1
|
Akarasereenont P, Pattanapholkornsakul S, Limsuvan S, Mamaethong D, Booranasubkajorn S, Pakaprot N, Tripatara P, Pilakasiri K. Therapeutic potential of Thai herbal formula for cognitive impairment: A metabolomics approach for Comprehensive Insights. Heliyon 2024; 10:e28027. [PMID: 38560220 PMCID: PMC10981045 DOI: 10.1016/j.heliyon.2024.e28027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Chronic cerebral ischemia hypoperfusion plays a role in the initiation and progression of vascular dementia, which causes changes in metabolites. Currently, there is no standard treatment to treat, prevent and reduce the severity of this condition. Thai herbal Yahom no.20 (YHF20) is indicated for fatigue and dizziness. The components of YHF20 have been found to have pharmacological effects related to the pathology of chronic cerebral ischemia hypoperfusion. This study aimed to investigate metabolomic changes after YHF20 administration in a rat model of permanent bilateral common carotid artery occlusion (2-VO) induced chronic cerebral ischemia hypoperfusion, and to explore its impact on spatial learning and memory. Albino Wistar rats were randomly allocated to 5 groups; sham, 2-VO, 2-VO+ 100 mg/kg YHF20, 2-VO+300 mg/kg YHF20, and 2-VO+1000 mg/kg YHF20. The rats were administered YHF20 daily by oral gavage for 56 days after 2-VO induction. Plasma was collected weekly for metabolome change analysis using LC-MS/QTof and toxicity study. The rats were evaluated for spatial learning and memory using the Morris water maze. The results showed that 78 known metabolites and 10 tentative pathways altered after chronic cerebral hypoperfusion, although it was not able to determine the effect on memory and learning behaviors of rats. Glutathione and glutathione metabolism might be metabolite-pathway that were the affect after YHF20 administration in cerebral ischemic condition. The 4 known metabolites may be the metabolites from the constituents of YHF20 could be considered and confirmed for quality control purpose. In conclusion, YHF20 administration might contribute to metabolic changes related to cerebral ischemia condition without the effect on spatial learning and memory, including hepatotoxicity and nephrotoxicity after 56 days of treatment. Alterations in the potential metabolites may provide data support for elucidating dementia pathogenesis and selecting pathways for intervention.
Collapse
Affiliation(s)
- Pravit Akarasereenont
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| | - Saracha Pattanapholkornsakul
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| | - Suveerawan Limsuvan
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| | - Dollaporn Mamaethong
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| | - Suksalin Booranasubkajorn
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| | - Narawut Pakaprot
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| | - Pinpat Tripatara
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| | - Kajee Pilakasiri
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| |
Collapse
|
2
|
Erythropoietin administration exerted neuroprotective effects against cardiac ischemia/reperfusion injury. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100124. [PMID: 36568264 PMCID: PMC9780068 DOI: 10.1016/j.crphar.2022.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/30/2022] [Accepted: 08/09/2022] [Indexed: 02/01/2023] Open
Abstract
Acute myocardial infarction (AMI) leads to cardiac dysfunction and also causes brain dysfunction and pathology. The neuroprotective effects of erythropoietin (EPO), the hormone controlling the production of red blood cells, have been shown in case of cerebral ischemic/reperfusion (I/R) injury. However, the effects of EPO on the brain pathologies induced by cardiac I/R injury have not been investigated. We hypothesized that the administration of EPO attenuates brain damage caused by cardiac I/R injury through decreasing peripheral and brain oxidative stress, preserving microglial morphology, attenuating hippocampal necroptosis, and decreasing hippocampal apoptosis, and hippocampal dysplasticity. Male Wistar rats (n = 38) were divided into two groups, sham (n = 6) and cardiac I/R (n = 32). All rats being subjected to the cardiac I/R operation were randomly divided into 4 subgroups (n = 8/group): vehicle, EPO pretreatment, EPO given during ischemia, and EPO given at the onset of reperfusion. The EPO was given at a dosage of 5000 units/kg via intravenous injection. Left ventricle function, oxidative stress, brain mitochondrial function, microglial morphology, hippocampal necroptosis, hippocampal apoptosis, and hippocampal plasticity were measured. EPO administration exerted beneficial anti-oxidative, anti-inflammatory, and anti-apoptotic effects on the brain against cardiac I/R. Giving EPO before cardiac ischemia conferred the greatest neuroprotection against cardiac I/R injury through the attenuation of LV dysfunction, decrease in peripheral and brain oxidative stress, and the attenuation of microglial activation, brain mitochondrial dysfunction, apoptosis, and necroptosis, leading to the improvement of hippocampal dysplasticity under cardiac I/R conditions. EPO pretreatment provided the greatest benefits on brain pathology induced by cardiac I/R.
Collapse
|
3
|
Ma Y, Zhou Z, Yang GY, Ding J, Wang X. The Effect of Erythropoietin and Its Derivatives on Ischemic Stroke Therapy: A Comprehensive Review. Front Pharmacol 2022; 13:743926. [PMID: 35250554 PMCID: PMC8892214 DOI: 10.3389/fphar.2022.743926] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Numerous studies explored the therapeutic effects of erythropoietin (EPO) on neurodegenerative diseases. Few studies provided comprehensive and latest knowledge of EPO treatment for ischemic stroke. In the present review, we introduced the structure, expression, function of EPO, and its receptors in the central nervous system. Furthermore, we comprehensively discussed EPO treatment in pre-clinical studies, clinical trials, and its therapeutic mechanisms including suppressing inflammation. Finally, advanced studies of the therapy of EPO derivatives in ischemic stroke were also discussed. We wish to provide valuable information on EPO and EPO derivatives’ treatment for ischemic stroke for basic researchers and clinicians to accelerate the process of their clinical applications.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyuan Zhou
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Guo-Yuan Yang, ; Jing Ding,
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Guo-Yuan Yang, ; Jing Ding,
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Kim Y, Cho AY, Kim HC, Ryu D, Jo SA, Jung YS. Effects of Natural Polyphenols on Oxidative Stress-Mediated Blood–Brain Barrier Dysfunction. Antioxidants (Basel) 2022; 11:antiox11020197. [PMID: 35204080 PMCID: PMC8868362 DOI: 10.3390/antiox11020197] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
The blood-brain barrier (BBB), which consists mainly of brain microvascular endothelial cells and astrocytes connected by tight junctions (TJs) and adhesion molecules (AMs), maintains the homeostatic balance between brain parenchyma and extracellular fluid. Accumulating evidence shows that BBB dysfunction is a common feature of neurodegenerative diseases, including stroke, traumatic brain injury, and Alzheimer’s disease. Among the various pathological pathways of BBB dysfunction, reactive oxygen species (ROS) are known to play a key role in inducing BBB disruption mediated via TJ modification, AM induction, cytoskeletal reorganization, and matrix metalloproteinase activation. Thus, antioxidants have been suggested to exert beneficial effects on BBB dysfunction-associated brain diseases. In this review, we summarized the sources of ROS production in multiple cells that constitute or surround the BBB, such as BBB endothelial cells, astrocytes, microglia, and neutrophils. We also reviewed various pathological mechanisms by which BBB disruption is caused by ROS in these cells. Finally, we summarized the effects of various natural polyphenols on BBB dysfunction to suggest a therapeutic strategy for BBB disruption-related brain diseases.
Collapse
Affiliation(s)
- Yeonjae Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
| | - A Yeon Cho
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
| | - Hong Cheol Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
| | - Dajung Ryu
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
| | - Sangmee Ahn Jo
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea;
- Department of Pharmacology, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-3444
| |
Collapse
|
5
|
Patel AMR, Apaijai N, Chattipakorn N, Chattipakorn SC. The Protective and Reparative Role of Colony-Stimulating Factors in the Brain with Cerebral Ischemia/Reperfusion Injury. Neuroendocrinology 2021; 111:1029-1065. [PMID: 33075777 DOI: 10.1159/000512367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/19/2020] [Indexed: 11/19/2022]
Abstract
Stroke is a debilitating disease and has the ability to culminate in devastating clinical outcomes. Ischemic stroke followed by reperfusion entrains cerebral ischemia/reperfusion (I/R) injury, which is a complex pathological process and is associated with serious clinical manifestations. Therefore, the development of a robust and effective poststroke therapy is crucial. Granulocyte colony-stimulating factor (GCSF) and erythropoietin (EPO), originally discovered as hematopoietic growth factors, are versatile and have transcended beyond their traditional role of orchestrating the proliferation, differentiation, and survival of hematopoietic progenitors to one that fosters brain protection/neuroregeneration. The clinical indication regarding GCSF and EPO as an auspicious therapeutic strategy is conferred in a plethora of illnesses, including anemia and neutropenia. EPO and GCSF alleviate cerebral I/R injury through a multitude of mechanisms, involving antiapoptotic, anti-inflammatory, antioxidant, neurogenic, and angiogenic effects. Despite bolstering evidence from preclinical studies, the multiple brain protective modalities of GCSF and EPO failed to translate in clinical trials and thereby raises several questions. The present review comprehensively compiles and discusses key findings from in vitro, in vivo, and clinical data pertaining to the administration of EPO, GCSF, and other drugs, which alter levels of colony-stimulating factor (CSF) in the brain following cerebral I/R injury, and elaborates on the contributing factors, which led to the lost in translation of CSFs from bench to bedside. Any controversial findings are discussed to enable a clear overview of the role of EPO and GCSF as robust and effective candidates for poststroke therapy.
Collapse
Affiliation(s)
- Aysha Mohamed Rafik Patel
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand,
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand,
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand,
| |
Collapse
|
6
|
DISDIER C, STONESTREET BS. Hypoxic-ischemic-related cerebrovascular changes and potential therapeutic strategies in the neonatal brain. J Neurosci Res 2020; 98:1468-1484. [PMID: 32060970 PMCID: PMC7242133 DOI: 10.1002/jnr.24590] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
Perinatal hypoxic-ischemic (HI)-related brain injury is an important cause of morbidity and long-standing disability in newborns. The only currently approved therapeutic strategy available to reduce brain injury in the newborn is hypothermia. Therapeutic hypothermia can only be used to treat HI encephalopathy in full-term infants and survivors remain at high risk for a wide spectrum of neurodevelopmental abnormalities as a result of residual brain injury. Therefore, there is an urgent need for adjunctive therapeutic strategies. Inflammation and neurovascular damage are important factors that contribute to the pathophysiology of HI-related brain injury and represent exciting potential targets for therapeutic intervention. In this review, we address the role of each component of the neurovascular unit (NVU) in the pathophysiology of HI-related injury in the neonatal brain. Disruption of the blood-brain barrier (BBB) observed in the early hours after an HI-related event is associated with a response at the basal lamina level, which comprises astrocytes, pericytes, and immune cells, all of which could affect BBB function to further exacerbate parenchymal injury. Future research is required to determine potential drugs that could prevent or attenuate neurovascular damage and/or augment repair. However, some studies have reported beneficial effects of hypothermia, erythropoietin, stem cell therapy, anti-cytokine therapy and metformin in ameliorating several different facets of damage to the NVU after HI-related brain injury in the perinatal period.
Collapse
Affiliation(s)
- Clémence DISDIER
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Barbara S STONESTREET
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI 02905, USA
| |
Collapse
|
7
|
Juenemann M, Braun T, Schleicher N, Yeniguen M, Schramm P, Gerriets T, Ritschel N, Bachmann G, Obert M, Schoenburg M, Kaps M, Tschernatsch M. Neuroprotective mechanisms of erythropoietin in a rat stroke model. Transl Neurosci 2020; 11:48-59. [PMID: 33312715 PMCID: PMC7702138 DOI: 10.1515/tnsci-2020-0008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/15/2019] [Accepted: 01/02/2020] [Indexed: 11/15/2022] Open
Abstract
Objective This study was designed to investigate the indirect neuroprotective properties of recombinant human erythropoietin (rhEPO) pretreatment in a rat model of transient middle cerebral artery occlusion (MCAO). Methods One hundred and ten male Wistar rats were randomly assigned to four groups receiving either 5,000 IU/kg rhEPO intravenously or saline 15 minutes prior to MCAO and bilateral craniectomy or sham craniectomy. Bilateral craniectomy aimed at elimination of the space-consuming effect of postischemic edema. Diagnostic workup included neurological examination, assessment of infarct size and cerebral edema by magnetic resonance imaging, wet–dry technique, and quantification of hemispheric and local cerebral blood flow (CBF) by flat-panel volumetric computed tomography. Results In the absence of craniectomy, EPO pretreatment led to a significant reduction in infarct volume (34.83 ± 9.84% vs. 25.28 ± 7.03%; p = 0.022) and midline shift (0.114 ± 0.023 cm vs. 0.083 ± 0.027 cm; p = 0.013). We observed a significant increase in regional CBF in cortical areas of the ischemic infarct (72.29 ± 24.00% vs. 105.53 ± 33.10%; p = 0.043) but not the whole hemispheres. Infarct size-independent parameters could not demonstrate a statistically significant reduction in cerebral edema with EPO treatment. Conclusions Single-dose pretreatment with rhEPO 5,000 IU/kg significantly reduces ischemic lesion volume and increases local CBF in penumbral areas of ischemia 24 h after transient MCAO in rats. Data suggest indirect neuroprotection from edema and the resultant pressure-reducing and blood flow-increasing effects mediated by EPO.
Collapse
Affiliation(s)
- Martin Juenemann
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Tobias Braun
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Nadine Schleicher
- Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Mesut Yeniguen
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Patrick Schramm
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Tibo Gerriets
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany.,Department of Neurology, Gesundheitszentrum Wetterau, Chaumontplatz 1, 61231, Bad Nauheim, Germany
| | - Nouha Ritschel
- Max-Planck-Institute for Heart and Lung Research, Ludwigstraße 43, 61231, Bad Nauheim, Germany
| | - Georg Bachmann
- Department of Radiology, Kerckhoff Clinic, 61231, Bad Nauheim, Germany
| | - Martin Obert
- Department of Radiology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany
| | - Markus Schoenburg
- Department of Cardiac Surgery, Kerckhoff Clinic, 61231, Bad Nauheim, Germany
| | - Manfred Kaps
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany
| | - Marlene Tschernatsch
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany.,Department of Neurology, Gesundheitszentrum Wetterau, Chaumontplatz 1, 61231, Bad Nauheim, Germany
| |
Collapse
|
8
|
Elshiekh M, Kadkhodaee M, Seifi B, Ranjbaran M. Additional effects of erythropoietin pretreatment, ischemic preconditioning, and N-acetylcysteine posttreatment in rat kidney reperfusion injury. Turk J Med Sci 2019; 49:1249-1255. [PMID: 31342735 PMCID: PMC7018199 DOI: 10.3906/sag-1812-228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background/aim Since the nature of ischemia/reperfusion (IR)-induced tissue damage is multifactorial and complex, in the current study, the effects of multiple treatment strategies via concomitant administration of erythropoietin (EPO) and N-acetylcysteine (NAC) with an ischemic preconditioning (IPC) regimen on renal IR injury were examined. Materials and methods Thirty male Wistar rats were subjected to bilateral occlusion of the renal pedicles for 50 min followed by reperfusion. EPO (1000 IU/kg) was administered for 3 days, as well as IPC before the IR and NAC (150 mg/kg) administration for 4 days after IR. The animals were randomly allocated into 6 groups (n = 5): sham, IR, EPO+IR, IPC+IR, NAC+IR, and EPO+IPC+NAC+IR. Kidney tissues and blood samples were obtained for oxidative stress, proinflammatory cytokines, and renal functional evaluations. Results IR caused significant inflammatory response, oxidative stress, and reduced renal function. Treatment with EPO, IPC, and NAC or a combination of two of them attenuated renal dysfunction and reduced the oxidative stress and inflammatory markers. Rats treated with the combination of EPO, IPC, and NAC showed a higher degree of protection compared to the other groups. Conclusion These results showed that concomitant administration of EPO and IPC along with posttreatment NAC may have additive beneficial effects on kidney IR injury during IR-induced acute renal failure.
Collapse
Affiliation(s)
- Mohammed Elshiekh
- Department of Physiology, Faculty of Medicine, University of Dongola, Dongola, Sudan,Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Ranjbaran
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Kunze R, Marti HH. Angioneurins - Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog Neurobiol 2019; 178:101611. [PMID: 30970273 DOI: 10.1016/j.pneurobio.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity leading to vasogenic edema and brain swelling is a common feature of hypoxic/ischemic brain diseases such as stroke, but is also central to the etiology of other CNS disorders. In the past decades, numerous proteins, belonging to the family of angioneurins, have gained increasing attention as potential therapeutic targets for ischemic stroke, but also other CNS diseases attributed to BBB dysfunction. Angioneurins encompass mediators that affect both neuronal and vascular function. Recently, increasing evidence has been accumulated that certain angioneurins critically determine disease progression and outcome in stroke among others through multifaceted effects on the compromised BBB. Here, we will give a concise overview about the family of angioneurins. We further describe the most important cellular and molecular components that contribute to structural integrity and low permeability of the BBB under steady-state conditions. We then discuss BBB alterations in ischemic stroke, and highlight underlying cellular and molecular mechanisms. For the most prominent angioneurin family members including vascular endothelial growth factors, angiopoietins, platelet-derived growth factors and erythropoietin, we will summarize current scientific literature from experimental studies in animal models, and if available from clinical trials, on the following points: (i) spatiotemporal expression of these factors in the healthy and hypoxic/ischemic CNS, (ii) impact of loss- or gain-of-function during cerebral hypoxia/ischemia for BBB integrity and beyond, and (iii) potential underlying molecular mechanisms. Moreover, we will highlight novel therapeutic strategies based on the activation of endogenous angioneurins that might improve BBB dysfuntion during ischemic stroke.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany.
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
10
|
Navarrete C, Carrillo-Salinas F, Palomares B, Mecha M, Jiménez-Jiménez C, Mestre L, Feliú A, Bellido ML, Fiebich BL, Appendino G, Calzado MA, Guaza C, Muñoz E. Hypoxia mimetic activity of VCE-004.8, a cannabidiol quinone derivative: implications for multiple sclerosis therapy. J Neuroinflammation 2018; 15:64. [PMID: 29495967 PMCID: PMC5831753 DOI: 10.1186/s12974-018-1103-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/21/2018] [Indexed: 02/06/2023] Open
Abstract
Background Multiple sclerosis (MS) is characterized by a combination of inflammatory and neurodegenerative processes variously dominant in different stages of the disease. Thus, immunosuppression is the goal standard for the inflammatory stage, and novel remyelination therapies are pursued to restore lost function. Cannabinoids such as 9Δ-THC and CBD are multi-target compounds already introduced in the clinical practice for multiple sclerosis (MS). Semisynthetic cannabinoids are designed to improve bioactivities and druggability of their natural precursors. VCE-004.8, an aminoquinone derivative of cannabidiol (CBD), is a dual PPARγ and CB2 agonist with potent anti-inflammatory activity. Activation of the hypoxia-inducible factor (HIF) can have a beneficial role in MS by modulating the immune response and favoring neuroprotection and axonal regeneration. Methods We investigated the effects of VCE-004.8 on the HIF pathway in different cell types. The effect of VCE-004.8 on macrophage polarization and arginase 1 expression was analyzed in RAW264.7 and BV2 cells. COX-2 expression and PGE2 synthesis induced by lipopolysaccharide (LPS) was studied in primary microglia cultures. The efficacy of VCE-004.8 in vivo was evaluated in two murine models of MS such as experimental autoimmune encephalomyelitis (EAE) and Theiler’s virus-induced encephalopathy (TMEV). Results Herein, we provide evidence that VCE-004.8 stabilizes HIF-1α and HIF-2α and activates the HIF pathway in human microvascular endothelial cells, oligodendrocytes, and microglia cells. The stabilization of HIF-1α is produced by the inhibition of the prolyl-4-hydrolase activity of PHD1 and PDH2. VCE-004.8 upregulates the expression of HIF-dependent genes such as erythropoietin and VEGFA, induces angiogenesis, and enhances migration of oligodendrocytes. Moreover, VCE-004.8 blunts IL-17-induced M1 polarization, inhibits LPS-induced COX-2 expression and PGE2 synthesis, and induces expression of arginase 1 in macrophages and microglia. In vivo experiments showed efficacy of VCE-004.8 in EAE and TMEV. Histopathological analysis revealed that VCE-004.8 treatments prevented demyelination, axonal damage, and immune cells infiltration. In addition, VCE-004.8 downregulated the expression of several genes closely associated with MS physiopathology, including those underlying the production of chemokines, cytokines, and adhesion molecules. Conclusions This study provides new significant insights about the potential role of VCE-004.8 for MS treatment by ameliorating neuroinflammation and demyelination. Electronic supplementary material The online version of this article (10.1186/s12974-018-1103-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Belén Palomares
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Miriam Mecha
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal-CSIC, Madrid, Spain
| | - Carla Jiménez-Jiménez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Leyre Mestre
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal-CSIC, Madrid, Spain
| | - Ana Feliú
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal-CSIC, Madrid, Spain
| | - Maria L Bellido
- Vivacell Biotechnology SL, Córdoba, Spain.,Emerald Health Pharmaceuticals, San Diego, CA, USA
| | | | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Carmen Guaza
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal-CSIC, Madrid, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain. .,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain. .,Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
11
|
Onal EM, Sag AA, Sal O, Yerlikaya A, Afsar B, Kanbay M. Erythropoietin mediates brain-vascular-kidney crosstalk and may be a treatment target for pulmonary and resistant essential hypertension. Clin Exp Hypertens 2017; 39:197-209. [PMID: 28448184 DOI: 10.1080/10641963.2016.1246565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organ crosstalk pathways represent the next frontier for target-mining in molecular medicine for existing syndromes. Pulmonary hypertension and resistant essential hypertension are syndromes that have been proven elusive in etiology, and frequently refractory to first-line management. Underlying crosstalk mechanisms, not yet considered in these treatments, may hinder outcomes or unlock novel treatments. This review focuses systematically on erythropoietin, a synthesizable molecule, as a mediator of brain-kidney crosstalk. Insights gained from this review will be applied to cardiovascular diseases in a clinician-directed fashion.
Collapse
Affiliation(s)
| | - Alan Alper Sag
- b Division of Interventional Radiology, Department of Radiology , Koç University School of Medicine , Istanbul , Turkey
| | - Oguzhan Sal
- a School of Medicine , Koç University , Istanbul , Turkey
| | | | - Baris Afsar
- c Suleyman Demirel University, Faculty of Medicine, Department of Internal Medicine , Section of Nephrology , Isparta , Turkey
| | - Mehmet Kanbay
- d Division of Nephrology, Department of Internal Medicine , Koç University School of Medicine , Istanbul , Turkey
| |
Collapse
|
12
|
Mršić-Pelčić J, Pilipović K, Pelčić G, Vitezić D, Župan G. Decrease in Oxidative Stress Parameters after Post-Ischaemic Recombinant Human Erythropoietin Administration in the Hippocampus of Rats Exposed to Focal Cerebral Ischaemia. Basic Clin Pharmacol Toxicol 2017. [DOI: 10.1111/bcpt.12833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jasenka Mršić-Pelčić
- Department of Pharmacology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
| | - Kristina Pilipović
- Department of Pharmacology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
| | - Goran Pelčić
- Clinics for Ophthalmology; Clinical Hospital Centre Rijeka; Rijeka Croatia
| | - Dinko Vitezić
- Department of Pharmacology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
| | - Gordana Župan
- Department of Pharmacology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
| |
Collapse
|
13
|
Abstract
The human brain requires uninterrupted delivery of blood-borne oxygen and nutrients to sustain its function. Focal ischemia, particularly, ischemic stroke, and global ischemia imposed by cardiac arrest disrupt the brain's fuel supply. The resultant ATP depletion initiates a complex injury cascade encompassing intracellular Ca2+ overload, glutamate excitotoxicity, oxido-nitrosative stress, extracellular matrix degradation, and inflammation, culminating in neuronal and astroglial necrosis and apoptosis, neurocognitive deficits, and even death. Unfortunately, brain ischemia has proven refractory to pharmacological intervention. Many promising treatments afforded brain protection in animal models of focal and global ischemia, but failed to improve survival and neurocognitive recovery of stroke and cardiac arrest patients in randomized clinical trials. The culprits are the blood-brain barrier (BBB) that limits transferral of medications to the brain parenchyma, and the sheer complexity of the injury cascade, which presents a daunting array of targets unlikely to respond to monotherapies. Erythropoietin is a powerful neuroprotectant capable of interrupting multiple aspects of the brain injury cascade. Preclinical research demonstrates erythropoietin's ability to suppress glutamate excitotoxicity and intracellular Ca2+ overload, dampen oxidative stress and inflammation, interrupt the apoptotic cascade, and preserve BBB integrity. However, the erythropoietin dosages required to traverse the BBB and achieve therapeutically effective concentrations in the brain parenchyma impose untoward side effects. Recent discoveries that hypoxia induces erythropoietin production within the brain and that neurons, astroglia, and cerebrovascular endothelium harbor membrane erythropoietin receptors, raise the exciting prospect of harnessing endogenous erythropoietin to protect the brain from the ravages of ischemia-reperfusion.
Collapse
Affiliation(s)
- Robert T Mallet
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, United States.
| | - Myoung-Gwi Ryou
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, United States; Tarleton State University, Fort Worth, TX, United States
| |
Collapse
|
14
|
Zhiyuan Q, Qingyong L, Shengming H, Hui M. Protective effect of rhEPO on tight junctions of cerebral microvascular endothelial cells early following traumatic brain injury in rats. Brain Inj 2016; 30:462-7. [DOI: 10.3109/02699052.2015.1080386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Uzum G, Bahçekapılı N, Baltaci A, Mogulkoc R, Ziylan Y. Pre- and post-estrogen administration in global cerebral ischemia reduces blood-brain barrier breakdown in ovariectomized rats. ACTA ACUST UNITED AC 2015; 102:60-6. [DOI: 10.1556/aphysiol.102.2015.1.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Hydrogen-rich saline attenuates neuronal ischemia--reperfusion injury by protecting mitochondrial function in rats. J Surg Res 2014; 192:564-72. [PMID: 24969549 DOI: 10.1016/j.jss.2014.05.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/30/2014] [Accepted: 05/19/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hydrogen, a popular antioxidant gas, can selectively reduce cytotoxic oxygen radicals and has been found to protect against ischemia-reperfusion (I/R) injury of multiple organs. Acute neuronal death during I/R has been attributed to loss of mitochondrial permeability transition coupled with mitochondrial dysfunction. This study was designed to investigate the potential therapeutic effect of hydrogen-rich saline on neuronal mitochondrial injury from global cerebral I/R in rats. MATERIALS AND METHODS We used a four-vessel occlusion model of global cerebral ischemia and reperfusion, with Sprague-Dawley rats. The rats were divided randomly into six groups (n = 90): sham (group S), I/R (group I/R), normal saline (group NS), atractyloside (group A), hydrogen-rich saline (group H), and hydrogen-rich saline + atractyloside (group HA). In groups H and HA, intraperitoneal hydrogen-rich saline (5 mL/kg) was injected immediately after reperfusion, whereas the equal volume of NS was injected in the other four groups. In groups A and HA, atractyloside (15 μL) was intracerebroventricularly injected 10 min before reperfusion, whereas groups NS and H received equal NS. The mitochondrial permeability transition pore opening and mitochondrial membrane potential were measured by spectrophotometry. Cytochrome c protein expression in the mitochondria and cytoplasm was detected by western blot. The hippocampus mitochondria ultrastructure was examined with transmission electron microscope. The histologic damage in hippocampus was assessed by hematoxylin and eosin staining. RESULTS Hydrogen-rich saline treatment significantly improved the amount of surviving cells (P < 0.05). Furthermore, hydrogen-rich saline not only reduced tissue damage, the degree of mitochondrial swelling, and the loss of mitochondrial membrane potential but also preserved the mitochondrial cytochrome c content (P < 0.05). CONCLUSIONS Our study showed that hydrogen-rich saline was able to attenuate neuronal I/R injury, probably by protecting mitochondrial function in rats.
Collapse
|
17
|
Ratilal BO, Arroja MMC, Rocha JPF, Fernandes AMA, Barateiro AP, Brites DMTO, Pinto RMA, Sepodes BMN, Mota-Filipe HD. Neuroprotective effects of erythropoietin pretreatment in a rodent model of transient middle cerebral artery occlusion. J Neurosurg 2014; 121:55-62. [PMID: 24702327 DOI: 10.3171/2014.2.jns132197] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
UNLABELLED OBJECT.: There is an unmet clinical need to develop neuroprotective agents for neurosurgical and endovascular procedures that require transient cerebral artery occlusion. The aim in this study was to explore the effects of a single dose of recombinant human erythropoietin (rhEPO) before middle cerebral artery (MCA) occlusion in a focal cerebral ischemia/reperfusion model. METHODS Twenty-eight adult male Wistar rats were subjected to right MCA occlusion via the intraluminal thread technique for 60 minutes under continuous cortical perfusion monitoring by laser Doppler flowmetry. Rats were divided into 2 groups: control and treatment. In the treated group, rhEPO (1000 IU/kg intravenously) was administered 10 minutes before the onset of the MCA ischemia. At 24-hour reperfusion, animals were examined for neurological deficits, blood samples were collected, and animals were killed. The following parameters were evaluated: brain infarct volume, ipsilateral hemispheric edema, neuron-specific enolase plasma levels, parenchyma histological features (H & E staining), Fluoro-Jade-positive neurons, p-Akt and total Akt expression by Western blot analysis, and p-Akt-positive nuclei by immunohistochemical investigation. RESULTS Infarct volume and Fluoro-Jade staining of degenerating neurons in the infarct area did not vary between groups. The severity of neurological deficit (p < 0.001), amount of brain edema (78% reduction in treatment group, p < 0.001), and neuron-specific enolase plasma levels (p < 0.001) were reduced in the treatment group. Perivascular edema was histologically less marked in the treatment group. No variations in the expression or localization of p-Akt were seen. CONCLUSIONS Administration of rhEPO before the onset of 60-minute transient MCA ischemia protected the brain from this insult. It is unlikely that rhEPO pretreatment leads to direct neuronal antiapoptotic effects, as supported by the lack of Akt activation, and its benefits are most probably related to an indirect effect on brain edema as a consequence of blood-brain barrier preservation. Although research on EPO derivatives is increasing, rhEPO acts through distinct neuroprotective pathways and its clinical safety profile is well known. Clinically available rhEPO is a potential therapy for prevention of neuronal injury induced by transitory artery occlusion during neurovascular procedures.
Collapse
|
18
|
Dang S, Liu X, Fu P, Gong W, Yan F, Han P, Ding Y, Ji X, Luo Y. Neuroprotection by local intra-arterial infusion of erythropoietin after focal cerebral ischemia in rats. Neurol Res 2013; 33:520-8. [DOI: 10.1179/016164111x13007856084287] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Effects of Erythropoietin on Blood–Brain Barrier Tight Junctions in Ischemia–Reperfusion Rats. J Mol Neurosci 2012; 49:369-79. [DOI: 10.1007/s12031-012-9883-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
|
20
|
Pentón-Rol G, Marín-Prida J, Pardo-Andreu G, Martínez-Sánchez G, Acosta-Medina EF, Valdivia-Acosta A, Lagumersindez-Denis N, Rodríguez-Jiménez E, Llópiz-Arzuaga A, López-Saura PA, Guillén-Nieto G, Pentón-Arias E. C-Phycocyanin is neuroprotective against global cerebral ischemia/reperfusion injury in gerbils. Brain Res Bull 2011; 86:42-52. [PMID: 21669260 DOI: 10.1016/j.brainresbull.2011.05.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 05/30/2011] [Indexed: 12/15/2022]
Abstract
Although the huge economic and social impact and the predicted incidence increase, neuroprotection for ischemic stroke remains as a therapeutically empty niche. In the present study, we investigated the rationale of the C-Phycocyanin (C-PC) treatment on global cerebral ischemia/reperfusion (I/R) injury in gerbils. We demonstrated that C-PC given either prophylactically or therapeutically was able to significantly reduce the infarct volume as assessed by triphenyltetrazolium chloride (TTC) staining and the neurological deficit score 24h post-stroke. In addition, C-PC exhibited a protective effect against hippocampus neuronal cell death, and significantly improved the functional outcome (locomotor behavior) and gerbil survival after 7 days of reperfusion. Malondialdehyde (MDA), peroxidation potential (PP) and ferric reducing ability of plasma (FRAP) were assayed in serum and brain homogenates to evaluate the redox status 24h post-stroke. The treatment with C-PC prevented the lipid peroxidation and the increase of FRAP in both tissue compartments. These results suggest that the protective effects of C-PC are most likely due to its antioxidant activity, although its anti-inflammatory and immuno-modulatory properties reported elsewhere could also contribute to neuroprotection. To our knowledge, this is the first report of the neuroprotective effect of C-PC in an experimental model of global cerebral I/R damage, and strongly indicates that C-PC may represent a potential preventive and acute disease modifying pharmacological agent for stroke therapy.
Collapse
|
21
|
Sargin D, Friedrichs H, El-Kordi A, Ehrenreich H. Erythropoietin as neuroprotective and neuroregenerative treatment strategy: comprehensive overview of 12 years of preclinical and clinical research. Best Pract Res Clin Anaesthesiol 2010; 24:573-94. [PMID: 21619868 DOI: 10.1016/j.bpa.2010.10.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/11/2010] [Indexed: 12/13/2022]
Abstract
Erythropoietin (EPO), originally discovered as hematopoietic growth factor, has direct effects on cells of the nervous system that make it a highly attractive candidate drug for neuroprotection/neuroregeneration. Hardly any other compound has led to so much preclinical work in the field of translational neuroscience than EPO. Almost all of the >180 preclinical studies performed by many independent research groups from all over the world in the last 12 years have yielded positive results on EPO as a neuroprotective drug. The fact that EPO was approved for the treatment of anemia >20 years ago and found to be well tolerated and safe, facilitated the first steps of translation from preclinical findings to the clinic. On the other hand, the same fact, naturally associated with loss of patent protection, hindered to develop EPO as a highly promising therapeutic strategy for application in human brain disease. Therefore, only few clinical neuroprotection studies have been concluded, all with essentially positive and stimulating results, but no further development towards the clinic has occurred thus far. This article reviews the preclinical and clinical work on EPO for the indications neuroprotection/neuroregeneration and cognition, and hopefully will stimulate new endeavours promoting development of EPO for the treatment of human brain diseases.
Collapse
Affiliation(s)
- Derya Sargin
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein Str. 3, 37075 Göttingen, Germany
| | | | | | | |
Collapse
|
22
|
Acetaminophen reduces mitochondrial dysfunction during early cerebral postischemic reperfusion in rats. Brain Res 2010; 1319:142-54. [PMID: 20079345 DOI: 10.1016/j.brainres.2010.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 12/19/2022]
Abstract
Acetaminophen, a popular analgesic and antipyretic, has been found to be effective against neuronal cell death in in vivo and in vitro models of neurological disorders. Acute neuronal death has been attributed to loss of mitochondrial permeability transition coupled with mitochondrial dysfunction. The potential impact of acetaminophen on acute injury from cerebral ischemia-reperfusion has not been studied. We investigated the effects of acetaminophen on cerebral ischemia-reperfusion-induced injury using a transient global forebrain ischemia model. Male Sprague-Dawley rats received 15mg/kg of acetaminophen intravenously during ischemia induced by hypovolemic hypotension and bilateral common carotid arterial occlusion, which was followed by reperfusion. Acetaminophen reduced tissue damage, degree of mitochondrial swelling, and loss of mitochondrial membrane potential. Acetaminophen maintained mitochondrial cytochrome c content and reduced activation of caspase-9 and incidence of apoptosis. Our data show that acetaminophen reduces apoptosis via a mitochondrial-mediated mechanism in an in vivo model of cerebral ischemia-reperfusion. These findings suggest a novel role for acetaminophen as a potential stroke therapeutic.
Collapse
|
23
|
Liu F, Yuan R, Benashski SE, McCullough LD. Changes in experimental stroke outcome across the life span. J Cereb Blood Flow Metab 2009; 29:792-802. [PMID: 19223913 PMCID: PMC2748430 DOI: 10.1038/jcbfm.2009.5] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute ischemic stroke is a leading cause of mortality and disability in the elderly. Age is the most important nonmodifiable risk factor for stroke, yet many preclinical models continue to examine only young male animals. It remains unclear how experimental stroke outcomes change with aging and with biologic sex. If sex differences are present, it is not known whether these reflect an intrinsic differing sensitivity to stroke or are secondary to the loss of estrogen with aging. We subjected both young and aging mice of both sexes to middle cerebral artery occlusion (MCAO). Young female mice had smaller strokes compared with age-matched males, an effect that was reversed by ovariectomy. Stroke damage increased with aging in female mice, whereas male mice had decreased damage after MCAO. Blood-brain barrier (BBB) permeability changes are correlated with infarct size. However, aging mice had significantly less edema formation, an effect that was independent of sex and histologic damage. Differences in the cellular response to stroke occur across the life span in both male and female mice. These differences need to be considered when developing relevant therapies for stroke patients, the majority of whom are elderly.
Collapse
Affiliation(s)
- Fudong Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
24
|
Sayan H, Ozacmak VH, Sen F, Cabuk M, Atik DY, Igdem AA, Ozacmak ID. Pharmacological preconditioning with erythropoietin reduces ischemia–reperfusion injury in the small intestine of rats. Life Sci 2009; 84:364-71. [DOI: 10.1016/j.lfs.2008.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 12/05/2008] [Accepted: 12/30/2008] [Indexed: 12/26/2022]
|
25
|
Xiong Y, Chopp M, Lee CP. Erythropoietin improves brain mitochondrial function in rats after traumatic brain injury. Neurol Res 2008; 31:496-502. [PMID: 19099671 DOI: 10.1179/174313208x353703] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Mitochondria play a central role in cellular energetics, calcium homeostasis and apoptosis. Our previous study demonstrates traumatic brain injury induces brain mitochondrial dysfunction after injury. Preservation and/or restoration of mitochondrial function may be one of the strategies for neuroprotection. Erythropoietin, a hormone for erythropoiesis, also provides tissue protection against traumatic brain injury and stroke. The present study was undertaken to evaluate the effect of erythropoietin on traumatic brain injury-induced brain mitochondrial dysfunction. Traumatic brain injury decreased rates of respiration at the active state (state 3), increased that at the resting state (state 4) and consequently decreased respiratory control index (state 3/state 4 ratio) and the efficiency of ATP synthesis (the amount of ADP phosphorylated by inorganic phosphate divided by the amount of oxygen consumed during state 3 respiration). Erythropoietin administered intraperitoneally 30 minutes post-injury at 1000 U/kg partially improved mitochondrial function at day 1 post-injury. However, erythropoietin-induced improvement was not sustained at day 7 post-injury. Erythropoietin at 2000 or 5000 U/kg restored states 3 and 4 examined at day 1 post-injury to the sham levels. Consequently, the energy coupling capacities, such as respiratory control index and/or the efficiency of ATP synthesis, were also improved. The beneficial effect of erythropoietin at these doses persisted for at least 7 days post-injury. The beneficial effect of erythropoietin on brain mitochondrial function was observed with a wide therapeutic window from 5 minutes to 6 hours post-injury. Our data, for the first time, demonstrate that erythropoietin treatment restores brain mitochondrial function after traumatic brain injury, which will enhance cellular energy generation and reduce oxidative stress, strongly supporting erythropoietin as a promising agent for the therapeutic treatment of traumatic brain injury.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | |
Collapse
|
26
|
Zhang X, Bao S, Lai D, Rapkins RW, Gillies MC. Intravitreal triamcinolone acetonide inhibits breakdown of the blood-retinal barrier through differential regulation of VEGF-A and its receptors in early diabetic rat retinas. Diabetes 2008; 57:1026-33. [PMID: 18174522 PMCID: PMC2836241 DOI: 10.2337/db07-0982] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 12/19/2007] [Indexed: 12/04/2022]
Abstract
OBJECTIVE To elucidate the mechanism of the unique beneficial effect of intravitreal steroid therapy on diabetic macular edema, we investigated the effect of locally administered triamcinolone acetonide (TA) on the expression of vascular endothelial growth factor (VEGF)-A and its receptors in retinas of rats with streptozotocin (STZ)-induced diabetes. We then correlated the expression of these proteins with breakdown of the blood-retinal barrier (BRB). RESEARCH DESIGN AND METHODS Thirty-two eyes of 16 diabetic and nondiabetic rats were divided into four groups. TA was injected into the vitreous of the right eye, and saline was injected into the left eye (control) 3.5 weeks after induction of diabetes. Retinas were harvested 48 h following treatment. mRNA and protein expression of VEGF-A, VEGF-A receptor 1 (fms-like tyrosine kinase [FLT]-1), and VEGF-A receptor 2 (fetal liver kinase [FLK]-1) were determined by real-time RT-PCR and immunohistochemistry. BRB permeability was quantitated by measuring extravasated endogenous albumin and retinal thickness. RESULTS Diabetes-induced retinal thickness and albumin extravasation were significantly reduced in TA-treated diabetic retinas to a level similar to that in sham-treated nondiabetic eyes. A close correlation between albumin leakage and increased expression of both Vegf-a and Flk-1 was noted in the diabetic retinas. TA downregulated the expression of Vegf-a and Flk-1 but upregulated the expression of Flt-1. TA did not alter the expression of these genes in nondiabetic retinas. CONCLUSIONS Intravitreal injection of TA stabilizes the BRB in association with regulation of Vegf-a, Flk-1, and Flt-1 expression in retinas in the early stages of diabetes.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Save Sight Institute, Department of Clinical Ophthalmology, University of Sydney, Sydney, Australia.
| | | | | | | | | |
Collapse
|
27
|
Erythropoietin attenuates intracerebral hemorrhage by diminishing matrix metalloproteinases and maintaining blood-brain barrier integrity in mice. ACTA NEUROCHIRURGICA. SUPPLEMENT 2008; 105:105-12. [PMID: 19066093 DOI: 10.1007/978-3-211-09469-3_22] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The protective mechanism of recombinant human erythropoietin (rhEPO) on blood-brain barrier (BBB) after brain injury is associated with the attenuation of neuro-inflammation. We hypothesize that rhEPO treatment after intracerebral hemorrhage (ICH) modulates matrix metalloproteinase (MMP) activity, maintains BBB integrity, and reduces BBB breakdown-associated inflammation. Adult male 129S2/sv mice were subjected to autologous whole blood-induced ICH. rhEPO or saline was administered intraperitoneally immediately after surgery and for 3 more days until day of sacrifice. BBB permeability was measured by Evans blue leakage, and edema was assessed by brain water content. Immunofluorescence and Western blotting were performed to detect expression of tight junction marker occludin, type IV collagen, MMPs, tissue inhibitor of metalloproteinase (TIMP), and glial fibrillary acidic protein, rhEPO prevented Evans blue leakage, reduced brain edema, and preserved expression of occludin and collagen IV. rhEPO treatment decreased MMP-2 expression, increased TIMP-2 expression, and reduced the number of reactive astrocytes in the brain compared to saline control. We conclude that rhEPO reduces MMP activity, BBB disruption, and the glial cell inflammatory reaction 3 days after ICH. Our study provides additional evidence for the mechanism of rhEPO's neurovascular protective effects and a potential clinical application in the treatment of ICH.
Collapse
|
28
|
Tanaka Y, Marumo T, Omura T, Yoshida S. Quantitative assessments of cerebral vascular damage with a silicon rubber casting method in photochemically-induced thrombotic stroke rat models. Life Sci 2007; 81:1381-8. [PMID: 17936852 DOI: 10.1016/j.lfs.2007.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 09/11/2007] [Accepted: 09/12/2007] [Indexed: 11/16/2022]
Abstract
Previous studies have described microvascular disturbances downstream of occluded large vessels arising during the acute phase (several hours) following cerebral ischemic insult. Prolonged microvascular disturbances may cause delayed neuronal cell death in ischemic penumbral regions, leading to expanded brain infarctions and poor neurological and functional outcomes. The lack of simple and quantitative methods for investigating this microcirculation failure suggests the need to develop a new method for clarifying the precise distribution and persistence of post-ischemic microvascular disturbances. The present study used a silicone rubber casting method in quantitative analyses of microvascular conditions in photochemically-induced thromboembolic (PIT) stroke rat models. After the casting procedure in rats with PIT stroke, a 6 microm-thick coronal section was obtained, and quantitative analyses of microvascular density and measurements of the infarct area in the serial section were performed. The major findings of the present study are as follows: (1) Silicone rubber casting techniques can be applied to precise quantitative analyses of microvessels in the same individual in whom brain infarct volume was measured; (2) the persistence and spatial distribution of microvascular disturbances assessed at the ischemic core, ischemic penumbra, and non-ischemic regions strongly suggest that microvascular disturbances affect brain infarct expansion; (3) the current method demonstrated the protective effects of MK-801 on microvessels, indicating that the technique may be useful in investigating factors that provide vascular protection. The experimental procedure introduced here would facilitate future evaluations of vascular protective agents.
Collapse
Affiliation(s)
- Yu Tanaka
- Molecular Function and Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan.
| | | | | | | |
Collapse
|
29
|
Li Y, Lu ZY, Ogle M, Wei L. Erythropoietin prevents blood brain barrier damage induced by focal cerebral ischemia in mice. Neurochem Res 2007; 32:2132-41. [PMID: 17562165 DOI: 10.1007/s11064-007-9387-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
Recombinant human erythropoietin (rhEPO), a neurovascular protective agent, therapeutically supports angiogenesis after stroke by enhancing endogenous up-regulation of vascular endothelial growth factor (VEGF). Increased VEGF expression has been characterized to negatively impact the integrity of the blood brain barrier (BBB), causing brain edema and secondary injury. The present study investigated the rhEPO-induced BBB protection after stroke and how it might be achieved by affecting VEGF pathway. rhEPO treatment (5,000 U/kg, i.p., 30 min before stroke and once a day for three days after stroke) reduced Evans blue leakage and brain edema after ischemia. The expression of the BBB integrity markers, occludin, alpha-catenin and beta-catenin, in the brain was preserved in animals received rhEPO. rhEPO up-regulated VEGF expression; however, the expression of VEGF receptor-2 (fetal liver kinase receptor, Flk-1) was significantly reduced in rhEPO-treated animals three days after stroke. We propose that, disregarding increased VEGF levels, rhEPO protects against ischemia-induced BBB damage at least partly by down-regulating Flk-1 expression and the response to VEGF signaling in the acute phase after stroke.
Collapse
Affiliation(s)
- Ying Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Ave., Charleston, SC 29425, USA
| | | | | | | |
Collapse
|