1
|
Varga BT, Gáspár A, Ernyey AJ, Hutka B, Tajti BT, Zádori ZS, Gyertyán I. Introduction of a pharmacological neurovascular uncoupling model in rats based on results of mice. Physiol Int 2022. [PMID: 36057105 DOI: 10.1556/2060.2022.00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 02/18/2024]
Abstract
Our aim was to establish a pharmacologically induced neurovascular uncoupling (NVU) method in rats as a model of human cognitive decline. Pharmacologically induced NVU with subsequent neurological and cognitive defects was described in mice, but not in rats so far. We used 32 male Hannover Wistar rats. NVU was induced by intraperitoneal administration of a pharmacological "cocktail" consisting of N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MSPPOH, a specific inhibitor of epoxyeicosatrienoic acid-producing epoxidases, 5 mg kg-1), L-NG-nitroarginine methyl ester (L-NAME, a nitric oxide synthase inhibitor, 10 mg kg-1) and indomethacin (a nonselective inhibitor of cyclooxygenases, 1 mg kg-1) and injected twice daily for 8 consecutive days. Cognitive performance was tested in the Morris water-maze and fear-conditioning assays. We also monitored blood pressure. In a terminal operation a laser Doppler probe was used to detect changes in blood-flow (CBF) in the barrel cortex while the contralateral whisker pad was stimulated. Brain and small intestine tissue samples were collected post mortem and examined for prostaglandin E2 (PGE2) level. Animals treated with the "cocktail" showed no impairment in their performance in any of the cognitive tasks. They had higher blood pressure and showed cca. 50% decrease in CBF. Intestinal bleeding and ulcers were found in some animals with significantly decreased levels of PGE2 in the brain and small intestine. Although we could evoke NVU by the applied mixture of pharmacons, it also induced adverse side effects such as hypertension and intestinal malformations while the treatment did not cause cognitive impairment. Thus, further refinements are still required for the development of an applicable model.
Collapse
Affiliation(s)
- Bence Tamás Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Attila Gáspár
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Aliz Judit Ernyey
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Barbara Hutka
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Brigitta Tekla Tajti
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Sándor Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - István Gyertyán
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Gomaa AMS, Abd El-Mottaleb NA, Aamer HA. Antioxidant and anti-inflammatory activities of alpha lipoic acid protect against indomethacin-induced gastric ulcer in rats. Biomed Pharmacother 2018; 101:188-194. [PMID: 29486337 DOI: 10.1016/j.biopha.2018.02.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Little is known about the role of tumor necrosis factor-alpha (TNF-α), plasminogen activator inhibitor-1 (PAI-1), and inducible nitric oxide synthase (iNOS) in the gastric ulcer and the effect of alpha lipoic acid (ALA) in their modulation. Hence, this experimental study was designed to assess the possible protective effect of ALA against indomethacin (IND)-induced gastric ulcer in rats, as well as to determine the possible underlying mechanisms with a special focus on TNF-α, PAI-1, and iNOS. Adult male rats (n = 28) were divided into four equal groups: the control group received distilled water, the vehicle group received 0.5% carboxymethylcellulose, the ulcer group received a single oral dose of IND (50 mg/kg) and the ALA-treated group received ALA (100 mg/kg) orally for 3 days before ulcer induction. Four hours after IND administration, all rats were sacrificed. The ulcer index, and gastric tissue homogenate contents of total antioxidant capacity (TAC), malondialdehyde (MDA), TNF-α, and PAI-1 were evaluated. Immunohistochemical evaluation of iNOS protein expression and histopathological examination of gastric tissue were investigated. The results revealed that ALA pretreatment significantly decreased the ulcer index, the gastric levels of MDA, TNF-α, PAI-1, and iNOS protein expression while increased the gastric levels of TAC as well as improved the histopathological appearance of gastric tissues. In conclusion, ALA ameliorated the IND-induced gastric ulceration. This could be attributed to its antioxidant and anti-inflammatory activities via suppression of TNF-α-induced elevation of both PAI-1 level and iNOS expression in the gastric tissue.
Collapse
Affiliation(s)
- Asmaa M S Gomaa
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | | | - Hazem A Aamer
- Department of Animal, Poultry and Environment Hygiene, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
3
|
Kawauchi S, Nakamura T, Yasui H, Nishikawa C, Miki I, Inoue J, Horibe S, Hamaguchi T, Tanahashi T, Mizuno S. Intestinal and hepatic expression of cytochrome P450s and mdr1a in rats with indomethacin-induced small intestinal ulcers. Int J Med Sci 2014; 11:1208-17. [PMID: 25317066 PMCID: PMC4196121 DOI: 10.7150/ijms.9866] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/31/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs induce the serious side effect of small intestinal ulcerations (SIUs), but little information is available regarding the consequences to drug metabolism and absorption. AIM We examined the existence of secondary hepatic inflammation in rats with indomethacin (INM)-induced SIUs and assessed its relationship to the cytochrome P450 (CYP) and P-glycoprotein (mdr1a), the major drug-metabolizing factors in the small intestine and the liver. METHODS Gene expression of the CYP family of enzymes and mdr1a was measured with quantitative real-time polymerase chain reaction (qPCR). Vancomycin (VCM), a poorly absorbed drug, was administered intraduodenally to rats with SIUs. RESULTS INM induced SIUs predominantly in the lower region of the small intestine with high expression of inflammatory markers. Liver dysfunction was also observed, which suggested a secondary inflammatory response in rats with SIUs. In the liver of rats with SIUs, the expression of CYP2C11, CYP2E1, and CYP3A1 was significantly decreased, and loss of CYP3A protein was observed. Although previous studies have shown a direct effect of INM on CYP3A activity, we could not confirm any change in hepatic CY3A4 expression (major isoform of human CYP3A) in vitro. The plasma VCM concentration was increased in rats with SIUs due to partial absorption from the mucosal injury, but not in normal mucosa. CONCLUSIONS INM-induced SIUs had a subtle effect on intestinal CYP expression, but had an apparent action on hepatic CYP, which was influenced, at least in part, by the secondary inflammation. Furthermore, drug absorption was increased in rats with SIUs.
Collapse
Affiliation(s)
- Shoji Kawauchi
- 1. Department of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan; ; 2. Educational Center for Clinical Pharmacy, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Tsutomu Nakamura
- 3. Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji, 670-8524, Japan
| | - Hiroyuki Yasui
- 4. Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Chikako Nishikawa
- 4. Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Ikuya Miki
- 1. Department of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan; ; 5. Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Jun Inoue
- 1. Department of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan; ; 5. Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Sayo Horibe
- 1. Department of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Tsuneo Hamaguchi
- 2. Educational Center for Clinical Pharmacy, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Toshihito Tanahashi
- 1. Department of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan; ; 5. Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shigeto Mizuno
- 1. Department of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| |
Collapse
|
4
|
Perron N, Tremblay E, Ferretti E, Babakissa C, Seidman EG, Levy E, Ménard D, Beaulieu JF. Deleterious effects of indomethacin in the mid-gestation human intestine. Genomics 2012; 101:171-7. [PMID: 23261704 DOI: 10.1016/j.ygeno.2012.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/07/2012] [Accepted: 12/09/2012] [Indexed: 02/08/2023]
Abstract
The use of the anti-inflammatory drug indomethacin (INDO) in preterm infants has been associated with an increased risk of developing enteropathies. In this study, we have investigated the direct impact of INDO on the human mid-gestation intestinal transcriptome using serum-free organ culture. After determining the optimal dose of 1 μM of INDO (90% inhibition of intestinal prostaglandin E2 production and range of circulating levels in treated preterm babies), global gene expression profiles were determined using Illumina bead chip microarrays in both small and large intestines after 48 h of INDO treatment. Using Ingenuity Pathway Analysis software, we identified critical metabolic pathways that were significantly altered by INDO in both intestinal segments including inflammation and also glycolysis, oxidative phosphorylation and free radical scavenging/oxidoreductase activity, which were confirmed by qPCR at the level of individual genes. Taken together, these data revealed that INDO directly exerts multiple detrimental effects on the immature human intestine.
Collapse
Affiliation(s)
- Nancy Perron
- Research Consortium on Child Intestinal Inflammation, Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Dogan E, Erdag TK, Sarioglu S, Ecevit MC, Ikiz AO, Güneri EA. The preventive effect of N-nitro L-arginine methyl ester in experimentally induced myringosclerosis. Int J Pediatr Otorhinolaryngol 2011; 75:1035-9. [PMID: 21669465 DOI: 10.1016/j.ijporl.2011.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the antiinflammatory and antifibrotic effects of N-nitro L-arginine methyl ester (L-name) in experimentally induced myringosclerosis. METHODS Twenty Wistar albino rats were bilaterally myringotomized and divided randomly into four groups, each including five rats. Group I received no treatment, Group II was treated with topical saline solution, Group III received topical L-NAME and Group IV received intraperitoneally administered L-NAME. After 2 weeks, the tympanic membranes were examined and scored by otomicroscopy regarding the extent of the myringosclerosis. Then the tympanic membranes were harvested and evaluated histopathologically by light microscopy. The intensity of inflammation and degree of myringosclerosis were evaluated, the mean thickness of tympanic membranes were also measured. RESULTS The tympanic membranes of Groups I and II showed extensive myringosclerosis in contrast to those of Groups III and IV which had significantly less or no changes (p < 0.05). The inflammation and fibroblastic activity of the lamina propria in the tympanic membranes of Groups III and IV were found to be significantly less pronounced (p < 0.05). The tympanic membranes were found to be significantly thicker in Groups I and II when compared with Groups III and IV (p < 0.05). CONCLUSION Our results showed that both topical and intraperitoneal applications of L-NAME supressed inflammation, reduced fibroblastic proliferation and decreased the formation of myringosclerosis in myringotomized rat tympanic membranes.
Collapse
Affiliation(s)
- Ersoy Dogan
- Dokuz Eylul University School of Medicine, Department of Otorhinolaryngology Head and Neck Surgery, Izmir, Turkey.
| | | | | | | | | | | |
Collapse
|
6
|
Riaño A, Ortiz-Masià D, Velázquez M, Calatayud S, Esplugues JV, Barrachina MD. Nitric oxide induces HIF-1α stabilization and expression of intestinal trefoil factor in the damaged rat jejunum and modulates ulcer healing. J Gastroenterol 2011; 46:565-76. [PMID: 21305324 DOI: 10.1007/s00535-011-0374-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 12/23/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND The induction of intestinal trefoil factor (ITF) has been reported to depend on hypoxia-inducible factor-1 (HIF-1). Nitric oxide modulates HIF-1 activity. The present study aims to analyze the role of nitric oxide in jejunum damage induced by indomethacin and its ability to modulate epithelial function through the expression of ITF. METHODS Rats received indomethacin (7.5 mg/kg, s.c., twice), and a time course analysis of damage was performed (24-96 h after the first administration). In these animals, the role of nitric oxide was analyzed by using 1400W, a selective iNOS activity inhibitor (5 mg/kg, i.p./day), on: (1) intestinal damage, (2) ulcer healing, (3) the presence of nitrated proteins in the jejunum and (4) the protein expression of inducible nitric oxide synthase (iNOS), HIF-1α and ITF. RESULTS Indomethacin induced damage in the jejunum that was apparent at 24 h and peaked at 48-72 h. An increase in iNOS, HIF-1α, ITF and nitrated proteins was observed in the injured jejunum. Immunoprecipitation of HIF-1α allowed determination of the nitration/nitrosylation of this protein by using nitrotyrosine and nitrocysteine antibodies. Blockade of iNOS activity did not significantly modify damage or iNOS expression, but did significantly impede ITF induction, HIF-1α stabilization and HIF-1α detection with antibodies against nitrated proteins. In parallel to these results, pre-treatment with 1400W delayed the healing of the ulcer provoked by indomethacin. CONCLUSIONS These results suggest that iNOS-derived NO is involved in HIF-1α stabilization, probably through S-nitrosylation, and ITF expression in goblet cells of the damaged jejunum of indomethacin-treated rats and mediates ulcer healing.
Collapse
Affiliation(s)
- A Riaño
- Department of Pharmacology and CIBERehd, Faculty of Medicine, University of Valencia, Avda. Blasco Ibanez 15-17, 46010 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Ito J, Uchida H, Yokote T, Ohtake K, Kobayashi J. Fasting-induced intestinal apoptosis is mediated by inducible nitric oxide synthase and interferon-{gamma} in rat. Am J Physiol Gastrointest Liver Physiol 2010; 298:G916-26. [PMID: 20378828 DOI: 10.1152/ajpgi.00429.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitric oxide (NO) is associated with intestinal apoptosis in health and disease. This study aimed to investigate the role of intestinal NO in the regulation of apoptosis during fasting in rats. Male Wistar rats were divided into two groups and subcutaneously injected with saline (SA) or aminoguanidine (AG), followed by fasting for 24, 48, 60, and 72 h. At each time point, the jejunum was subjected to histological evaluation for enterocyte apoptosis by histomorphometric assessment and TUNEL analysis. We performed immunohistochemistry for inducible NO synthase (iNOS) expression in the jejunum and measured tissue nitrite levels using HPLC and 8-hydroxydeoxyguanosine adduct using ELISA, indicative of endogenous NO production and reactive oxygen species (ROS) production, respectively. Jejunal transcriptional levels of iNOS, neuronal NO synthase (nNOS), and interferon-gamma (IFN-gamma) were also determined by RT-PCR. Fasting caused significant jejunal mucosal atrophy due to attenuated cell proliferation and enhanced apoptosis with increase in iNOS transcription, its protein expression in intestinal epithelial cells (IEC), and jejunal nitrite levels. However, AG treatment histologically reduced apoptosis with inhibition of fasting-induced iNOS transcription, protein expression, and nitrite production. We also observed fasting-induced ROS production and subsequent IFN-gamma transcription, which were all inhibited by AG treatment. Furthermore, we observed reduced transcriptional levels of nNOS, known to suppress iNOS activation physiologically. These results suggest that fasting-induced iNOS activation in IEC may induce apoptosis mediators such as IFN-gamma via a ROS-mediated mechanism and also a possible role of nNOS in the regulation of iNOS activity in fasting-induced apoptosis.
Collapse
Affiliation(s)
- Junta Ito
- Josai Univ., 1-1 Keyaki-Dai, Sakado, Saitama, Japan 350-0295.
| | | | | | | | | |
Collapse
|
8
|
Abstract
AIM: To investigate the effect and mechanism of aspirin on proliferation of enterocytes.
METHODS: After co-culture of aspirin solution with Caco-2 cells for 24 h and 48 h, the proliferation of Caco-2 cells in each group was examined using MTT. Caco-2 monolayer cells model was established. After treatment with different concentrations of aspirin , Transepithelial resistance (TER) of cells was measured by EVOM voltohmmeter.
RESULTS: After 24 h, the cell survival rates were 96.67% ± 1.13%, 84.32% ± 1.29%, 62.33% ± 2.02% and 42.99% ± 2.09% in groups with aspirin of 0, 0.1, 1, 10 mmol/L, respectively; after 48 h, the cell survival rates were respectively 96.45% ± 1.21%, 76.89% ± 2.28%, 50.28% ± 0.98% and 32.66% ± 1.99%. The TER in the group with aspirin of 10 mmol/L was reduced to 50.1% after 72 h. Multiple factors chi square test showed that the influence of aspirin on the proliferation of Caco-2 cells and the epithelial barrier was dose-dependent and time-dependent.
CONCLUSION: Aspirin could inhibit the proliferation of enterocyte and affect the epithelial barrier, in a dose-dependent and time-dependent manner.
Collapse
|
9
|
Xue B, Hausmann M, Müller MH, Pesch T, Karpitschka M, Kasparek MS, Hu WC, Sibaev A, Rogler G, Kreis ME. Afferent nerve sensitivity is decreased by an iNOS-dependent mechanism during indomethacin-induced inflammation in the murine jejunum in vitro. Neurogastroenterol Motil 2009; 21:322-34. [PMID: 19077108 DOI: 10.1111/j.1365-2982.2008.01225.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Evidence exists that visceral afferent sensitivity is subject to regulatory mechanisms. We hypothesized that afferent sensitivity is decreased in the small intestine during intestinal inflammation by an inducible nitric oxide synthase (iNOS)-dependent mechanism. C57BL/6 mice were injected twice with vehicle or 60 mg kg(-1) indomethacin subcutaneously to induce intestinal inflammation. Afferent sensitivity was recorded on day 3 from a 2-cm segment of jejunum in vitro by extracellular multi-unit afferent recordings from the mesenteric nerve bundle. In subgroups (n = 6), iNOS was inhibited selectively by L-N6-(1-iminoethyl)-lysine (L-NIL) given either chronically from day 1-3 (3 mg kg(-1) twice daily i.p.) or acutely into the organ bath (30 micromol L(-1)). The indomethacin-induced increase of macroscopic and microscopic scores of intestinal inflammation (both P < 0.05) were unchanged after pretreatment with L-NIL. Peak afferent firing following bradykinin (0.5 micromol L(-1)) was 55 +/- 8 impulse s(-1) during inflammation vs 97 +/- 7 impulse s(-1) in controls (P < 0.05). Normal firing rate was preserved following L-NIL pretreatment (112 +/- 16 impulse s(-1)) or acute administration of L-NIL (108 +/- 14 impulse s(-1)). A similar L-NIL dependent reduction was observed for 5-HT (250 micromol L(-1)) and mechanical ramp distension from 20 to 60 cmH(2)O (both P < 0.05). Intraluminal pressure peaks were decreased to 0.66 +/- 0.1 cmH(2)O during inflammation compared to 2.51 +/- 0.3 in controls (P < 0.01). Afferent sensitivity is decreased by an iNOS-dependent mechanism during intestinal inflammation which appears to be independent of the inflammatory response. This suggests that iNOS-dependent nitric oxide production alters afferent sensitivity during inflammation by interfering with signal transduction to afferent nerves rather than by attenuating intestinal inflammation.
Collapse
Affiliation(s)
- B Xue
- Department of Pathophysiology, Shandong University Medical School, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely used anti-inflammatory agents in clinic. Recently, they are also used to prevent the progression of cardiovascular disease and the pain of muscle, bone and arthrosis. However, long-term and generous use may cause mucosal damages of the stomach and duodenum. With the improvement of clinical diagnostic and therapeutic approaches, it has been found that more and more damages of the intestinal mucosa were being identified. This article reviews the enteropathy caused by NSAIDs and its pathogenic mechanism, prevention and treatment.
Collapse
|
11
|
Abstract
Worldwide osteoarthritis (OA) affects more than 9.6% of men and 18% of women older that 60 years. Treatment for OA often requires chronic use of selective or nonselective nonsteroidal anti-inflammatory drugs (NSAIDs), which have been associated with gastrointestinal and cardiovascular complications. An increased risk for upper gastrointestinal bleeding with NSAIDs alone and when combined with low-dose aspirin has been described in numerous studies. Although cyclo-oxygenase-2 inhibitors have been shown to carry a lower risk for gastrointestinal injury than nonselective NSAIDs, research continues to identify new treatments that not only are effective but also provide an improved benefit/risk profile, including better gastrointestinal tolerability. Nitric oxide (NO) is known to have a protective effect on the gastrointestinal tract. In preclinical studies NO was shown to help maintain gastric mucosal integrity, to inhibit leukocyte adherence to the endothelium, and to repair NSAID-induced damage. In addition, epidemiologic studies have shown that the use of NO-donating agents with NSAIDs or aspirin resulted in reduced risk for gastrointestinal bleeding. Recent studies have shown that cyclo-oxygenase inhibiting NO-donating drugs (CINODs), in which a NO molecule is chemically linked to an NSAID, are effective anti-inflammatory agents and may result in less gastrointestinal damage than is associated with NSAID use. Therefore, these agents provide a potential therapeutic option for patients with arthritis who require long-term NSAID therapy.
Collapse
Affiliation(s)
- Angel Lanas
- Servicio de Aparato Digestivo, Hospital Clinico Zaragoza, CIBERehd, IACS, Universidad de Zaragoza, C/Domingo Miral s/n, 50009 Zaragoza, Spain.
| |
Collapse
|