1
|
Xue W, Luo Y, He W, Yan M, Zhao H, Qing L. Network Pharmacology and Bioinformatics Analyses Identify the Core Genes and Pyroptosis-Related Mechanisms of Nardostachys Chinensis for Atrial Fibrillation. Curr Comput Aided Drug Des 2024; 20:1070-1086. [PMID: 38178669 PMCID: PMC11475257 DOI: 10.2174/0115734099259071231115072421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Nardostachys chinensis is an herbal medicine widely used in the treatment of atrial fibrillation (AF), but the mechanism is unclear. OBJECTIVE To explore the molecular mechanism of N. chinensis against AF. METHODS The TCMSP was used to screen the active N. chinensis compounds and their targets. Differentially expressed genes (DEGs) for AF were identified using open-access databases. Using Venn diagrams, the cross-targets of N. chinensis, pyroptosis, and AF were obtained. The genes underwent molecular docking as well as gene set enrichment analysis (GSEA). A nomogram based on candidate genes was constructed and evaluated with the clinical impact curve. After that, the immune infiltration of the dataset was analyzed by single sample GSEA (ssGSEA). Finally, microRNAs (miRNAs) and transcription factors (TFs) were predicted based on candidate genes. RESULTS Tumor necrosis factor (TNF) and caspase-8 (CASP8) were obtained as candidate genes by taking the intersection of DEGs, targets of N. chinensis, and pyroptosis-related genes. Tolllike receptor (TLR) and peroxisome proliferator-activated receptor (PPAR) signaling pathways were linked to candidate genes. Additionally, immune cell infiltration analysis revealed that CASP8 was associated with natural killer T cells, natural killer cells, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSC), macrophages, CD8 T cells, and CD4 T cells. Finally, miR-34a-5p and several TFs were found to regulate the expression of CASP8 and TNF. CONCLUSION CASP8 and TNF are potential targets of N. chinensis intervention in pyroptosisrelated AF, and the TLR/NLRP3 signaling pathway may be associated with this process.
Collapse
Affiliation(s)
- Weiqi Xue
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Luo
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weifeng He
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengyuan Yan
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huanyi Zhao
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijin Qing
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Liu J, Li W, Li J, Song E, Liang H, Rong W, Jiang X, Xu N, Wang W, Qu S, Gu S, Zhang Y, Yu Zhang C, Zen K. A Novel Pathway of Functional microRNA Uptake and Mitochondria Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300452. [PMID: 37357137 PMCID: PMC10460862 DOI: 10.1002/advs.202300452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/22/2023] [Indexed: 06/27/2023]
Abstract
Extracellular microRNAs (miRNAs) play a critical role in horizontal gene regulation. Uptake of extracellular miRNAs by recipient cells and their intracellular transport, however, remains elusive. Here RNA phase separation is shown as a novel pathway of miRNA uptake. In the presence of serum, synthetic miRNAs rapidly self-assembly into ≈110 nm discrete nanoparticles, which enable miRNAs' entry into different cells. Depleting serum cationic proteins prevents the formation of such nanoparticles and thus blocks miRNA uptake. Different from lipofectamine-mediated miRNA transfection in which majority of miRNAs are accumulated in lysosomes of transfected cells, nanoparticles-mediated miRNA uptake predominantly delivers miRNAs into mitochondria in a polyribonucleotide nucleotidyltransferase 1(PNPT1)-dependent manner. Functional assays further show that the internalized miR-21 via miRNA phase separation enhances mitochondrial translation of cytochrome b (CYB), leading to increase in adenosine triphosphate (ATP) and reactive oxygen species (ROS) reduction in HEK293T cells. The findings thus reveal a previously unrecognized mechanism for uptake and delivery functional extracellular miRNAs into mitochondria.
Collapse
Affiliation(s)
- Jiachen Liu
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing University School of Life SciencesNanjingJiangsu210093China
| | - Weili Li
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing University School of Life SciencesNanjingJiangsu210093China
| | - Jianfeng Li
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing University School of Life SciencesNanjingJiangsu210093China
| | - Eli Song
- The Laboratory of Biological Electron Microscopy and Structural Biology Centre for Biological ImagingInstitute of Biophysics ChineseAcademy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
| | - Hongwei Liang
- School of Life Science and TechnologyChina Pharmaceutical University639 Longmian AvenueNanjingJiangsu211198China
| | - Weiwei Rong
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing University School of Life SciencesNanjingJiangsu210093China
| | - Xinli Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing University School of Life SciencesNanjingJiangsu210093China
| | - Nuo Xu
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing University School of Life SciencesNanjingJiangsu210093China
| | - Wei Wang
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing University School of Life SciencesNanjingJiangsu210093China
| | - Shuang Qu
- School of Life Science and TechnologyChina Pharmaceutical University639 Longmian AvenueNanjingJiangsu211198China
| | - Shouyong Gu
- Institute of Geriatric MedicineJiangsu Province Geriatric HospitalNanjingJiangsuChina
| | - Yujing Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing University School of Life SciencesNanjingJiangsu210093China
| | - Chen‐ Yu Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing University School of Life SciencesNanjingJiangsu210093China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing University School of Life SciencesNanjingJiangsu210093China
| |
Collapse
|
3
|
Lai WD, Wang S, You WT, Chen SJ, Wen JJ, Yuan CR, Zheng MJ, Jin Y, Yu J, Wen CP. Sinomenine regulates immune cell subsets: Potential neuro-immune intervene for precise treatment of chronic pain. Front Cell Dev Biol 2022; 10:1041006. [PMID: 36619869 PMCID: PMC9813792 DOI: 10.3389/fcell.2022.1041006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic pain is a disease of long-lasting pain with unpleasant feelings mediated by central and (or) peripheral sensitization, its duration usually lasts more than 3 months or longer than the expected recovery time. The patients with chronic pain are manifested with enhanced sensitivity to noxious and non-noxious stimuli. Due to an incomplete understanding of the mechanisms, patients are commonly insensitive to the treatment of first line analgesic medicine in clinic. Thus, the exploration of non-opioid-dependent analgesia are needed. Recent studies have shown that "sinomenine," the main active ingredient in the natural plant "sinomenium acutum (Thunb.) Rehd. Et Wils," has a powerful inhibitory effect on chronic pain, but its underlying mechanism still needs to be further elucidated. A growing number of studies have shown that various immune cells such as T cells, B cells, macrophages, astrocytes and microglia, accompanied with the relative inflammatory factors and neuropeptides, are involved in the pathogenesis of chronic pain. Notably, the interaction of the immune system and sensory neurons is essential for the development of central and (or) peripheral sensitization, as well as the progression and maintenance of chronic pain. Based on the effects of sinomenine on immune cells and their subsets, this review mainly focused on describing the potential analgesic effects of sinomenine, with rationality of regulating the neuroimmune interaction.
Collapse
Affiliation(s)
- Wei-Dong Lai
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Song Wang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wen-Ting You
- Department of Pharmacy, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Si-Jia Chen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun-Jun Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cun-Rui Yuan
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng-Jia Zheng
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Jin
- Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Yu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Jie Yu, ; Cheng-Ping Wen,
| | - Cheng-Ping Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Jie Yu, ; Cheng-Ping Wen,
| |
Collapse
|
4
|
Lu X, Yang R, Zhang L, Xi Y, Zhao J, Wang F, Zhang H, Li Z. Macrophage Colony-stimulating Factor Mediates the Recruitment of Macrophages in Triple negative Breast Cancer. Int J Biol Sci 2019; 15:2859-2871. [PMID: 31853223 PMCID: PMC6909971 DOI: 10.7150/ijbs.39063] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC) is characterized by aggressive malignant tumor, poor prognosis and lack of targeted treatment. Several studies have established that macrophages are closely associated with the progression of TNBC. Through immunohistochemical analysis, we found that the infiltration of macrophage in TNBC tissue was more than that in non-triple negative breast cancer (nTNBC) tissue. Furthermore, the conditioned medium (CM) of MDA-MB-231 and HCC1937, the TNBC cell lines, had significant migration-promoted effect on macrophages. However, the macrophages migration-promoted ability of nTNBC cell line MCF-7 was weaker than that of MDA-MB-231 and HCC1937 cells. Mechanistically, MDA-MB-231 and HCC1937 cells secreted more macrophage colony-stimulating factor (M-CSF) than MCF-7, which is the main inducer of macrophage migration, and the secreted M-CSF promoted the increase in actin and the elongation of pseudopodia. When M-CSF was neutralized by antibody, the elongation of macrophage pseudopodia was disappeared and the migration was inhibited. In vivo, there were more macrophages in tumors induced by MDA-MB-231 than MCF-7 did. Therefore, M-CSF specially secreted by TNBC was the important cause of macrophages aggregation in TNBC, which further promoted the aggressiveness of TNBC.
Collapse
Affiliation(s)
- Xiaoqing Lu
- Breast surgery, the second Hospital of Shanxi Medical University, Taiyuan 030001,
| | - Rui Yang
- The second Clinical Medical College, Shanxi Medical University, Taiyuan 030001,
| | - Lichao Zhang
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| | - Yanfeng Xi
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan 030001, China.
| | - Jiping Zhao
- Breast surgery, the second Hospital of Shanxi Medical University, Taiyuan 030001,
| | - Fusheng Wang
- Breast surgery, the second Hospital of Shanxi Medical University, Taiyuan 030001, China. . 13099096632
| | - Huanhu Zhang
- Department of Digestive Sciences, Shanxi Cancer Hospital, Taiyuan 030001, China. . 18035119990
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, 030006, China. . 13934565188.,School of Life Science, Shanxi University, Taiyuan, 030006, China. . 13934565188
| |
Collapse
|
5
|
Huang C, Qian SL, Sun LY, Cheng B. Light-Emitting Diode Irradiation (640 nm) Regulates Keratinocyte Migration and Cytoskeletal Reorganization Via Hypoxia-Inducible Factor-1α. Photomed Laser Surg 2016; 34:313-20. [PMID: 27244052 DOI: 10.1089/pho.2015.4077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The objective of this study was to determine the effect of light-emitting diode (LED) irradiation on the migration and proliferation of keratinocytes. BACKGROUND DATA Keratinocytes play a key role in re-epithelialization during wound healing; it is speculated that low-level LED therapy might improve keratinocyte migration and proliferation. MATERIALS AND METHODS Human keratinocyte cells (HKCs) were isolated from child or adult foreskins and irradiated with LED light with a wavelength of 640 nm and a dosage of 12 or 24 J/cm(2). Cell motility, migration, and proliferation were examined using live cell imaging, scratch assay, and a colorimetric cell counting assay, respectively. Hypoxia-inducible factor-1α (HIF-1α) protein levels were analyzed by using Western blotting. Filamentous actin (F-actin) was stained by phalloidin. YC-1 [3-(5-hydroxymethyl-2-furyl)-1-benzylindazole] was used as an HIF-1 inhibitor, and CoCl2 (cobalt chloride) and DMOG (dimethyloxaloyl glycine) are HIF-1α activators. RESULTS LED irradiation significantly promoted cell motility and migration, but did not significantly influence cell proliferation in HKCs. Furthermore, LED irradiation resulted in a reorganization of cellular F-actin and a dramatic upregulation of HIF-1α expression. Suppression of HIF-1α using the compound YC-1 prevented reorganization of the actin cytoskeleton following LED irradiation, suggesting that the effect of LED irradiation on the cytoskeleton is mediated through HIF-1α. Conversely, chemical activation of HIF-1α via DMOG or CoCl2 resulted in a reorganization of F-actin. CONCLUSIONS LED irradiation may increase keratinocyte migration via HIF-1α-dependent cytoskeletal reorganization.
Collapse
Affiliation(s)
- Chong Huang
- 1 The Second Military Medical University of People's Liberation Army , Shang Hai, P.R. China .,2 Department of Plastic Surgery, General Hospital of Guangzhou Military Command , PLA, Guangzhou, P.R. China
| | - Sheng Lin Qian
- 2 Department of Plastic Surgery, General Hospital of Guangzhou Military Command , PLA, Guangzhou, P.R. China
| | - Li Yue Sun
- 3 Department of Oncology, General Hospital of Guangzhou Military Command , PLA, Guangzhou, P.R. China
| | - Biao Cheng
- 2 Department of Plastic Surgery, General Hospital of Guangzhou Military Command , PLA, Guangzhou, P.R. China
| |
Collapse
|
6
|
Li Y, Shi S, Gao J, Han S, Wu X, Jia Y, Su L, Shi J, Hu D. Cryptotanshinone downregulates the profibrotic activities of hypertrophic scar fibroblasts and accelerates wound healing: A potential therapy for the reduction of skin scarring. Biomed Pharmacother 2016; 80:80-86. [DOI: 10.1016/j.biopha.2016.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 11/27/2022] Open
|
7
|
Chen W, Lu Y, Chen G, Huang S. Molecular evidence of cryptotanshinone for treatment and prevention of human cancer. Anticancer Agents Med Chem 2014; 13:979-87. [PMID: 23272908 DOI: 10.2174/18715206113139990115] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 12/27/2022]
Abstract
Cryptotanshinone is one of the major tanshinones isolated from the roots of the plant Salvia miltiorrhiza Bunge (Danshen). Danshen has been widely used in traditional Chinese medicine for treatment of a variety of diseases, including coronary artery disease, acute ischemic stroke, hyperlipidemia, chronic renal failure, chronic hepatitis, and Alzheimer's disease, showing no serious adverse effects. Recent studies have shown that cryptotanshinone not only possesses the potential for treatment and prevention of the above-mentioned diseases, but also is a potent anticancer agent. Here we briefly summarize the physical and chemical properties and the pharmacokinetic profiles of cryptotanshinone, and then comprehensively review its anticancer activities as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Wenxing Chen
- College of Pharmacy and Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, China.
| | | | | | | |
Collapse
|
8
|
Spectroscopic Investigation of the Interactions of Cryptotanshinone and Icariin with Two Serum Albumins. J SOLUTION CHEM 2013. [DOI: 10.1007/s10953-013-0022-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Gao D, Mendoza A, Lu S, Lawrence DA. Immunomodulatory Effects of Danshen (Salvia miltiorrhiza) in BALB/c Mice. ISRN INFLAMMATION 2012; 2012:954032. [PMID: 24049654 PMCID: PMC3765791 DOI: 10.5402/2012/954032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/23/2012] [Indexed: 11/23/2022]
Abstract
Danshen, the root and rhizome of Salvia miltiorrhiza Bge, a Traditional Chinese Medicine, especially for cardiovascular and cerebrovascular diseases, has unique immunomodulatory effects. Danshen is capable of anti-inflammation and antiallergy, which are immunosuppressive activities, whereas it is also able to promote immunity against cancer, viruses, and bacteria. Most previous reports were performed with use of a purified compound or compounds of Danshen. Since there are more than twenty active compounds in Danshen, it is very difficult to predict that one compound will act the same way when it is combined with other compounds. In order to overcome this limitation, we used the crude form of Danshen to study its immunomodulatory effects in a mouse model. The mice were fed daily diet supplements of Danshen for three months and then tested for their immunity, including leukocyte subsets in peripheral blood, humoral and cell-mediated immune responses, and host defenses against a Listeria monocytogenes (LM) infection. Different doses of Danshen caused different immunomodulatory effects. Danshen at 0.5% decreased serum IgE production in BALB/c mice; 1% Danshen promoted cell-mediated immunity; Danshen at 0.5 and 1% inhibited the production of oxygen free radicals in liver and spleen and NO production in liver; 2% Danshen enhanced the host resistance against LM with increased numbers of peripheral monocytes and natural killer (NK) cells and decreased production of IL-1 β and NO.
Collapse
Affiliation(s)
- Donghong Gao
- Biggs Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | | | | | | |
Collapse
|
10
|
Shome S, Dasgupta PS, Basu S. Dopamine regulates mobilization of mesenchymal stem cells during wound angiogenesis. PLoS One 2012; 7:e31682. [PMID: 22355389 PMCID: PMC3280323 DOI: 10.1371/journal.pone.0031682] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/15/2012] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is an important step in the complex biological and molecular events leading to successful healing of dermal wounds. Among the different cellular effectors of wound angiogenesis, the role of mesenchymal stem cells (MSCs) is of current interest due to their transdifferentiation and proangiogenic potentials. Skin is richly innervated by sympathetic nerves which secrete dopamine (DA) and we have recently shown that concentration of DA present in synaptic cleft can significantly inhibit wound tissue neovascularization. As recent reports indicate that MSCs by mobilizing into wound bed play an important role in promoting wound angiogenesis, we therefore investigated the effect of DA on the migration of MSCs in wound tissues. DA acted through its D(2) receptors present in the MSCs to inhibit their mobilization to the wound beds by suppressing Akt phosphorylation and actin polymerization. In contrast, this inhibitory effect of DA was reversed after treatment with specific DA D(2) receptor antagonist. Increased mobilization of MSCs was demonstrated in the wound site following blockade of DA D(2) receptor mediated actions, and this in turn was associated with significantly more angiogenesis in wound tissues. This study is of translational value and indicates use of DA D(2) receptor antagonists to stimulate mobilization of these stem cells for faster regeneration of damaged tissues.
Collapse
Affiliation(s)
- Saurav Shome
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Partha Sarathi Dasgupta
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
- * E-mail: (PSD); (SB)
| | - Sujit Basu
- Department of Pathology, Ohio State University, Columbus, Ohio, United States of America
- Dorthy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (PSD); (SB)
| |
Collapse
|
11
|
Zhu W, Fu A, Hu J, Wang T, Luo Y, Peng M, Ma Y, Wei Y, Chen L. 5-Formylhonokiol exerts anti-angiogenesis activity via inactivating the ERK signaling pathway. Exp Mol Med 2011; 43:146-52. [PMID: 21297378 DOI: 10.3858/emm.2011.43.3.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Our previous report has demonstrated that 5-formylhonokiol (FH), a derivative of honokiol (HK), exerts more potent anti-proliferative activities than honokiol in several tumor cell lines. In present study, we first explored the antiangiogenic activities of 5-formylhonokiol on proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) for the first time in vitro. Then we investigated the in vivo antiangiogenic effect of 5-formylhonokiol on zebrafish angiogenesis model. In order to clarify the underlying molecular mechanism of 5-formylhonokiol, we investigated the signaling pathway involved in controlling the angiogenesis process by western blotting assay. Wound-healing results showed that 5-formylhonokiol significantly and dose-dependently inhibited migration of cultured human umbilical vein enthothelial cells. The invasiveness of HUVEC cells was also effectively suppressed at a low concentration of 5-formylhonokiol in the transwell assay. Further F-actin imaging revealed that inhibitory effect of 5-formylhonokiol on invasion may partly contribute to the disruption of assembling stress fiber. Tube formation assay, which is associated with endothelial cells migration, further confirmed the anti-angiogenesis effect of 5-formylhonokiol. In in vivo zebrafish angiogenesis model, we found that 5-formylhonokiol dose-dependently inhibited angiogenesis. Furthermore, western blotting showed that 5-formylhonokiol significantly down-regulated extracellular signal-regulated kinase (ERK) expression and inhibited the phosphorylation of ERK but not affecting the total protein kinase B (Akt) expression and related phosphorylation, suggesting that 5-formylhonokiol might exert anti-angiogenesis capacity via down-regulation of the ERK signal pathway. Taken together, these data suggested that 5-formylhonokiol might be a viable drug candidate in antiangiogenesis and anticancer therapies.
Collapse
Affiliation(s)
- Wei Zhu
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Moon SS, Rahman AA, Kim JY, Kee SH. Hanultarin, a cytotoxic lignan as an inhibitor of actin cytoskeleton polymerization from the seeds of Trichosanthes kirilowii. Bioorg Med Chem 2008; 16:7264-9. [PMID: 18603435 DOI: 10.1016/j.bmc.2008.06.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 06/17/2008] [Accepted: 06/18/2008] [Indexed: 11/17/2022]
Abstract
Bioactivity-directed fractionation of extracts from the seeds of Trichosanthes kirilowii led to the isolation of (-)-1-O-feruloylsecoisolariciresinol (2), named hanultarin, In addition, four known lignans were also isolated, including (-)-secoisolariciresinol (1), 1,4-O-diferuloylsecoisolariciresinol (3), (-)-pinoresinol (4), and 4-ketopinoresinol (5). Their structures were elucidated on the basis of spectroscopic data. Compounds 2 and 3 exhibited strong cytotoxic effects against human lung carcinoma A549 cells, melanoma SK-Mel-2 cells, and mouse skin melanoma B16F1 cells with IC(50) ranges of 3-13 microg/mL. Compound 2 showed an inhibitory effect on the polymerization of the actin cytoskeleton in normal epidermal keratinocyte (HaCaT cells), suggesting unique biological properties of compound 2 compared to those of the other isolates.
Collapse
Affiliation(s)
- Surk-Sik Moon
- Department of Chemistry, Kongju National University, 182 Shinkwangdong, Kongju 314-701, Republic of Korea.
| | | | | | | |
Collapse
|