1
|
Rada CC, Mejia-Pena H, Grimsey NJ, Cordova IC, Olson J, Wozniak J, Gonzalez DJ, Nizet V, Trejo J. Heat shock protein 27 activity is linked to endothelial barrier recovery after proinflammatory GPCR-induced disruption. Sci Signal 2021; 14:eabc1044. [PMID: 34516752 PMCID: PMC8538426 DOI: 10.1126/scisignal.abc1044] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vascular inflammation causes endothelial barrier disruption and tissue edema. Several inflammatory mediators act through G protein–coupled receptors (GPCRs), including protease-activated receptor-1 (PAR1), to elicit inflammatory responses. The activation of PAR1 by its ligand thrombin stimulates proinflammatory, p38 mitogen-activated protein kinase (MAPK) signaling that promotes endothelial barrier disruption. Through mass spectrometry phosphoproteomics, we identified heat shock protein 27 (HSP27), which exists as a large oligomer that binds to actin, as a promising candidate for the p38-mediated regulation of barrier integrity. Depletion of HSP27 by siRNA enhanced endothelial cell barrier permeability and slowed recovery after thrombin stimulation. We further showed that two effector kinases of p38 MAPK, MAPKAPK2 (MK2) and MAPKAPK3 (MK3), differentially phosphorylated HSP27 at Ser15, Ser78, and Ser82. Whereas inhibition of thrombin-stimulated p38 activation blocked HSP27 phosphorylation at all three sites, inhibition of MK2 reduced the phosphorylation of only Ser15 and Ser78. Inhibition of both MK2 and MK3 was necessary to attenuate Ser82 phosphorylation. Thrombin-stimulated p38-MK2-MK3 signaling induced HSP27 oligomer disassembly. However, a phosphorylation-deficient mutant of HSP27 exhibited defective oligomer disassembly and altered the dynamics of barrier recovery after thrombin stimulation. Moreover, blocking HSP27 oligomer reassembly with the small-molecule inhibitor J2 enhanced endothelial barrier permeability in vitro and vascular leakage in vivo in response to PAR1 activation. These studies reveal the distinct regulation of HSP27 phosphorylation and function induced by the GPCR-stimulated p38-MK2-MK3 signaling axis that controls the dynamics of endothelial barrier recovery in vitro and vascular leakage in vivo.
Collapse
Affiliation(s)
- Cara C. Rada
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hilda Mejia-Pena
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neil J. Grimsey
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30682, USA
| | - Isabel Canto Cordova
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Olson
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jacob Wozniak
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - JoAnn Trejo
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Tokuda H, Kuroyanagi G, Tsujimoto M, Matsushima-Nishiwaki R, Akamatsu S, Enomoto Y, Iida H, Otsuka T, Ogura S, Iwama T, Kojima K, Kozawa O. Thrombin Receptor-Activating Protein (TRAP)-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1) from Platelets in DM Patients. Int J Mol Sci 2016; 17:ijms17050737. [PMID: 27187380 PMCID: PMC4881559 DOI: 10.3390/ijms17050737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 11/21/2022] Open
Abstract
It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9–25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25–50 µm), large aggregates (50–70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients.
Collapse
Affiliation(s)
- Haruhiko Tokuda
- Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi 474-8511, Japan.
- Department of Pharmacology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Gen Kuroyanagi
- Department of Pharmacology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Nagoya 467-8601, Japan.
| | - Masanori Tsujimoto
- Department of Pharmacology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
- Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Rie Matsushima-Nishiwaki
- Department of Pharmacology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Shigeru Akamatsu
- Department of Anesthesiology and Critical Care Medicine, Chuno Kosei Hospital, 5-1 Wakakusa, Seki, Gifu 501-6062, Japan.
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Nagoya 467-8601, Japan.
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Kumi Kojima
- Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi 474-8511, Japan.
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| |
Collapse
|
3
|
Li R, Li J, Sang D, Lan Q. Phosphorylation of AKT induced by phosphorylated Hsp27 confers the apoptosis-resistance in t-AUCB-treated glioblastoma cells in vitro. J Neurooncol 2014; 121:83-9. [PMID: 25200832 DOI: 10.1007/s11060-014-1610-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/30/2014] [Indexed: 11/26/2022]
Abstract
The aim of this study is to determine whether phosphorylation of AKT could be effected by t-AUCB-induced p-Hsp27 and whether p-AKT inhibition sensitizes glioblastoma cells to t-AUCB, and to evaluate the effects of simultaneous inhibition of p-Hsp27 and p-AKT on t-AUCB treated glioblastoma cells. Cell growth was detected using CCK-8 assay; Caspase-3 activity assay kits and flow cytometry were used in apoptosis analysis; Western blot analysis was used to detect p-Hsp27 and p-AKT levels; RNA interference using the siRNA oligos of Hsp27 was performed to knockdown gene expression of Hsp27. All data were analyzed by the Student-Newman-Keul's test. We demonstrated that t-AUCB treatment induces AKT phosphorylation by activating Hsp27 in U251 and LN443 cell lines. Inhibition of AKT phosphorylation by AKT inhibitor IV sensitizes glioblastoma cells to t-AUCB, strengthens t-AUCB suppressing cell growth and inducing cell apoptosis. We also found inhibiting both p-Hsp27 and p-AKT synergistically strengthen t-AUCB suppressing cell growth. Thus, p-AKT induced by p-Hsp27 confers the apoptosis-resistance in t-AUCB-treated glioblastoma cells. Targeting p-Hsp27 and/or p-AKT may be a potential effective strategy for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Rujun Li
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | | | | | | |
Collapse
|
4
|
Cuíñas A, Elíes J, Orallo F, Campos-Toimil M. Cyclic AMP relaxation of rat aortic smooth muscle is mediated in part by decrease of depletion of intracellular Ca(2+) stores and inhibition of capacitative calcium entry. Vascul Pharmacol 2012; 58:98-104. [PMID: 22960580 DOI: 10.1016/j.vph.2012.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/09/2012] [Accepted: 08/26/2012] [Indexed: 10/27/2022]
Abstract
Despite a large number of studies, the mechanism by which 3',5'-cyclic monophosphate (cAMP) induces vasorelaxation is not fully understood. The comparison between results obtained in different vessels or species has often been the source of conflicting reports. In order to shed more light onto this mechanism, we studied the effects of forskolin in phenylephrine-pre-contracted endothelium-denuded rat aorta and measured cAMP levels in rat aortic myocytes by enzyme-immunoassay. Nanomolar forskolin relaxed phenylephrine-induced contractions. This effect was mimicked by dibutyryl-cAMP and was potentiated by rolipram or a p38-mitogen-activated protein kinase (p38-MAPK) inhibitor (SB-203580). Nifedipine and verapamil partially relaxed phenylephrine-induced contractions, while further application of cAMP-elevating agents fully relaxed these contractions. In Ca(2+)-free extracellular solution, forskolin reduced phenylephrine-induced transient contractions and reduced the Ca(2+)-induced contraction after depletion of intracellular stores. Nanomolar concentrations of forskolin increased basal cAMP levels only in the presence of rolipram or phenylephrine, which did not modify intracellular levels of cAMP by themselves. In conclusion, relaxation by cAMP is mediated in part by decrease of depletion of intracellular Ca(2+) stores and inhibition of capacitative calcium entry. This study provides the first evidence that inhibition of PDE4 or p38-MAPK potentiates the vasodilator effect of cAMP-elevating agents in rat aortic myocytes.
Collapse
Affiliation(s)
- Andrea Cuíñas
- Departamento de Farmacoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
5
|
Kostenko S, Moens U. Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci 2009; 66:3289-307. [PMID: 19593530 PMCID: PMC11115724 DOI: 10.1007/s00018-009-0086-3] [Citation(s) in RCA: 271] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 10/20/2022]
Abstract
The small heat shock protein Hsp27 or its murine homologue Hsp25 acts as an ATP-independent chaperone in protein folding, but is also implicated in architecture of the cytoskeleton, cell migration, metabolism, cell survival, growth/differentiation, mRNA stabilization, and tumor progression. A variety of stimuli induce phosphorylation of serine residues 15, 78, and 82 in Hsp27 and serines 15 and 86 in Hsp25. This post-translational modification affects some of the cellular functions of Hsp25/27. As a consequence of the functional importance of Hsp25/27 phosphorylation, aberrant Hsp27 phosphorylation has been linked to several clinical conditions. This review focuses on the different Hsp25/27 kinases and phosphatases that regulate the phosphorylation pattern of Hsp25/27, and discusses the recent findings of the biological implications of these phosphorylation events in physiological and pathological processes. Novel therapeutic strategies aimed at restoring anomalous Hsp27 phosphorylation in human diseases will be presented.
Collapse
Affiliation(s)
- Sergiy Kostenko
- Department of Microbiology and Virology, Faculty of Medicine, University of Tromsø, 9037 Tromsø, Norway
| | - Ugo Moens
- Department of Microbiology and Virology, Faculty of Medicine, University of Tromsø, 9037 Tromsø, Norway
| |
Collapse
|
6
|
Chen HF, Xie LD, Xu CS. The signal transduction pathways of heat shock protein 27 phosphorylation in vascular smooth muscle cells. Mol Cell Biochem 2009; 333:49-56. [DOI: 10.1007/s11010-009-0203-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 07/06/2009] [Indexed: 01/11/2023]
|
7
|
Fu P, Birukova AA, Xing J, Sammani S, Murley JS, Garcia JGN, Grdina DJ, Birukov KG. Amifostine reduces lung vascular permeability via suppression of inflammatory signalling. Eur Respir J 2008; 33:612-24. [PMID: 19010997 DOI: 10.1183/09031936.00014808] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite an encouraging outcome of antioxidant therapy in animal models of acute lung injury, effective antioxidant agents for clinical application remain to be developed. The present study investigated the effect of pre-treatment with amifostine, a thiol antioxidant compound, on lung endothelial barrier dysfunction induced by Gram-negative bacteria wall-lipopolysaccharide (LPS). Endothelial permeability was monitored by changes in transendothelial electrical resistance. Cytoskeletal remodelling and reactive oxygen species (ROS) production was examined by immunofluorescence. Cell signalling was assessed by Western blot. Measurements of Evans blue extravasation, cell count and protein content in bronchoalveolar lavage fluid were used as in vivo parameters of lung vascular permeability. Hydrogen peroxide, LPS and interleukin-6 caused cytoskeletal reorganisation and increased permeability in the pulmonary endothelial cells, reflecting endothelial barrier dysfunction. These disruptive effects were inhibited by pre-treatment with amifostine and linked to the amifostine-mediated abrogation of ROS production and redox-sensitive signalling cascades, including p38, extracellular signal regulated kinase 1/2, mitogen-activated protein kinases and the nuclear factor-kappaB pathway. In vivo, concurrent amifostine administration inhibited LPS-induced oxidative stress and p38 mitogen-activated protein kinase activation, which was associated with reduced vascular leak and neutrophil recruitment to the lungs. The present study demonstrates, for the first time, protective effects of amifostine against lipopolysaccharide-induced lung vascular leak in vitro and in animal models of lipopolysaccharide-induced acute lung injury.
Collapse
Affiliation(s)
- P Fu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, 929 E. 57th Street, GCIS Bldg, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Minamitani C, Takai S, Matsushima-Nishiwaki R, Hanai Y, Otuka T, Kozawa O, Tokuda H. Raloxifene-induced acceleration of platelet aggregation. Intern Med 2008; 47:1523-8. [PMID: 18758128 DOI: 10.2169/internalmedicine.47.0732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 59-year-old postmenopausal woman diagnosed to have primary osteoporosis began to take 60 mg daily of oral raloxifene. The platelet aggregation induced by 1 microM adenosine diphosphate (ADP) and the alpha2-antiplasmin activity were accelerated significantly after 8 weeks from the beginning of raloxifene-treatment, and gradually deteriorated up to 24 weeks. ADP markedly caused the phosphorylation of Akt in the platelets obtained at 24 weeks. Although there were no subjective complaints at 24 weeks, the medication was stopped with her consent to avoid any adverse effects due to thrombus formation. The platelet hyper-aggregability and Akt phosphorylation induced by ADP disappeared at 4 weeks after the cessation of medication. These results strongly suggest that raloxifene caused the acceleration of platelet aggregation and subclinical thrombus formation through the Akt signal pathway in this case.
Collapse
Affiliation(s)
- Chiho Minamitani
- Department of Clinical Laboratory, National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology
| | | | | | | | | | | | | |
Collapse
|
10
|
Heat shock protein 27 regulates oxidative stress-induced apoptosis in cardiomyocytes: mechanisms via reactive oxygen species generation and Akt activation. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200712020-00023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
11
|
Wu R, Kausar H, Johnson P, Montoya-Durango DE, Merchant M, Rane MJ. Hsp27 regulates Akt activation and polymorphonuclear leukocyte apoptosis by scaffolding MK2 to Akt signal complex. J Biol Chem 2007; 282:21598-608. [PMID: 17510053 DOI: 10.1074/jbc.m611316200] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that Akt exists in a signal complex with p38 MAPK, MAPK-activated protein kinase-2 (MK2), and heat shock protein 27 (Hsp27) and MK2 phosphorylates Akt on Ser-473. Additionally, dissociation of Hsp27 from Akt, prior to Akt activation, induced polymorphonuclear leukocyte (PMN) apoptosis. However, the role of Hsp27 in regulating Akt activation was not examined. This study tested the hypothesis that Hsp27 regulates Akt activation and promotes cell survival by scaffolding MK2 to the Akt signal complex. Here we show that loss of Akt/Hsp27 interaction by anti-Hsp27 antibody treatment resulted in loss of Akt/MK2 interaction, loss of Akt-Ser-473 phosphorylation, and induced PMN apoptosis. Transfection of myristoylated Akt (AktCA) in HK-11 cells induced Akt-Ser-473 phosphorylation, activation, and Hsp27-Ser-82 phosphorylation. Cotransfection of AktCA with Hsp27 short interfering RNA, but not scrambled short interfering RNA, silenced Hsp27 expression, without altering Akt expression in HK-11 cells. Silencing Hsp27 expression inhibited Akt/MK2 interaction, inhibited Akt phosphorylation and Akt activation, and induced HK-11 cell death. Deletion mutagenesis studies identified acidic linker region (amino acids 117-128) on Akt as an Hsp27 binding region. Deletion of amino acids 117-128 on Akt resulted in loss of its interaction with Hsp27 and MK2 but not with Hsp90 as demonstrated by immunoprecipitation and glutathione S-transferase pulldown studies. Co-transfection studies demonstrated that constitutively active MK2 (MK2EE) phosphorylated Aktwt (wild type) on Ser-473 but failed to phosphorylate Akt(Delta117-128) mutant in transfixed cells. These studies collectively define a novel role of Hsp27 in regulating Akt activation and cellular apoptosis by mediating interaction between Akt and its upstream activator MK2.
Collapse
Affiliation(s)
- Rui Wu
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
12
|
Ferns G, Shams S, Shafi S. Heat shock protein 27: its potential role in vascular disease. Int J Exp Pathol 2006; 87:253-74. [PMID: 16875491 PMCID: PMC2517372 DOI: 10.1111/j.1365-2613.2006.00484.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 03/23/2006] [Indexed: 11/30/2022] Open
Abstract
Heat shock proteins are molecular chaperones that have an ability to protect proteins from damage induced by environmental factors such as free radicals, heat, ischaemia and toxins, allowing denatured proteins to adopt their native configuration. Heat shock protein-27 (Hsp27) is a member of the small Hsp (sHsp) family of proteins, and has a molecular weight of approximately 27 KDa. In addition to its role as a chaperone, it has also been reported to have many additional functions. These include effects on the apoptotic pathway, cell movement and embryogenesis. In this review, we have focused on its possible role in vascular disease.
Collapse
Affiliation(s)
- Gordon Ferns
- Centre for Clinical Science and Measurement, School of Biomedical Science, University of Surrey, Guildford Surrey, UK.
| | | | | |
Collapse
|