79:1971-81. [PMID: 27525351 DOI: 10.1021/acs.jnatprod.6b00251] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ten new polyprenylated tetraoxygenated xanthones, monogxanthones A-J (1-10), together with eight known analogues (4b, 11-17) were identified from the roots of Hypericum monogynum. The structures of these new polyprenylated xanthones (1-10), a class of compounds rarely found in plants of the genus Hypericum, were elucidated by the interpretation of their HRESIMS, 1D and 2D NMR, and electronic circular dichroism data. Compounds 1 and 2 exhibited neuroprotective effects against corticosterone (Cort)-induced lesions of PC12 cells at concentrations of 6.25, 12.50, and 25.00 μM, with cell viability greater than 75%, as well as inhibitory effects on nitric oxide production in lipopolysaccharide-induced BV2 microglia cells, with IC50 values of 7.47 ± 0.65 and 9.60 ± 0.12 μM, respectively. Collectively, these results shed new light on the potential of polyprenylated xanthones from the genus Hypericum in the development of antidepression therapies.
Collapse
Affiliation(s)
- Wen-Jun Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Rui-Jun Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Olga Quasie
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ming-Hua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jun Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
23
|
An L, Yang JC, Yin H, Xue R, Wang Q, Sun YC, Zhang YZ, Yang M. Inulin-Type Oligosaccharides Extracted from Yacon Produce Antidepressant-Like Effects in Behavioral Models of Depression. Phytother Res 2016; 30:1937-1942. [DOI: 10.1002/ptr.5698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/14/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Lei An
- Beijing Engineering and Technology Research Center of Food Additives; Beijing Technology and Business University (BTBU); Beijing 100048 China
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Key Laboratory of Neuropsychopharmacology; Beijing Institute of Pharmacology and Toxicology; Beijing 100850 China
| | - Ji-Chu Yang
- Beijing Tuolin Pharmaceutical Technology Corporation, LTD; Beijing 100039 China
| | - Hang Yin
- Beijing Engineering and Technology Research Center of Food Additives; Beijing Technology and Business University (BTBU); Beijing 100048 China
| | - Rui Xue
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Key Laboratory of Neuropsychopharmacology; Beijing Institute of Pharmacology and Toxicology; Beijing 100850 China
| | - Qiong Wang
- Sichuan Medical University; Luzhou 646000 China
| | - Yu Chen Sun
- Beijing Engineering and Technology Research Center of Food Additives; Beijing Technology and Business University (BTBU); Beijing 100048 China
| | - You-Zhi Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Key Laboratory of Neuropsychopharmacology; Beijing Institute of Pharmacology and Toxicology; Beijing 100850 China
| | - Ming Yang
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Key Laboratory of Neuropsychopharmacology; Beijing Institute of Pharmacology and Toxicology; Beijing 100850 China
- Beijing Tuolin Pharmaceutical Technology Corporation, LTD; Beijing 100039 China
| |
Collapse
|
24
|
Involvement of PI3K/Akt/FoxO3a and PKA/CREB Signaling Pathways in the Protective Effect of Fluoxetine Against Corticosterone-Induced Cytotoxicity in PC12 Cells. J Mol Neurosci 2016; 59:567-78. [DOI: 10.1007/s12031-016-0779-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022]
|
25
|
Ding Y, Xie L, Chang CQ, Chen ZM, Ai H. Activation of γ-aminobutyric Acid (A) Receptor Protects Hippocampus from Intense Exercise-induced Synapses Damage and Apoptosis in Rats. Chin Med J (Engl) 2016; 128:2330-9. [PMID: 26315081 PMCID: PMC4733790 DOI: 10.4103/0366-6999.163392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Our previous study has confirmed that one bout of exhaustion (Ex) can cause hippocampus neurocyte damage, excessive apoptosis, and dysfunction. Its initial reason is intracellular calcium overload in hippocampus triggered by N-methyl-D-aspartic acid receptor (NMDAR) over-activation. NMDAR activation can be suppressed by γ-aminobutyric acid (A) receptor (GABAAR). Whether GABAAR can prevent intense exercise-induced hippocampus apoptosis, damage, or dysfunction will be studied in this study. METHODS According to dose test, rats were randomly divided into control (Con), Ex, muscimol (MUS, 0.1 mg/kg) and bicuculline (BIC, 0.5 mg/kg) groups, then all rats underwent once swimming Ex except ones in Con group only underwent training. Intracellular free calcium concentration ([Ca2+]i) was measured by Fura-2-acetoxymethyl ester; glial librillary acidic protein (GFAP) and synaptophysin (SYP) immunofluorescence were also performed; apoptosis were displayed by dUTP nick end labeling (TUNEL) stain; endoplasmic reticulum stress-induced apoptosis pathway was detected by Western blotting analysis; Morris water maze was used to detect learning ability and spatial memory. RESULTS The appropriate dose was 0.1 mg/kg for MUS and 0.5 mg/kg for BIC. Ex group showed significantly increased [Ca2+]i and astrogliosis; TUNEL positive cells and levels of GFAP, B cell lymphoma-2 (Bcl-2) associated X protein (Bax), caspase-3, caspase-12 cleavage, CCAAT/enhancer binding protein homologous protein (CHOP), and p-Jun amino-terminal kinase (p-JNK) in Ex group also raised significantly compared to Con group, while SYP, synapse plasticity, and Bcl-2 levels in Ex group were significantly lower than those in Con group. These indexes were back to normal in MUS group. BIC group had the highest levels of [Ca2+]i, astrogliosis, TUNEL positive cell, GFAP, Bax, caspase-3, caspase-12 cleavage, CHOP, and p-JNK, it also gained the lowest SYP, synapse plasticity, and Bcl-2 levels among all groups. Water maze test showed that Ex group had longer escape latency (EL) and less quadrant dwell time than Con group; all indexes between MUS and Con groups had no significant differences; BIC had the longest EL and least quadrant dwell time among all groups. CONCLUSIONS Activation of GABAA R could prevent intense exercise-induced synapses damage, excessive apoptosis, and dysfunction of hippocampus.
Collapse
Affiliation(s)
| | | | | | | | - Hua Ai
- Institution of Sports Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
26
|
Liu YM, Shen SN, Xia FB, Chang Q, Liu XM, Pan RL. Neuroprotection of Stilbenes from Leaves of Cajanus cajan against Oxidative Damage Induced by Corticosterone and Glutamate in Differentiated PC12 Cells. CHINESE HERBAL MEDICINES 2015. [DOI: 10.1016/s1674-6384(15)60045-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
An update on oligosaccharides and their esters from traditional chinese medicines: chemical structures and biological activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:512675. [PMID: 25861364 PMCID: PMC4377491 DOI: 10.1155/2015/512675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/25/2014] [Accepted: 01/02/2015] [Indexed: 11/23/2022]
Abstract
A great number of naturally occurring oligosaccharides and oligosaccharide esters have been isolated from traditional Chinese medicinal plants, which are used widely in Asia and show prominent curative effects in the prevention and treatment of kinds of diseases. Numerous in vitro and in vivo experiments have revealed that oligosaccharides and their esters exhibited various activities, including antioxidant, antidepressant, cytotoxic, antineoplastic, anti-inflammatory, neuroprotective, cerebral protective, antidiabetic, plant growth-regulatory, and immunopotentiating activities. This review summarizes the investigations on the distribution, chemical structures, and bioactivities of natural oligosaccharides and their esters from traditional Chinese medicines between 2003 and 2013.
Collapse
|
28
|
Protection of Tong-Sai-Mai Decoction against Apoptosis Induced by H2O2 in PC12 Cells: Mechanisms via Bcl-2-Mitochondria-ROS-INOS Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:371419. [PMID: 25404948 PMCID: PMC4227446 DOI: 10.1155/2014/371419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/13/2014] [Accepted: 07/07/2014] [Indexed: 01/10/2023]
Abstract
Tong-Sai-Mai decoction (TSM) is a Chinese materia medica polyherbal formulation that has been applied in treating brain ischemia for hundreds of years. Because it could repress the oxidative stress in in vivo studies, now we focus on the in vitro studies to investigate the mechanism by targeting the oxidative stress dependent signaling. The relation between the neurogenesis and the reactive oxygen species (ROS) production remains largely unexamined. PC12 cells are excitable cell types widely used as in vitro model for neuronal cells. Most marker genes that are related to neurotoxicity, apoptosis, and cell cycles are expressed at high levels in these cells. The aim of the present study is to explore the cytoprotection of TSM against hydrogen peroxide- (H2O2-) induced apoptosis and the molecular mechanisms underlying PC12 cells. Our findings revealed that TSM cotreatment with H2O2 restores the expression of bcl-2, inducible nitric oxide synthase (INOS), and mitochondria membrane potential. Meanwhile, it reduces intracellular [Ca2+] concentration, lactate dehydrogenase (LDH) release, and the expression of caspase-3 and bax. The results of the present study suggested that the cytoprotective effects of the TSM might be mediated, at least in part, by the bcl-2-mitochondria-ROS-INOS pathway. Due to its nontoxic characteristics, TSM could be further developed to treat the neurodegenerative diseases which are closely associated with the oxidative stress.
Collapse
|
29
|
Intense exercise can cause excessive apoptosis and synapse plasticity damage in rat hippocampus through Ca2+ overload and endoplasmic reticulum stress-induced apoptosis pathway. Chin Med J (Engl) 2014. [DOI: 10.1097/00029330-201409200-00014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
30
|
Cajaninstilbene acid protects corticosterone-induced injury in PC12 cells by inhibiting oxidative and endoplasmic reticulum stress-mediated apoptosis. Neurochem Int 2014; 78:43-52. [PMID: 25193317 DOI: 10.1016/j.neuint.2014.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 01/13/2023]
Abstract
It has been reported that high corticosterone level could damage the normal hippocampal neurons both in vitro and in vivo. Furthermore, high concentration of corticosterone induced impair in PC12 cells has been widely used as in vitro model to screen neuroprotective agents. Cajaninstilbene acid (CSA), a natural stilbene isolated from Cajanus cajan leaves, has various activities. In present study, we investigated the effect of CSA on corticosterone-induced cell apoptosis and explored its possible signaling pathways in PC12 cells. We demonstrated that pretreatment with CSA at the concentrations of 1-8 μmol/L remarkably reduced the cytotoxicity induced by 200 μmol/L of corticosterone in PC12 cells by MTT, and further confirmed the neuroprotection by Hoechst 33342 and PI double staining and lactate dehydrogenase release (LDH) assay at the concentration of 8 μmol/L. Moreover, the cytoprotection of CSA was proved to be associated with the homeostasis of intracellular Ca(2+), relieving corticosterone-induced oxidative stress by decreasing the contents of ROS and malondialdehyde (MDA), increasing the activities of superoxide dismutase (SOD) and catalase (CAT), and the stabilization of ER stress via down-regulating the expression of ER chaperone protein glucose-regulated protein 78 (GRP78), ER stress associated transcription factor C/EBP homologous protein (CHOP/GADD153), and the X box-binding protein-1 (XBP-1), as well as the expression of ER stress-specific protein caspase-12 and its downstream protein caspase-9. Considering all the findings, it is suggested that the neuroprotective activity of CSA against the impairment induced by corticosterone in PC12 cells was through the inhibition of oxidative stress and ER stress-mediated pathway.
Collapse
|
31
|
Li J, Hu D, Zong W, Lv G, Zhao J, Li S. Determination of inulin-type fructooligosaccharides in edible plants by high-performance liquid chromatography with charged aerosol detector. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7707-7713. [PMID: 25034622 DOI: 10.1021/jf502329n] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fructooligosaccharides (FOS), which are regarded as functional ingredients, are commonly classified as dietary fibers in many countries. However, few analytical methods for separation and analysis of individual FOS in plants, crops, and food products have been developed. In this study, a simple, rapid, and sensitive high performance liquid chromatography with charged aerosol detector (HPLC-CAD) method was developed for simultaneous determination of 11 inulin-type FOS with degree of polymerization (DP) 3-13 in different samples. The separation was performed on a Waters XBridge Amide column (4.6 × 250 mm i.d., 3.5 μm) with gradient elution. All calibration curves for investigated analytes showed good linear regression (R(2) > 0.9962). Their limits of detection (LOD) and quantification (LOQ) were in the ranges 0.4-0.6 μg/mL and 1.4-2.3 μg/mL, respectively. The recoveries ranged from 94.0% to 114.4%. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was applied to qualitative analysis of FOS in different samples. The developed method was successfully applied to analysis of 11 FOS in different samples of plants from Compositae, Campanulaceae, and Rubiaceae families. The developed HPLC-CAD nethod with microwave-assisted extraction can be used for quantitative analysis of FOS and is helpful for quality control of plants containing FOS.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao Special Administrative Region, China
| | | | | | | | | | | |
Collapse
|
32
|
Cheong KL, Li J, Zhao J, Li SP. A simple analysis of fructooligosaccharides in two medicinal plants by high-performance thin-layer chromatography. JPC-J PLANAR CHROMAT 2014. [DOI: 10.1556/jpc.27.2014.4.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Ang W, Chen G, Xiong L, Chang Y, Pi W, Liu Y, Li C, Zheng J, Zhou L, Yang B, Deng Y, Yang S, Luo Y, Wei Y. Synthesis and biological evaluation of novel naphthalene compounds as potential antidepressant agents. Eur J Med Chem 2014; 82:263-73. [DOI: 10.1016/j.ejmech.2014.05.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/06/2014] [Accepted: 05/25/2014] [Indexed: 12/20/2022]
|
34
|
Chen PJ, Sheen LY. Gastrodiae Rhizoma (tiān má): a review of biological activity and antidepressant mechanisms. J Tradit Complement Med 2014; 1:31-40. [PMID: 24716103 PMCID: PMC3942998 DOI: 10.1016/s2225-4110(16)30054-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gastrodiae Rhizoma, also called chì jiàn (赤箭), guǐ dū yóu (鬼督郵), or tiān má (天麻) in Chinese, is considered a top grade (上品 shàng pǐn) medicine described to enter liver channel (肝經 gān jīng) in classic literatures of traditional Chinese medicine and has been used for centuries. Many studies investigating its various bioactivities and active compounds have been conducted worldwide. This article reviews these biological activities and details the antidepressant pharmacology of Gastrodiae Rhizoma. Gastrodiae Rhizoma treatment exerts an effective inhibition of diverse diseases and disorders, including convulsion, oxidative stress, mental disorders, amnesia, cardio-cerebral-vascular diseases, and inflammation, among others. The antidepressant effect of Gastrodiae Rhizoma was evaluated in animal models and several mechanisms of activity were found, including the modulation and regulation of monoamine oxidase activity, monoamine concentration and turnover, antioxidatant activity, GABAergic system induction, BDNF induction, neuroprotection and anti-inflammatory activity.
Collapse
Affiliation(s)
- Pei-Ju Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
35
|
Chen DL, Zhang P, Lin L, Zhang HM, Deng SD, Wu ZQ, Ou S, Liu SH, Wang JY. Protective effects of bajijiasu in a rat model of Aβ₂₅₋₃₅-induced neurotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:206-217. [PMID: 24742752 DOI: 10.1016/j.jep.2014.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/05/2014] [Accepted: 04/02/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVENCE Neurodegenerative diseases (NDs) caused by neurons and/or myelin loss lead to devastating effects on patients׳ lives. Although the causes of such complex diseases have not yet been fully elucidated, oxidative stress, mitochondrial and energy metabolism dysfunction, excitotoxicity, inflammation, and apoptosis have been recognized as influential factors. Current therapies that were designed to address only a single target are unable to mitigate or prevent disease progression, and disease-modifying drugs are desperately needed, and Chinese herbs will be a good choice for screening the potential drugs. Previous studies have shown that bajijiasu, a dimeric fructose isolated from Morinda officinalis radix which was used frequently as a tonifying and replenishing natural herb medicine in traditional Chinese medicine clinic practice, can prevent ischemia-induced neuronal damage or death. MATERIALS AND METHODS In order to investigate whether bajijiasu protects against beta-amyloid (Aβ₂₅₋₃₅)-induced neurotoxicity in rats and explore the underlying mechanisms of bajijiasu in vivo, we prepared an Alzheimer׳s disease (AD) model by injecting Aβ25-35 into the bilateral CA1 region of rat hippocampus and treated a subset with oral bajijiasu. We observed the effects on learning and memory, antioxidant levels, energy metabolism, neurotransmitter levels, and neuronal apoptosis. RESULTS Bajijiasu ameliorated Aβ-induced learning and memory dysfunction, enhanced antioxidative activity and energy metabolism, and attenuated cholinergic system damage. Our findings suggest that bajijiasu can enhance antioxidant capacity and prevent free radical damage. It can also enhance energy metabolism and monoamine neurotransmitter levels and inhibit neuronal apoptosis. CONCLUSION The results provide a scientific foundation for the use of Morinda officinalis and its constituents in the treatment of various AD. Future studies will assess the multi-target activity of the drug for the treatment of AD.
Collapse
Affiliation(s)
- Di-Ling Chen
- Southern Institute of Pharmaceutical Research, South China Normal University, Guangzhou, Guangdong 510631, People׳s Republic of China
| | - Peng Zhang
- College of Chinese Materia Medical, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Li Lin
- College of Chinese Materia Medical, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China.
| | - He-Ming Zhang
- Southern Institute of Pharmaceutical Research, South China Normal University, Guangzhou, Guangdong 510631, People׳s Republic of China
| | - Shao-Dong Deng
- College of Chinese Materia Medical, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Ze-Qing Wu
- College of Chinese Materia Medical, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Shuai Ou
- College of Chinese Materia Medical, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Song-Hao Liu
- Southern Institute of Pharmaceutical Research, South China Normal University, Guangzhou, Guangdong 510631, People׳s Republic of China
| | - Jin-Yu Wang
- College of Chinese Materia Medical, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
36
|
Chang Y, Pi W, Ang W, Liu Y, Li C, Zheng J, Xiong L, Yang T, Luo Y. Synthesis and evaluation of amide side-chain modified Agomelatine analogues as potential antidepressant-like agents. Bioorg Med Chem Lett 2014; 24:1672-6. [PMID: 24631187 DOI: 10.1016/j.bmcl.2014.02.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 02/05/2023]
Abstract
In this work, nineteen analogues of Agomelatine were readily synthesized through structural modification of the acetamide side-chain starting from the key common intermediate 2-(7-methoxynaphthalen-1-yl) ethanamine (3), which was prepared from commercially available compound 2-(7-methoxynaphthalen-1-yl) acetonitrile (2) in two steps. Corticosterone-induced PC12 pheochromocytoma cells phenotypic in vitro model was utilized to evaluate their potential antidepression activities. Imide compound 4a and acylamino carboxylic acid analogue 5b showed good protective effects on traumatic PC12 cells with protection rates of 34.2% and 23.2%, respectively. Further in vivo assessments in C57 mice FST (forced swim test) model demonstrated that compound 4a significantly reduced the immobility time of the tested subjects, indicating antidepressant-like activity. Preliminary toxicity assays conducted on human normal liver L02 cells and embryonic kidney 293 cells suggested a relatively low safety risk for compound 4a compared with the marketed drugs Agomelatine and Fluoxetine. The promising antidepressant-like efficacy of compound 4a, together with the relatively low toxicity to the normal tested cells and high liability of diffusion through the blood-brain barrier (BBB), presents us insights of exploration of me-better drug candidates of Agomelatine.
Collapse
Affiliation(s)
- Ying Chang
- National Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Weiyi Pi
- National Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wei Ang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yuanyuan Liu
- National Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chunlong Li
- Pharmaceutical and Biological Engineering Department, Institute for Chemical Engineering, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiajia Zheng
- Pharmaceutical and Biological Engineering Department, Institute for Chemical Engineering, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Li Xiong
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tao Yang
- National Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Youfu Luo
- National Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
37
|
Chen DL, Zhang P, Lin L, Shuai O, Zhang HM, Liu SH, Wang JY. Protective effect of Bajijiasu against β-amyloid-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol 2013; 33:837-50. [PMID: 23812758 DOI: 10.1007/s10571-013-9950-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/07/2013] [Indexed: 02/06/2023]
Abstract
Beta-amyloid peptide (Aβ), a major protein component of senile plaques associated with Alzheimer's disease (AD), is also directly neurotoxic. Mitigation of Aβ-induced neurotoxicity is thus a possible therapeutic approach to delay or prevent onset and progression of AD. This study evaluated the protective effect of Bajijiasu (β- D-fructofuranosyl (2-2) β- D-fructofuranosyl), a dimeric fructose isolated from the Chinese herb Radix Morinda officinalis, on Aβ-induced neurotoxicity in pheochromocytoma (PC12) cells. Bajijiasu alone had no endogenous neurotoxicity up to 200 μM. Brief pretreatment with 10-40 μM Bajijiasu (2 h) significantly reversed the reduction in cell viability induced by subsequent 24 h exposure to Aβ25-35 (21 μM) as measured by MTT and LDH assays, and reduced Aβ25-35-induced apoptosis as indicated by reduced annexin V-EGFP staining. Bajijiasu also decreased the accumulation of intracellular reactive oxygen species and the lipid peroxidation product malondialdehyde in PC12 cells, upregulated expression of glutathione reductase and superoxide dismutase, prevented depolarization of the mitochondrial membrane potential (Ψm), and blocked Aβ25-35-induced increases in [Ca(2+)] i . Furthermore, Bajijiasu reversed Aβ25-35-induced changes in the expression levels of p21, CDK4, E2F1, Bax, NF-κB p65, and caspase-3. Bajijiasu is neuroprotective against Aβ25-35-induced neurotoxicity in PC12 cells, likely by protecting against oxidative stress and ensuing apoptosis.
Collapse
Affiliation(s)
- Di-Ling Chen
- Southern Institute of Pharmaceutical Research, South China Normal University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
38
|
Li ZY, Guo Z, Liu YM, Liu XM, Chang Q, Liao YH, Pan RL. Neuroprotective effects of total saikosaponins of Bupleurum yinchowense on corticosterone-induced apoptosis in PC12 cells. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:794-803. [PMID: 23694845 DOI: 10.1016/j.jep.2013.04.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/13/2013] [Accepted: 04/30/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Bupleurum yinchowense Shan et Y. Li, a well-known medicinal plant in China, was originally documented in the "Shennong's Herbal", which is the oldest Chinese materia medica monographs. It has the action of soothing liver and relieving constraint for improving symptoms of emotional instability such as depression, anxiety and phobia. The in vivo experiment of our previous study has showed an efficacy of Total Saikosaponins (TSS) from Bupleurum yinchowense in acute stress and chronic unpredictable mild stress models. Nevertheless, there are no studies on the cytoprotection and potential mechanisms of TSS on corticosterone-induced apoptosis in PC12 cells. The present study focuses on cytoprotection against corticosterone-induced neurotoxicity in PC12 cells and its underlying molecule mechanisms of the antidepressant-like effect of TSS. MATERIALS AND METHODS The PC12 cells were treated with 250 μM corticosterone in the absence or presence of different concentrations of TSS for 24 h, then the cell viability, lactate dehydrogenase (LDH) release, Hoechst 33342 and propidium iodide (PI) double staining and the DNA fragmentation of the apoptotic PC12 cells were determined. The mitochondrial permeability transition pore (mPTP), mitochondrial membrane potential (MMP), intracellular Ca(2+) ([Ca(2+)]i) concentration and western blot analysis of caspase-3, glucose-regulated protein 78 (GRP78), growth arrest and DNA damage inducible proteins 153 (GADD-153), X-box DNA-binding protein-1 (XBP-1), Bax, Bcl-2 were investigated. RESULTS Pretreatment of PC12 cells with TSS (3.125, 6.25, 12.5, 25 μg/ml) partly reversed corticosterone-induced neurotoxicity in a dose dependent manner. TSS (25 =g/ml) reversed the increase of dead cells in the Hoechst 33342 stain, the accumulation in LDH leakage and the number of TUNEL positive cells induced by corticosterone to PC12 cells. Moreover, the cytoprotection of TSS was proved to be associated with the homeostasis of intracellular Ca(2+), the stabilization of ER stress via the down-regulation of GRP78, GADD-153, XBP-1, and the restoration of mitochondrial function, which included mPTP, MMP and caspase-3 activity. Furthermore, TSS (25 μg/ml) markedly ameliorated up-regulation of Bax and down-regulation of Bcl-2 in corticosterone-induced PC12 cells. CONCLUSION The result depicted that antidepressant-like effect of TSS in vivo may be associated with the cytoprotection of neuron, and the neuroprotective mechanisms were correlated with inhibiting the ER stress and the mitochondrial apoptotic pathways.
Collapse
Affiliation(s)
- Zong-Yang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, No 151, North Road Malianwa, Haidian District, Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Wu F, Li H, Zhao L, Li X, You J, Jiang Q, Li S, Jin L, Xu Y. Protective effects of aqueous extract from Acanthopanax senticosus against corticosterone-induced neurotoxicity in PC12 cells. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:861-868. [PMID: 23727182 DOI: 10.1016/j.jep.2013.05.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthopanax senticosus, classified into the family of Araliaceae, has been known for thousands of years as a remedy and is used to treat various diseases in traditional Chinese medicine system including hypertension, ischemic heart disease and hepatitis. AIM OF THE STUDY This study aimed to examine the protective effects of aqueous extract from Acanthopanax senticosus (ASE) on corticosterone-induced neurotoxicity and its possible mechanisms, using PC12 cells as a suitable in vitro model of depression. MATERIALS AND METHODS In this paper, PC12 cells were treated with 200 μM of corticosterone in the absence or presence of ASE in varying concentrations for 24 h. Then, cell viability was measured by MTT assay. The release amount of lactate dehydrogenase (LDH) was quantified using LDH assay kit. Apoptosis of PC12 cells was measured by Annexin V-FITC and PI labeling. The intracellular Ca(2+) content was tested by fluorescent labeling. The mRNA level of brain-derived neurotrophic factor (BDNF) was examined by real-time RT-PCR, and the expression of cAMP response element binding protein (CREB) was determined by western blotting. RESULTS The results showed that treatment with 200 μM of corticosterone could induce cytotoxicity in PC12 cells. However, different concentrations of ASE (50, 100, 200, and 400 μg/mL) significantly increased the cell viability, decreased the LDH release, suppressed the apoptosis of PC12 cells, attenuated the intracellular Ca(2+) overloading, up-regulated the BDNF mRNA level and CREB protein expression compared with the corresponding corticosterone-treated group. CONCLUSION The present results suggest that ASE exerts a neuroprotective effect on corticosterone-induced neurotoxicity in PC12 cells, which may be one of the acting mechanisms that accounts for the in vivo antidepressant activity of ASE.
Collapse
Affiliation(s)
- Feifei Wu
- Department of Biology and Chemistry Engineering, Shaoyang University, Shaoyang 422000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
The role of Akt/FoxO3a in the protective effect of venlafaxine against corticosterone-induced cell death in PC12 cells. Psychopharmacology (Berl) 2013; 228:129-41. [PMID: 23494228 DOI: 10.1007/s00213-013-3017-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 02/01/2013] [Indexed: 01/04/2023]
Abstract
RATIONALE Antidepressants could exert neuroprotective effects against various insults and the antidepressant-like effect may result from its neuroprotective effects. The phosphatidylinositol-3-kinase/protein kinase B/Forkhead box O3 (PI3K/Akt/FoxO3a) pathway is a key signaling pathway in mediating cell survival. However, no information is available regarding the interaction of FoxO3a and antidepressants. OBJECTIVES PC12 cells treated with corticosterone were used as a model to study the protective effect of venlafaxine and underlying mechanisms. METHODS Methyl thiazolyl tetrazolium (MTT) assay, Hoechst staining, and the observation of FoxO3a subcellular location were used to study the protective effect of venlafaxine against cell damage caused by corticosterone. Pretreatments with various pathway inhibitors were used to investigate the possible pathways involved in the protection of venlafaxine. The phosphorylation of Akt and FoxO3a was analyzed by Western blot. RESULTS Corticosterone decreased the phosphorylation of Akt and FoxO3a and led to the nuclear localization of FoxO3a and the apoptosis of PC12 cells. Venlafaxine concentration-dependently protected PC12 cells against corticosterone. The protective effect of venlafaxine was reversed by LY294002 and wortmannin, two PI3K inhibitors, and Akt inhibitor VIII, whereas mitogen-activated protein kinase kinase (MAPK kinase) inhibitor PD98059 and the p38 MAPK inhibitor PD160316 had no effect. Western blot analyses showed that venlafaxine induced the phosphorylation of Akt and FoxO3a by the PI3K/Akt pathway and reversed the reduction of the phosphorylated Akt and FoxO3a, and the nuclear translocation of Foxo3a induced by corticosterone. CONCLUSIONS Venlafaxine protects PC12 cells against corticosterone-induced cell death by modulating the activity of the PI3K/Akt/FoxO3a pathway.
Collapse
|
41
|
Guo WZ, Miao YL, An LN, Wang XY, Pan NL, Ma YQ, Chen HX, Zhao N, Zhang H, Li YF, Mi WD. Midazolam provides cytoprotective effect during corticosterone-induced damages in rat astrocytes by stimulating steroidogenesis. Neurosci Lett 2013; 547:53-8. [DOI: 10.1016/j.neulet.2013.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
|
42
|
Woerdenbag HJ, Nguyen TM, Vu DV, Tran H, Nguyen DT, Tran TV, De Smet PAGM, Brouwers JRBJ. Vietnamese traditional medicine from a pharmacist's perspective. Expert Rev Clin Pharmacol 2013; 5:459-77. [PMID: 22943125 DOI: 10.1586/ecp.12.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Traditional medicine plays an important role in the healthcare system of Vietnam. Vietnamese traditional medicine (VTM) is underpinned by the oriental philosophy and theory of healing. VTM is largely influenced by traditional Chinese medicine, but differs to a certain extent. VTM is largely not evidence-based from a clinical perspective but subclinical research data from the past decades support the traditional use of many herbal VTM drugs. For safe use, knowledge of the occurrence of adverse reactions and herb-drug interactions is necessary. The Vietnamese government supports further development of VTM in a scientific way and integration of VTM with Western medicine. This article first gives an overview of the general aspects of VTM (historical perspective, regulatory aspects, comparison with traditional Chinese medicine, philosophical background, the Vietnamese market situation, quality assurance and formulations), and subsequently focuses on its safe and effective use in Vietnamese clinical pharmacy and medical practice.
Collapse
Affiliation(s)
- Herman J Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zheng M, Liu C, Pan F, Shi D, Zhang Y. Antidepressant-like effect of hyperoside isolated from Apocynum venetum leaves: possible cellular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:145-149. [PMID: 21802268 DOI: 10.1016/j.phymed.2011.06.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 05/05/2011] [Accepted: 06/25/2011] [Indexed: 05/31/2023]
Abstract
In the present work, we studied the possible cellular mechanisms of hyperoside isolated from Apocynum venetum leaves in corticosterone-induced neurotoxicity, using PC12 cells as a suitable in vitro model of depression. Cell viability was quantitated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The release amount of lactic dehydrogenase (LDH) and intracellular Ca(2+) concentration were measured using kit and transcript abundances of brain-derived neurotrophic factor (BDNF) and cAMP response element binding protein (CREB) were determined by real-time RT-PCR. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactic dehydrogenase (LDH) assays showed that 2.5, 5 and 10 μg/ml hyperoside or 10 μM fluoxetine (FLU) protected PC12 cells from the lesion induced by a 48 h treatment with 10 μM corticosterone. Fura-2/AM (acetoxymethyl ester) assays showed that 2.5, 5 and 10 μg/ml hyperoside or 10 μM FLU attenuated the intracellular Ca(2+) overloading in PC12 cells induced by corticosterone. The transcript abundance of BDNF and CREB in PC12 cells was elevated upon hyperoside treatment. These results suggest that the possible cellular mechanisms of hyperoside antidepressant-like effect is a cytoprotective action related to elevation the expression of BDNF and CREB through the signal pathway AC-cAMP-CREB.
Collapse
Affiliation(s)
- Meizhu Zheng
- The Central Laboratory, Changchun Normal University, Changchun, Jilin, China
| | | | | | | | | |
Collapse
|
44
|
Mao QQ, Zhong XM, Qiu FM, Li ZY, Huang Z. Protective effects of paeoniflorin against corticosterone-induced neurotoxicity in PC12 cells. Phytother Res 2011; 26:969-73. [PMID: 22131171 DOI: 10.1002/ptr.3673] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/29/2011] [Accepted: 09/01/2011] [Indexed: 11/09/2022]
Abstract
Neuroprotection has been proposed as one of the acting mechanisms of antidepressants. Paeoniflorin, a monoterpene glycoside, has been reported to display antidepressant-like effects in animal models of behavioural despair. The present study aimed to examine the protective effect of paeoniflorin treatment on corticosterone-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. Paeoniflorin was shown to elevate cell viability, decrease levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) in corticosterone-treated PC12 cells. Paeoniflorin also reversed the reduced nerve growth factor (NGF) mRNA level caused by corticosterone in PC12 cells. The results suggest that paeoniflorin exerts a neuroprotective effect on corticosterone-induced neurotoxicity in PC12 cells, at least in part, via the inhibition of oxidative stress and the up-regulation of NGF expression. This neuroprotective effect may be one of the action pathways that accounts for the in vivo antidepressant activity of paeoniflorin.
Collapse
Affiliation(s)
- Qing-Qiu Mao
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, 310053 Zhejiang, China
| | | | | | | | | |
Collapse
|
45
|
Zheng M, Liu C, Pan F, Shi D, Ma F, Zhang Y, Zhang Y. Protective effects of flavonoid extract from Apocynum venetum leaves against corticosterone-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol 2011; 31:421-8. [PMID: 21170580 DOI: 10.1007/s10571-010-9635-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/19/2010] [Indexed: 01/23/2023]
Abstract
Depression is a major psychiatric disorder affecting nearly 21% of the world population and imposes a substantial health burden on society. Although significant progress has been made in depression research, the common molecular mechanism of antidepressants is still far from clearly understood. The neuroprotective effect of antidepressants has been proposed as a possible mechanism. Although Apocynum venetum (AV) L. (Apocynaceae) was previously shown to produce an antidepressant-like effect in the tail suspension test, the mechanisms underlying such antidepressant-like effect are yet to be understood. In this work, we studied the neuroprotective effect of AV leaf flavonoid extract in corticosterone-induced neurotoxicity, using PC12 cells as a suitable in vitro model of depression. Cell viability was quantitated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The release amount of lactic dehydrogenase (LDH) and intracellular Ca(2+) concentration were measured using kit, cell period change was tested by flow cytometry, and transcript abundances of brain-derived neurotrophic factor (BDNF) and microtubule-associated protein 4 (MAP4) were determined by real-time RT-PCR. The results showed that AV extract (25, 50, and 100 μg/ml) increased the A490 nm values, but decreased LDH release and Ca(2+) concentration, suppressed the apoptosis of PC12 cells and up-regulated BDNF and MAP4 transcript abundances compared with the corresponding corticosterone-treated group. These results suggest that the AV extract could generate a neuroprotective effect on corticosterone-induced neurotoxicity in PC12 cells, pointing to a possible action pathway by decreasing the Ca(2+) concentration and up-regulating BDNF and MAP4 genes.
Collapse
Affiliation(s)
- Meizhu Zheng
- College of Animal Science and Veterinary, Jilin University, Changchun, Jilin, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Mao QQ, Xian YF, Ip SP, Tsai SH, Che CT. Protective effects of peony glycosides against corticosterone-induced cell death in PC12 cells through antioxidant action. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:1121-1125. [PMID: 21111797 DOI: 10.1016/j.jep.2010.11.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/18/2010] [Accepted: 11/18/2010] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY Previous studies in our laboratory have shown that total glycosides of peony (TGP) produced antidepressant-like action in various mouse models of behavioral despair. However, the molecular mechanism by which TGP exerts antidepressant-like effect is not fully understood. This study examined the protective effects of TGP against corticosterone-induced neurotoxicity in rat pheochromocytoma (PC12) cells and ts possible mechanisms. MATERIALS AND METHODS The direct antioxidant effect of TGP was investigated by using a 2,2'-azinobis-(3-ethylbenzothiazoline- 6-sulphonic acid) (ABTS) radical cation-scavenging assay in a cell-free system. PC12 cells were treated with 200 μM of corticosterone in the absence or presence of TGP in varying concentrations for 48 h. Cell viability, lactate dehydrogenase (LDH) activity, intracellular reactive oxygen species (ROS) level, malondialdehyde (MDA) content, glutathione (GSH) content, superoxide dismutase (SOD) activity, and catalase (CAT) activity were then determined. RESULTS TGP displayed antioxidant properties in the cell-free system, and the IC50 value in the ABTS radical cation-scavenging assay was 9.9 mg/L. TGP treatment at increasing doses (1-10 mg/L) protected against corticosterone-induced cytotoxicity in PC12 cells in a dose-dependent manner. The cytoprotection afforded by TGP treatment was associated with decreases in the intracellular ROS and MDA levels, and increases in the GSH level, SOD activity, and CAT activity in corticosterone-treated PC12 cells. CONCLUSION The results suggest that TGP has a neuroprotective effect on corticosterone-induced neurotoxicity in PC12 cells, which may be related to its antioxidant action.
Collapse
Affiliation(s)
- Qing-Qiu Mao
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | | | | | | | |
Collapse
|
47
|
Liu P, Hu Y, Guo DH, Wang DX, Tu HH, Ma L, Xie TT, Kong LY. Potential antidepressant properties of Radix Polygalae (Yuan Zhi). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:794-799. [PMID: 20541923 DOI: 10.1016/j.phymed.2010.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 12/17/2009] [Accepted: 01/18/2010] [Indexed: 05/29/2023]
Abstract
Radix Polygalae ("Yuan Zhi", the roots of Polygala tenuifolia Willd., YZ) is an important herb used in traditional Chinese medicine to mediate depression. The present study was designed to verify the antidepressant effects of the standardized YZ ethanol extract (YZE) and its four fractions YZ-30, YZ-50, YZ-70 and YZ-90 on the tail suspension (TST) and forced swimming test (FST). Furthermore, the standardization of the fractions obtained from the separation procedures was carried out by high-performance liquid chromatography (HPLC)-fingerprint. The YZ-50 fraction (Oligosaccharide esters--enriched, oral (200 mg/kg) showed a significant anti-immobility like effects. The data of YZ-50 on the corticosterone-induced injure of SH-SY5Y human neuroblastoma cell indicated that YZ-50 may have biological effects on neuroprotection. Proliferation of cell lines was assessed by dimethylthiazoldiphenyltetrazoliumbromide (MTT) and 5-bromo-2'-deoxyuridine (BrdU) incorporation assays. It was found that YZ-50 and its two bioactive compounds, 3,6'-di-o-sinapoyl-sucrose (DISS) and tenuifoliside A(TEA) showed protection activities in SY5Y cells from the lesion. By using bioassay-screening methods, our results indicate that the presence of oligosaccharide esters such as DISS and TEA in this herb may be responsible for the cytoprotective activity effects.
Collapse
Affiliation(s)
- P Liu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210038, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang Z, Yi Y, Gao C, Hou D, Hu J, Zhao M. Isolation of inulin-type oligosaccharides from Chinese traditional medicine: Morinda officinalis How and their characterization using ESI-MS/MS. J Sep Sci 2010; 33:120-5. [PMID: 20091714 DOI: 10.1002/jssc.200900396] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inulin-type oligosaccharides with different DP were prepared by size-exclusion chromatography and purity of each oligosaccharide was determined by HPLC equipped with cyclodextrin-bond column. The purities of obtained inulin-type oligosaccharides with different DP were more than 98% by one-step process. The DP and molecular weight were obtained through ESI-MS in negative mode. The characterization of the inulin-type oligosaccharides with different DP was studied by MS/MS spectra obtained by collision-induced dissociation of molecular ions ([M-H](-)). When the DP was lower, the fragment ions were formed through cross-ring cleavages of two bonds within the sugar ring and glycosidic cleavages. However, with the increase of DP, the ions resulting from glycosidic cleavages between two sugar residues were predominant.
Collapse
Affiliation(s)
- Zhenmin Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | | | | | | | | | | |
Collapse
|
49
|
Huang Z, Mao QQ, Zhong XM, Feng CR, Pan AJ, Li ZY. Herbal formula SYJN protect PC12 cells from neurotoxicity induced by corticosterone. JOURNAL OF ETHNOPHARMACOLOGY 2009; 125:456-460. [PMID: 19635548 DOI: 10.1016/j.jep.2009.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 07/05/2009] [Accepted: 07/19/2009] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY SYJN is a Chinese herbal formula, containing four herbs: Bupleurum chinense DC., Curcuma aromatica Salisb., Perilla frutescens (Linn.) Britt. and Acorus tatarinowii Schott. Previous studies on the formula in our laboratory revealed an antidepressant-like effect on animal models of behavioral despair. However,the mechanisms underlying such antidepressant-like effect are yet to be understood. The aim of this work was to verify the previously established antidepressant-like effects on cell level using corticosterone-induced neurotoxicity in rat pheochromocytoma (PC12) cells to see if SYJN possesses any neuroprotective properties. MATERIALS AND METHODS PC12 cells were treated with 200 microM corticosterone in the absence or the presence of various concentrations of SYJN for 48 h. Then, cell viability, apoptosis, intracellular Ca(2+) ([Ca(2+)]i) concentration and caspase-3 activity were determined. RESULTS Following the exposure of PC12 cells to 200 microM corticosterone for 48 h, there were reductions in cell survival rate but increases in lactate dehydrogenase (LDH) release. In parallel, corticosterone caused significant elevations in DNA fragmentation, [Ca(2+)]i concentration and caspase-3 activity. However, when the PC12 cells were incubated with SYJN at different concentrations (10, 50 and 100mg/L) in the presence of 200 microM corticosterone for 48 h, the above effects were evidently alleviated in a dose-dependent manner. CONCLUSION SYJN could generate a neuroprotective effect on corticosterone-induced neurotoxicity in PC12 cells, suggesting a possible action pathway of SYJN in vivo by decreasing the [Ca(2+)]i concentration and caspase-3 activity.
Collapse
Affiliation(s)
- Zhen Huang
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou 310053, Zhejiang, China.
| | | | | | | | | | | |
Collapse
|
50
|
Hu YM, Sze SCW, Zhao SX, Tong Y. Use of LC Fingerprinting to Evaluate the Quality of Erxian Decoction. Chromatographia 2009. [DOI: 10.1365/s10337-009-1218-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|