1
|
Yuan J, Dong X, Zhou S, Nao J. Pharmacological activities and therapeutic potential of Hyperoside in the treatment of Alzheimer's and Parkinson's diseases: A systemic review. Neuroscience 2024; 563:136-147. [PMID: 39489478 DOI: 10.1016/j.neuroscience.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are neurodegenerative disorders that significantly impact well-being. Hyperoside (HYP), a flavonoid found in various plant species, particularly within the genus Hypericin, exhibits diverse pharmacological properties. However, the precise mechanisms underlying the anti-AD and anti-PD effects of HYP remain unclear. This systematic review consolidated existing preclinical research on HYP by conducting a comprehensive literature survey and analysis. The objective was to corroborate the therapeutic efficacy of HYP in AD and PD models and to synthesize its potential therapeutic mechanisms. Searches were conducted in the PubMed, CNKI, and Web of Science databases. Reliability assessment of the 17 included studies confirmed the credibility of the mechanisms of action of HYP against AD and PD. We systematically assessed the neuroprotective potential of HYP in in vivo and in vitro models of AD and PD. Our findings indicated that HYP can mitigate, intervene in, and treat AD and PD animal models and associated cells through various mechanisms, including anti-oxidative, anti-inflammatory, anti-apoptotic, anti-Aβ aggregation, and cholinesterase inhibitory activities. Therefore, HYP potentially exerts anti-AD and anti-PD effects through diverse mechanisms, making it a promising candidate for therapeutic intervention in both AD and PD.
Collapse
Affiliation(s)
- Jiayu Yuan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Siyu Zhou
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
2
|
Suryawanshi MV, Gujarathi PP, Mulla T, Bagban I. Hypericum perforatum: a comprehensive review on pharmacognosy, preclinical studies, putative molecular mechanism, and clinical studies in neurodegenerative diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3803-3818. [PMID: 38175276 DOI: 10.1007/s00210-023-02915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The herb Hypericum perforatum, also referred to as St. John's wort, has drawn a lot of interest because of its potential therapeutic benefits in treating neurodegenerative illnesses. Due to the absence of effective therapies, illnesses like Alzheimer's and Parkinson's disease pose an increasing worldwide health concern. Because of its wide variety of phytochemicals, especially hyperforin, and hypericin, Hypericum perforatum is well known for its neuroprotective properties. These substances have proven to be able to affect different cellular processes linked to neurodegeneration. They can act as anti-inflammatory, antioxidant, and neurotransmitter system regulators, which may help halt neurodegenerative illnesses' progression. The use of Hypericum perforatum extracts and its contents has shown encouraging results in research on animal models of neurodegenerative disorders. These advantages include higher nerve cell survival, lowered oxidative stress, and higher cognitive performance. Underscoring its versatile potential to combat neurodegeneration, Hypericum perforatum has neuroprotective mechanisms that modulate neuroinflammation and prevent apoptotic pathways. In conclusion, Hypericum perforatum shows tremendous promise as a potential treatment for neurological illnesses due to its wide variety of phytochemicals. To completely comprehend its specific mechanisms of action and turn these discoveries into efficient clinical therapies, additional research is needed. Investigating Hypericum perforatum's function in neurodegenerative disorders may present new opportunities for the advancement of ground-breaking therapeutic strategies.
Collapse
Affiliation(s)
- Meghraj Vivekanand Suryawanshi
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, 302017, India
- Department of Pharmaceutics and Pharmaceutical Technology, Krishna School of Pharmacy and Research, Drs. Kiran and Pallavi Patel Global University, Varnama, Vadodara, Gujarat, 391240, India
- AllWell Neuritech LLP, Dharngaon, Maharashtra, 425105, India
| | - Pranjal P Gujarathi
- Department of Pharmacology, Vidhyadeep Institute of Pharmacy, Vidhyadeep University, Anita, Kim, Surat, Gujarat, 394110, India.
- Centre for Advance Research, Bhagwan Mahavir College of Pharmacy, Bhagwan Mahavir University, Vesu, Surat, Gujarat, 395007, India.
| | - Taufik Mulla
- Department of Pharmaceutics and Pharmaceutical Technology, Krishna School of Pharmacy and Research, Drs. Kiran and Pallavi Patel Global University, Varnama, Vadodara, Gujarat, 391240, India
| | - Imtiyaz Bagban
- Department of Pharmacology, Krishna School of Pharmacy and Research, Drs. Kiran and Pallavi Patel Global University, Varnama, Vadodara, Gujarat, 391240, India
| |
Collapse
|
3
|
Bussmann H, Bremer S, Häberlein H, Boonen G, Drewe J, Butterweck V, Franken S. Impact of St. John's wort extract Ze 117 on stress induced changes in the lipidome of PBMC. Mol Med 2023; 29:50. [PMID: 37029349 PMCID: PMC10082490 DOI: 10.1186/s10020-023-00644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Membrane lipids have an important function in the brain as they not only provide a physical barrier segregating the inner and outer cellular environments, but are also involved in cell signaling. It has been shown that the lipid composition effects membrane fluidity which affects lateral mobility and activity of membrane-bound receptors. METHODS Since changes in cellular membrane properties are considered to play an important role in the development of depression, the effect of St. John's wort extract Ze 117 on plasma membrane fluidity in peripheral blood mononuclear cells (PBMC) was investigated using fluorescence anisotropy measurements. Changes in fatty acid residues in phospholipids after treatment of cortisol-stressed [1 μM] PBMCs with Ze 117 [10-50 µg/ml] were analyzed by mass spectrometry. RESULTS Cortisol increased membrane fluidity significantly by 3%, co-treatment with Ze 117 [50 µg/ml] counteracted this by 4.6%. The increased membrane rigidity by Ze 117 in cortisol-stressed [1 μM] PBMC can be explained by a reduced average number of double bonds and shortened chain length of fatty acid residues in phospholipids, as shown by lipidomics experiments. CONCLUSION The increase in membrane rigidity after Ze 117 treatment and therefore the ability to normalize membrane structure points to a new mechanism of antidepressant action of the extract.
Collapse
Affiliation(s)
- Hendrik Bussmann
- Max Zeller Söhne AG, Seeblickstrasse 4, 8590, Romanshorn, Switzerland
| | - Swen Bremer
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Hanns Häberlein
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Georg Boonen
- Max Zeller Söhne AG, Seeblickstrasse 4, 8590, Romanshorn, Switzerland
| | - Jürgen Drewe
- Max Zeller Söhne AG, Seeblickstrasse 4, 8590, Romanshorn, Switzerland
| | | | - Sebastian Franken
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany.
| |
Collapse
|
4
|
Unay S, Bilgin MD. Investigation of effects of quercetin and low-level laser therapy in cisplatin-induced in vitro peripheral neuropathy model. Lasers Med Sci 2023; 38:49. [PMID: 36689023 DOI: 10.1007/s10103-023-03718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the dose-dependent side effects of cisplatin. The loss of sensory neurons is observed in CIPN. There are many methods to minimalize CIPN symptoms such as pharmacological agents and photobiostimulation but the mechanisms of these methods are unclear. Our study is aimed at determining the effects of quercetin and low-level laser therapy (LLLT) in undifferentiated and nerve growth factor-differentiated PC12 cells in cisplatin-induced peripheral neuropathy. PC12 cells with cisplatin were co-treated with quercetin and LLLT (diode pumped all-solid-state laser, 670 nm, output 500 mW, and the laser beam surface area was 1.96 cm2). The effects of quercetin and LLLT on GAP-43 and Synapsin I expressions were analyzed by real-time PCR, cell viability was assessed by MTT assay, Annexin and dead assay measured the induction of apoptosis, the alterations in mitopotential were assessed by mitopotential assay, and lactate dehydrogenase activity in cells was analyzed. All experiment data were analyzed by the Tukey test and applied as a post hoc test, and statistical evaluation was made. Our results indicated that cisplatin increased apoptosis (24,210 ± 2189, 46,504 ± 8246) cells, mitochondrial dysfunction (44,312 ± 0.751, 68,788 ± 1271), and LDH activity (62,821 ± 8245, 87,838 ± 8116). Furthermore, it decreased cell viability (42,447 ± 1780, 36,140 ± 3682) and inhibited GAP-43 and Synapsin I genes in undifferentiated and differentiated PC12 cells. However, apoptosis, the alterations in mitopotential, and lactate dehydrogenase activity decreased by applications of quercetin and LLLT. It has been recommended that quercetin and low-level laser therapy roles on cisplatin-induced peripheral neuropathy should be investigated in vivo, and the relationship between quercetin and low-level laser therapy should be molecular.
Collapse
Affiliation(s)
- Simge Unay
- Department of Biophysics, Healthy Science Institute, Aydin Adnan Menderes University, TR-09100, Aydin, Turkey
- Present address: Department of Biophysics, School of Medicine, Lokman Hekim University, TR-06510, Ankara, Turkey
| | - Mehmet Dincer Bilgin
- Department of Biophysics, School of Medicine, Aydin Adnan Menderes University, 09010, Aydin, Turkey.
| |
Collapse
|
5
|
YILMAZOĞLU E, HASDEMİR M, HASDEMİR B. Recent Studies on Antioxidant, Antimicrobial, and Ethnobotanical Uses of Hypericum perforatum L. (Hypericaceae). JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1024791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
6
|
Oliveira AI, Pinho C, Sarmento B, Dias ACP. Quercetin-biapigenin nanoparticles are effective to penetrate the blood-brain barrier. Drug Deliv Transl Res 2022; 12:267-281. [PMID: 33709285 DOI: 10.1007/s13346-021-00917-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 01/16/2023]
Abstract
Search for efficient therapeutic agents for central nervous system (CNS) disorders has been extensive. Nevertheless, blood-brain barrier (BBB) is an obstacle that prevents the majority of compounds to act in these diseases. It is, thus, of extreme relevance the BBB overcome, in order to deliver a drugs therapeutically active concentration to the action site, with the least losses and interaction with other organs, tissues, or cells. The present study aimed to investigate the potential protective effect of quercetin-biapigenin encapsulated into poly(Ɛ-polycaprolactone) (PCL) nanoparticles against t-BOOH-induced oxidative stress in several brain cell lines, as well as evaluate the permeability of those active molecules through an in vitro BBB model. The three cell lines under study (BV-2, hcmec/D3, and U87) presented different reactions to t-BOOH. In general, quercetin-biapigenin PCL-loaded nanoparticles were able to minimize compound toxicity they convey, regardless the cell line. Quercetin-biapigenin PCL-loaded nanoparticles (Papp of approximately 80 × 10-6 cm/s) revealed to be more permeable than free compounds (Papp of approximately 50 × 10-6 cm/s). As of our knowledge, this is the first report of quercetin-biapigenin PCL-loaded nanoparticle activity in brain cells. It is also the first determining its permeability through BBB, as an effective nanocarrier for brain delivery.
Collapse
Affiliation(s)
- Ana Isabel Oliveira
- Centro de Investigação Em Saúde E Ambiente (CISA), Escola Superior de Saúde -Politécnico do Porto (ESS-P.Porto), 4000-072, Porto, Portugal.
| | - Cláudia Pinho
- Centro de Investigação Em Saúde E Ambiente (CISA), Escola Superior de Saúde -Politécnico do Porto (ESS-P.Porto), 4000-072, Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- CESPU, Instituto de Investigação E Formação Avançada Em Ciências E Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, 4585-116, Gandra, Portugal
| | - Alberto C P Dias
- Centre of Molecular and Environmental Biology (CBMA), Biology Department, Department of Biology, University of Minho, 4710-057, Braga, Portugal
| |
Collapse
|
7
|
Afsharzadeh N, Lavi Arab F, Sankian M, Samiei L, Tabasi NS, Afsharzadeh D, Nikkhah K, Mahmoudi M. Comparative assessment of proliferation and immunomodulatory potential of Hypericum perforatum plant and callus extracts on mesenchymal stem cells derived adipose tissue from multiple sclerosis patients. Inflammopharmacology 2021; 29:1399-1412. [PMID: 34510276 DOI: 10.1007/s10787-021-00838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Mesenchymal stem cells-derived adipose tissue (AT-MSCs) are recognized for the treatment of inflammatory diseases including multiple sclerosis (MS). Hypericum perforatum (HP) is an anti-inflammatory pharmaceutical plant with bioactive compounds. Plant tissue culture is a technique to improve desired pharmacological potential. The aim of this study was to compare the anti-inflammatory and proliferative effects of callus with field-growing plant extracts of HP on AT-MSCs derived from MS patients. MATERIALS AND METHODS AT-MSCs were isolated and characterized. HP callus was prepared and exposure to light spectrum (blue, red, blue-red, and control). Total phenols, flavonoids, and hypericin of HP callus and plant extracts were measured. The effects of HP extracts concentrations on proliferation were evaluated by MTT assay. Co-culture of AT-MSCs: PBMCs were challenged by HP plant and callus extracts, and Tregs percentage was assessed by flow cytometry. RESULTS Identification of MSCs was performed. Data showed that blue light could stimulate total phenols, flavonoids, and hypericin. MTT test demonstrated that plant extract in concentrations (0.03, 1.2, 2.5 and 10 μg/ml) and HP callus extract in 10 μg/ml significantly increased. Both HP extracts lead to an increase in Tregs percentage in all concentrations. In particular, a comparison between HP plant and callus extracts revealed that Tregs enhanced 3-fold more than control groups in the concentration of 10 μg/ml callus. CONCLUSIONS High concentrations of HP extracts showed effectiveness on AT-MSCs proliferation and immunomodulatory properties with a certain consequence in callus extract. HP extracts may be considered as supplementary treatments for the patients who receiving MSCs transplantation.
Collapse
Affiliation(s)
- Negin Afsharzadeh
- Immunology Research Center, Bu-Ali Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Bu-Ali Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Samiei
- Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nafiseh Sadat Tabasi
- Immunology Research Center, Bu-Ali Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Danial Afsharzadeh
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Karim Nikkhah
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Mountaki C, Dafnis I, Panagopoulou EA, Vasilakopoulou PB, Karvelas M, Chiou A, Karathanos VT, Chroni A. Mechanistic insight into the capacity of natural polar phenolic compounds to abolish Alzheimer's disease-associated pathogenic effects of apoE4 forms. Free Radic Biol Med 2021; 171:284-301. [PMID: 34019932 DOI: 10.1016/j.freeradbiomed.2021.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Polar phenols found in plant foods have been suggested to act protectively against pathogenic processes underlying Alzheimer's disease (AD), such as oxidative stress. The major risk factor for AD is apolipoprotein E4 (apoE4) and apoE4 forms can affect AD-related processes. It was shown previously that the hereditary apoE4 mutant apoE4[L28P], as well as the apoE4 fragment apoE4-165, induce neuronal oxidative stress. The effect of polar phenols on AD-related pathogenic functions of apoE4 forms is largely unexplored. The aim was to examine the effect of Corinthian currant polar phenolic extract and specific polar phenols resveratrol, quercetin, kaempferol and epigallocatechin gallate on AD-related functions of apoE4 forms. The polar phenolic extract and the individual compounds restored the viability of human neuroblastoma SK-N-SH cells in the presence of lipoprotein-associated apoE4[L28P] and prevented changes in cellular redox status. Furthermore, resveratrol, quercetin, kaempferol and epigallocatechin gallate prevented redox status changes induced by Aβ42 uptake in SK-N-SH cells treated with lipid-free apoE4[L28P] or apoE4-165. Investigation of the molecular mechanism of action of these polar phenols showed that resveratrol prevented cellular Aβ42 uptake via changes in cell membrane fluidity. Interestingly, kaempferol prevented cellular Aβ42 uptake by apoE4[L28P], but not by apoE4-165, due to a modulating effect on apoE4[L28P] secondary structure and stability. The action of quercetin and epigallocatechin gallate could be attributed to free radical-scavenging or other protective activity. Overall, it is shown for the first time that natural compounds could modify the structure of apoE4 forms and ameliorate AD-related pathogenic effects of apoE4 forms.
Collapse
Affiliation(s)
- Christina Mountaki
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Ioannis Dafnis
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Eirini A Panagopoulou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, Kallithea, Greece
| | - Paraskevi B Vasilakopoulou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, Kallithea, Greece
| | - Michalis Karvelas
- Research and Development Department, Agricultural Cooperatives' Union of Aeghion, Aeghion, Greece
| | - Antonia Chiou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, Kallithea, Greece
| | - Vaios T Karathanos
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, Kallithea, Greece; Research and Development Department, Agricultural Cooperatives' Union of Aeghion, Aeghion, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece.
| |
Collapse
|
9
|
Bicyclic polyprenylated acylphloroglucinols and their derivatives: structural modification, structure-activity relationship, biological activity and mechanism of action. Eur J Med Chem 2020; 205:112646. [PMID: 32791400 DOI: 10.1016/j.ejmech.2020.112646] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/22/2022]
Abstract
Bicyclic polyprenylated acylphloroglucinols (BPAPs), the principal bioactive benzophenone products isolated from plants of genera Garcinia and Hypericum, have attracted noticeable attention from the synthetic and biological communities due to their fascinating chemical structures and promising biological activities. However, the potential drug interaction, undesired physiochemical properties and toxicity have limited their potential use and development. In the last decade, pharmaceutical research on the structural modifications, structure-activity relationships (SARs) and mechanisms of action of BPAPs has been greatly developed to overcome the challenges. A comprehensive review of these scientific literature is extremely needed to give an overview of the rapidly emerging area and facilitate research related to BPAPs. This review, containing over 226 references, covers the progress made in the chemical synthesis-based structure modifications, SARs and the mechanism of action of BPAPs in vivo and vitro. The most relevant articles will focus on the discovery of lead compounds via synthetic modifications and the important BPAPs for which the direct targets have been deciphered. From this review, several key points of the SARs and mode of actions of this novel class of compounds have been summarized. The perspective and future direction of the research on BPAPs are concluded. This review would be helpful to get a better grasp of medicinal research of BPAPs and become a compelling guide for chemists dedicated to the synthesis of these compounds.
Collapse
|
10
|
Sureda A, Capó X, Tejada S. Neuroprotective Effects of Flavonoid Compounds on Neuronal Death Associated to Alzheimer’s Disease. Curr Med Chem 2019; 26:5124-5136. [DOI: 10.2174/0929867325666171226103237] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 01/25/2023]
Abstract
Alzheimer’s disease is an increasing neurodegenerative pathology related to
age in many societies. Some aspects of the disease are related to the loss of neuronal cells
derived by the formation of extracellular neuritic plaques and the appearance of intracellular
neurofibrillary tangles, altogether generating an inflammatory and oxidative status.
The accumulation of amyloids in cells induces the activation of the apoptotic cascade
which implies caspases activation. Alzheimer’s disease is treated with acetylcholine esterase
inhibitors, although their effects are still far away to reduce or eliminate the problems
associated with the pathology. The lack of effective treatment has led to the search
for new therapeutic alternatives based on natural products. Flavonoids comprise a group
of phenolic compounds that have gained great interest since they present great diversity of
biological activities. In the present work, we review the potential uses of flavonoids and
the proposed mechanisms of action as a new therapeutic strategy in neurological cell
death associated with Alzheimer’s disease.
Collapse
Affiliation(s)
- Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain
| | - Xavier Capó
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain
| | - Silvia Tejada
- CIBEROBN (Physiopathology of Obesity and Nutrition), E- 07122 Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
11
|
Keksel N, Bussmann H, Unger M, Drewe J, Boonen G, Häberlein H, Franken S. St John's wort extract influences membrane fluidity and composition of phosphatidylcholine and phosphatidylethanolamine in rat C6 glioblastoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:66-76. [PMID: 30668384 DOI: 10.1016/j.phymed.2018.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/27/2018] [Accepted: 06/18/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chronic stress, an important factor in the development of depressive disorders, leads to an increased formation of cortisol, which causes a hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. In addition, cortisol mediates an adaptive effect on plasma membrane fluidity which may affect signal transduction of membrane-bound receptors and contribute to pathophysiological changes. METHODS Membrane fluidity was measured by fluorescence anisotropy using DPH (1,6-diphenyl-1,3,5-hexatriene) and TMA-DPH (1-(4-(trimethylamino)phenyl)-6-phenylhexa-1,3,5-triene). Changes in cellular content of phosphatidylcholine species was determined by pulse-chase experiments using deuterated choline and mass spectrometry. Single molecule tracking was used to examine the lateral mobility of β1-adrenoceptors and changes in cAMP formation were measured by ELISA. RESULTS Chronic exposure (6 - 8 days) of C6 cells to cortisol dose-dependently decreased DPH and TMA-DPH fluorescence anisotropy, reflecting increased membrane fluidity. In contrast, cells pretreated with St. John's wort extract Ze117 showed increased DPH and TMA-DPH fluorescence anisotropy values, indicating a membrane rigidification effect which was mediated at least by the constituents hypericin, hyperforin, quercetin, amentoflavone and biapigenin. The observed membrane fluidizing effect of cortisol could be reversed by cotreatment with Ze117. The membrane rigidification of Ze117 was in line with the in parallel observed decrease in the phosphatidylcholine/phosphatidylethanolamine ratio determined in whole cell lipid extracts. Interestingly, pulse-chase experiments demonstrated, that Ze117 inhibited the incorporation of choline-D9 in phosphatidylcholine species with saturated or monounsaturated fatty acids compared to control cells, while the synthesis of phosphatidylcholine species with polyunsaturated fatty acids was not affected. C6 cells whose membranes have become more rigid by Ze117 showed altered lateral mobility of β1-adrenoceptors as well as reduced cAMP formation after stimulation with the β1-adrenoceptor agonist dobutamine. CONCLUSION Obviously, the signaling of β1-adrenoceptors depends on the nature of the membrane environment. It can therefore be assumed that Ze117 has a normalizing effect not only on the membrane fluidity of "stressed" cells, but also on lateral mobility and subsequently on the signal transduction of membrane-associated receptors.
Collapse
Affiliation(s)
- Nelli Keksel
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-Universität, Nussallee 11, D-53115 Bonn, Germany
| | - Hendrik Bussmann
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-Universität, Nussallee 11, D-53115 Bonn, Germany
| | | | | | | | - Hanns Häberlein
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-Universität, Nussallee 11, D-53115 Bonn, Germany
| | - Sebastian Franken
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-Universität, Nussallee 11, D-53115 Bonn, Germany.
| |
Collapse
|
12
|
Rutin as a Potent Antioxidant: Implications for Neurodegenerative Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6241017. [PMID: 30050657 PMCID: PMC6040293 DOI: 10.1155/2018/6241017] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/29/2018] [Indexed: 12/16/2022]
Abstract
A wide range of neurodegenerative diseases (NDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and prion diseases, share common mechanisms such as neuronal loss, apoptosis, mitochondrial dysfunction, oxidative stress, and inflammation. Intervention strategies using plant-derived bioactive compounds have been offered as a form of treatment for these debilitating conditions, as there are currently no remedies to prevent, reverse, or halt the progression of neuronal loss. Rutin, a glycoside of the flavonoid quercetin, is found in many plants and fruits, especially buckwheat, apricots, cherries, grapes, grapefruit, plums, and oranges. Pharmacological studies have reported the beneficial effects of rutin in many disease conditions, and its therapeutic potential in several models of NDs has created considerable excitement. Here, we have summarized the current knowledge on the neuroprotective mechanisms of rutin in various experimental models of NDs. The mechanisms of action reviewed in this article include reduction of proinflammatory cytokines, improved antioxidant enzyme activities, activation of the mitogen-activated protein kinase cascade, downregulation of mRNA expression of PD-linked and proapoptotic genes, upregulation of the ion transport and antiapoptotic genes, and restoration of the activities of mitochondrial complex enzymes. Taken together, these findings suggest that rutin may be a promising neuroprotective compound for the treatment of NDs.
Collapse
|
13
|
Kong Y, Li K, Fu T, Wan C, Zhang D, Song H, Zhang Y, Liu N, Gan Z, Yuan L. Quercetin ameliorates Aβ toxicity in Drosophila AD model by modulating cell cycle-related protein expression. Oncotarget 2018; 7:67716-67731. [PMID: 27626494 PMCID: PMC5356514 DOI: 10.18632/oncotarget.11963] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/01/2016] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by β amyloid (Aβ) deposition and neurofibril tangles. It has been reported that a bioflavonoid, quercetin, could ameliorate AD phenotypes in C. elegans and mice. However, the mechanism underlying the ameliorative effect of quercetin is not fully understood yet. Drosophila models could recapitulate AD-like phenotypes, such as shortened lifespan, impaired locomotive ability as well as defects in learning and memory. So in this study, we investigated the effects of quercetin on AD in Drosophila model and explored the underlying mechanisms. We found quercetin could effectively intervene in AD pathogenesis in vivo. Mechanism study showed quercetin could restore the expression of genes perturbed by Aβ accumulation, such as those involved in cell cycle and DNA replication. Cyclin B, an important cell cycle protein, was chosen to test whether it participated in the AD ameliorative effects of quercetin. We found that cyclin B RNAi in the brain could alleviate AD phenotypes. Taken together, the current study suggested that the neuroprotective effects of quercetin were mediated at least partially by targeting cell cycle-related proteins.
Collapse
Affiliation(s)
- Yan Kong
- Department of Biochemistry and Molecular Biology, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Ke Li
- Gladstone Institute of Cardiovascular Disease and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Tingting Fu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Chao Wan
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, China
| | - Dongdong Zhang
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, China
| | - Hang Song
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, China
| | - Yao Zhang
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, China
| | - Na Liu
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, China
| | - Zhenji Gan
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Liudi Yuan
- Department of Biochemistry and Molecular Biology, Medical School, Southeast University, Nanjing, Jiangsu, China.,State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, China
| |
Collapse
|
14
|
Hofrichter J, Krohn M, Schumacher T, Lange C, Feistel B, Walbroel B, Pahnke J. Sideritis spp. Extracts Enhance Memory and Learning in Alzheimer's β-Amyloidosis Mouse Models and Aged C57Bl/6 Mice. J Alzheimers Dis 2018; 53:967-80. [PMID: 27258424 PMCID: PMC4981905 DOI: 10.3233/jad-160301] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nowadays, Alzheimer’s disease is the most prevalent epiphenomenon of the aging population. Although soluble amyloid-β (Aβ) species (monomers, oligomers) are recognized triggers of the disease, no therapeutic approach is able to stop it. Herbal medicines are used to treat different diseases in many regions of the world. On the Balkan Peninsula, at the eastern Mediterranean Sea, and adjacent regions, Sideritis species are used as traditional medicine to prevent age-related problems in elderly. To evaluate this traditional knowledge in controlled experiments, we tested extracts of two commonly used Sideritis species, Sideritis euboea and Sideritis scardica, with regard to their effects on cognition in APP-transgenic and aged, non-transgenic C57Bl/6 mice. Additionally, histomorphological and biochemical changes associated with Aβ deposition and treatment were assessed. We found that daily oral treatment with Sideritis spp. extracts highly enhanced cognition in aged, non-transgenic as well as in APP-transgenic mice, an effect that was even more pronounced when extracts of both species were applied in combination. The treatment strongly reduced Aβ42 load in APP-transgenic mice, accompanied by increased phagocytic activity of microglia, and increased expression of the α-secretase ADAM10. Moreover, the treatment was able to fully rescue neuronal loss of APP-transgenic mice to normal levels as seen in non-transgenic controls. Having the traditional knowledge in mind, our results imply that treatment with Sideritis spp. extracts might be a potent, well-tolerated option for treating symptoms of cognitive impairment in elderly and with regard to Alzheimer’s disease by affecting its most prominent hallmarks: Aβ pathology and cognitive decline.
Collapse
Affiliation(s)
| | - Markus Krohn
- University of Oslo (UiO) and Oslo University Hospital (OUS), Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, Oslo, Norway.,University of Rostock, Department of Neurology, Rostock, Germany
| | - Toni Schumacher
- University of Rostock, Department of Neurology, Rostock, Germany
| | - Cathleen Lange
- University of Rostock, Department of Neurology, Rostock, Germany
| | | | | | - Jens Pahnke
- University of Oslo (UiO) and Oslo University Hospital (OUS), Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, Oslo, Norway.,University of Rostock, Department of Neurology, Rostock, Germany.,University of Lübeck, Lübeck (LIED), Lübeck, Germany.,Leibniz Institute for Plant Biochemistry (IPB), Halle, Germany
| |
Collapse
|
15
|
Chen MM, Qin J, Chen SJ, Yao LM, Zhang LY, Yin ZQ, Liao H. Quercetin promotes motor and sensory function recovery following sciatic nerve-crush injury in C57BL/6J mice. J Nutr Biochem 2017; 46:57-67. [DOI: 10.1016/j.jnutbio.2017.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
|
16
|
Cakir M, Duzova H, Baysal I, Gül CC, Kuşcu G, Kutluk F, Çakin H, Şeker Ş, İlbeği E, Uslu S, Avci U, Demir S, Akinci C, Atli S. The effect of hypericum perforatum on kidney ischemia/reperfusion damage. Ren Fail 2017; 39:385-391. [PMID: 28209087 PMCID: PMC6014337 DOI: 10.1080/0886022x.2017.1287734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It has been revealed in recent studies that Hypericum Perforatum (HP) is influential on cancer, inflammatory diseases, bacterial and viral diseases, and has neuroprotective and antioxidant properties. In this study, we investigated the effect of HP, which is known to have antioxidant and anti-inflammatory effects, on kidney I/R damage. Male Sprague–Dawley rats were divided into three groups, and each of the groups had eight rats: The Control Group; the Ischemia/Reperfusion (I/R) Group; and the IR + HP Group which was treated with 50 mg/kg of HP. The right kidneys of the rats were removed, and the left kidney developed ischemia during the 45th min, and reperfusion occurred in the following 3rd h. The histopathological findings and also the level of Malondialdehyde (MDA), Glutathione (GSH) and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX) enzyme activations in the renal tissues were measured. Blood Urea Nitrogen (BUN), Creatinin (Cre) from serum samples were determined. The levels of BUN, Cre, and kidney tissue MDA increased at a significant level, and the SOD, CAT, and GSH-PX enzyme activity decreased at a significant level in the I/R group, compared with the Control Group (p < 0.05). In the I/R + HP group, the levels of MDA decreased at a significant level compared to the I/R group, while the SOD, CAT, and GSH-PX activity increased (p < 0.05). In histopathological examinations, it was observed that the tubular dilatation and epithelial desquamation regressed in the IR + HP Group when compared with the I/R Group. It has been shown with the histological and biochemical results in this study that HP is protective against acute renal I/R.
Collapse
Affiliation(s)
- Murat Cakir
- a Department of Physiology, Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Halil Duzova
- a Department of Physiology, Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Işil Baysal
- b Department of Histology and Embryology, Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Cemile Ceren Gül
- b Department of Histology and Embryology, Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Gülbahar Kuşcu
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Fatma Kutluk
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Hilal Çakin
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Şifanur Şeker
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Esranur İlbeği
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Seda Uslu
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Umut Avci
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Samet Demir
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Cihan Akinci
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Sercan Atli
- c Faculty of Medicine , Inonu University , Malatya , Turkey
| |
Collapse
|
17
|
Vitamin D2 suppresses amyloid-β 25-35 induced microglial activation in BV2 cells by blocking the NF-κB inflammatory signaling pathway. Life Sci 2016; 161:37-44. [PMID: 27477351 DOI: 10.1016/j.lfs.2016.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 11/20/2022]
Abstract
AIMS Present emerging world is emphasizing the implication of vitamin D deficiency associated with development of inflammation and neurodegenerative disorder like Alzheimer's disease (AD). The chief neuropathological hallmark of AD is aggregation of amyloid-beta (Aβ) peptides surrounding microglial cells in human brain. Microglial activation plays a key role in inflammatory response and neuronal injury. Naturally abundant vitamin D2 (VD2) exhibiting anti-inflammatory activities are yet to explore more. This study has investigated the inhibitory effect of VD2 on inflammatory activities of BV2 microglial cells. MAIN METHODS Cellular compatibility of VD2 and Aβ25-35 protein in treated BV2 microglial cells were measured by CCK-8 assay. Induction of iNOS, COX-2 and NF-κB signaling cascade were measured by western blotting, whereas pro-inflammatory cytokines were measured by ELISA. In addition, generation of ROS was detected by fluorescence intensity. KEY FINDINGS Morphological observations showed that Aβ25-35 induced BV2 cells stimulation noticeably got reduced in VD2 pre-treated group at 24h time period. Anti-inflammatory activities of VD2 was observed demonstrating the inhibition of up-regulated iNOS and COX-2 protein expression further confirmed by attenuating the activated microglia released pro-inflammatory cytokines IL-1β, IL-6, TNF- α and ROS, while blocking the phosphorylation of NF-κB p65 in nucleus by preventing IκB-α degradation and phosphorylation in cytosol. SIGNIFICANCE The present study revealed that VD2 blocked the phosphorylation of NF-κB inflammatory signaling pathway in Aβ25-35 induced activated BV2 microglial cells by suppressing ROS generation and inflammatory cytokines. Our finding suggests that vitamin D2 has therapeutic potential against inflammation and Alzheimer's disease.
Collapse
|
18
|
Chen MM, Yin ZQ, Zhang LY, Liao H. Quercetin promotes neurite growth through enhancing intracellular cAMP level and GAP-43 expression. Chin J Nat Med 2016; 13:667-72. [PMID: 26412426 DOI: 10.1016/s1875-5364(15)30064-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Indexed: 12/26/2022]
Abstract
The present study was designed to investigate the role of quercetin on neurite growth in N1E-115 cells and the underlying mechanisms. Quercetin was evaluated for its effects on cell numbers of neurites, neurite length, intracellular cAMP content, and Gap-43 expression in N1E-115 cells in vitro by use of microscopy, LANCE(tm) cAMP 384 kit, and Western blot analysis, respectively. Our results showed that quercetin could increase the neurite length in a concentration-dependent manner, but had no effect on the numbers of cells. Quercetin significantly increased the expression of cellular cAMP in a time- and concentration-dependent manner. The Gap-43 expression was up-regulated in a time-dependent manner. In conclusion, quercetin could promote neurite growth through increasing the intracellular cAMP level and Gap-43 expression.
Collapse
Affiliation(s)
- Ming-Ming Chen
- National Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi-Qi Yin
- Department of Phytochemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yong Zhang
- National Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Hong Liao
- National Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
19
|
Kiasalari Z, Baluchnejadmojarad T, Roghani M. Hypericum Perforatum Hydroalcoholic Extract Mitigates Motor Dysfunction and is Neuroprotective in Intrastriatal 6-Hydroxydopamine Rat Model of Parkinson's Disease. Cell Mol Neurobiol 2016; 36:521-30. [PMID: 26119304 DOI: 10.1007/s10571-015-0230-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/20/2015] [Indexed: 12/31/2022]
Abstract
Parkinson's disease is the second most common neurodegenerative disorder with selective and progressive decline of nigral dopaminergic neurons. Hypericum perforatum L. (H. perforatum, St. John's wort) has been traditionally used for management of different disorders, especially mild-to-moderate depression. This study was conducted to evaluate the effect of H. perforatum extract against unilateral striatal 6-hydroxydopamine (6-OHDA) toxicity and to unmask some involved mechanisms. Intrastriatal 6-OHDA-lesioned rats were treated with H. perforatum hydroalcoholic extract at a dose of 200 mg/kg/day started 1 week pre-surgery for 1 week post-surgery. The extract attenuated apomorphine-induced rotational behavior, decreased the latency to initiate and the total time on the narrow beam task, lowered striatal level of malondialdehyde and enhanced striatal catalase activity and reduced glutathione content, normalized striatal expression of glial fibrillary acidic protein, tumor necrosis factor α with no significant effect on mitogen-activated protein kinase, lowered nigral DNA fragmentation, and prevented damage of nigral dopaminergic neurons with a higher striatal tyrosine hydroxylase immunoreactivity. These findings reveal the beneficial effect of H. perforatum via attenuation of DNA fragmentation, astrogliosis, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
20
|
Oliveira AI, Pinho C, Sarmento B, Dias ACP. Neuroprotective Activity of Hypericum perforatum and Its Major Components. FRONTIERS IN PLANT SCIENCE 2016; 7:1004. [PMID: 27462333 PMCID: PMC4939296 DOI: 10.3389/fpls.2016.01004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/27/2016] [Indexed: 05/15/2023]
Abstract
Hypericum perforatum is a perennial plant, with worldwide distribution, commonly known as St. John's wort. It has been used for centuries in traditional medicine for the treatment of several disorders, such as minor burns, anxiety, and mild to moderate depression. In the past years, its antidepressant properties have been extensively studied. Despite that, other H. perforatum biological activities, as its neuroprotective properties have also been evaluated. The present review aims to provide a comprehensive summary of the main biologically active compounds of H. perforatum, as for its chemistry, pharmacological activities, drug interactions and adverse reactions and gather scattered information about its neuroprotective abilities. As for this, it has been demonstrated that H. perforatum extracts and several of its major molecular components have the ability to protect against toxic insults, either directly, through neuroprotective mechanisms, or indirectly, through is antioxidant properties. H. perforatum has therefore the potential to become an effective neuroprotective therapeutic agent, despite further studies that need to be carried out.
Collapse
Affiliation(s)
- Ana I. Oliveira
- Nucleo de Investigação e Informação em Farmácia, Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia de Saúde do Porto – Instituto Politécnico do Porto, Vila Nova de GaiaPortugal
- Agrobioplant Group (CITAB-UM), Department of Biology, University of Minho, BragaPortugal
| | - Cláudia Pinho
- Nucleo de Investigação e Informação em Farmácia, Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia de Saúde do Porto – Instituto Politécnico do Porto, Vila Nova de GaiaPortugal
- Agrobioplant Group (CITAB-UM), Department of Biology, University of Minho, BragaPortugal
| | - Bruno Sarmento
- Cooperativa de Ensino Superior Politécnico e Universitário, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRDPortugal
- Instituto de Investigação e Inovação em Saúde, PortoPortugal
- Instituto de Engenharia Biomédica, PortoPortugal
| | - Alberto C. P. Dias
- Agrobioplant Group (CITAB-UM), Department of Biology, University of Minho, BragaPortugal
- *Correspondence: Alberto C. P. Dias,
| |
Collapse
|
21
|
Nosratabadi R, Rastin M, Sankian M, Haghmorad D, Tabasi N, Zamani S, Aghaee A, Salehipour Z, Mahmoudi M. St. John’s wort and its component hyperforin alleviate experimental autoimmune encephalomyelitis through expansion of regulatory T-cells. J Immunotoxicol 2015; 13:364-74. [DOI: 10.3109/1547691x.2015.1101512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Reza Nosratabadi
- School of Medicine, Immunology Research Center, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rastin
- School of Medicine, Immunology Research Center, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- School of Medicine, Immunology Research Center, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dariush Haghmorad
- School of Medicine, Immunology Research Center, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Tabasi
- School of Medicine, Immunology Research Center, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrzad Zamani
- School of Medicine, Immunology Research Center, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azita Aghaee
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohre Salehipour
- School of Medicine, Immunology Research Center, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- School of Medicine, Immunology Research Center, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Membrane Interactions of Phytochemicals as Their Molecular Mechanism Applicable to the Discovery of Drug Leads from Plants. Molecules 2015; 20:18923-66. [PMID: 26501254 PMCID: PMC6332185 DOI: 10.3390/molecules201018923] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 02/02/2023] Open
Abstract
In addition to interacting with functional proteins such as receptors, ion channels, and enzymes, a variety of drugs mechanistically act on membrane lipids to change the physicochemical properties of biomembranes as reported for anesthetic, adrenergic, cholinergic, non-steroidal anti-inflammatory, analgesic, antitumor, antiplatelet, antimicrobial, and antioxidant drugs. As well as these membrane-acting drugs, bioactive plant components, phytochemicals, with amphiphilic or hydrophobic structures, are presumed to interact with biological membranes and biomimetic membranes prepared with phospholipids and cholesterol, resulting in the modification of membrane fluidity, microviscosity, order, elasticity, and permeability with the potencies being consistent with their pharmacological effects. A novel mechanistic point of view of phytochemicals would lead to a better understanding of their bioactivities, an insight into their medicinal benefits, and a strategic implication for discovering drug leads from plants. This article reviews the membrane interactions of different classes of phytochemicals by highlighting their induced changes in membrane property. The phytochemicals to be reviewed include membrane-interactive flavonoids, terpenoids, stilbenoids, capsaicinoids, phloroglucinols, naphthodianthrones, organosulfur compounds, alkaloids, anthraquinonoids, ginsenosides, pentacyclic triterpene acids, and curcuminoids. The membrane interaction’s applicability to the discovery of phytochemical drug leads is also discussed while referring to previous screening and isolating studies.
Collapse
|
23
|
Schmidt M, Butterweck V. The mechanisms of action of St. John’s wort: an update. Wien Med Wochenschr 2015; 165:229-35. [DOI: 10.1007/s10354-015-0372-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/25/2015] [Indexed: 01/06/2023]
|
24
|
Harun A, Vidyadaran S, Lim SM, Cole ALJ, Ramasamy K. Malaysian endophytic fungal extracts-induced anti-inflammation in Lipopolysaccharide-activated BV-2 microglia is associated with attenuation of NO production and, IL-6 and TNF-α expression. Altern Ther Health Med 2015; 15:166. [PMID: 26047814 PMCID: PMC4457982 DOI: 10.1186/s12906-015-0685-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 05/21/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Excessive production of inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokines like tumour necrosis factor-alpha (TNF-α) from activated microglia contributes to uncontrolled inflammation in neurodegenerative diseases. This study investigated the protective role of five endophytic extracts (HAB16R12, HAB16R13, HAB16R14, HAB16R18 and HAB8R24) against LPS-induced inflammatory events in vitro. These endophytic extracts were previously found to exhibit potent neuroprotective effect against LPS-challenged microglial cells. METHODS The effects of these fungal endophytic extracts against nitric oxide (NO), CD40 phenotype and, pro- and anti-inflammatory cytokine production in lipopolysaccharide (LPS)-stimulated BV2 microglia cells were examined using commercially available assay kits, immunophenotyping and flow cytometry, respectively. RESULTS Microglia pre-treated with the five endophytic extracts (0.1 mg/mL) reduced NO production without compromising cell viability. Whilst CD40 expression in LPS-stimulated microglia was not significantly different with or without the influence of endophytic extracts, expression of the proinflammatory cytokines, IL-6 and TNF-α in LPS-stimulated microglia was significantly (P < 0.05) inhibited by these endophytic extracts. CONCLUSIONS The outcomes suggest that the neuroprotective effect of the fungal endophytic extracts is likely mediated through supression of neuroinflammation. To our knowledge, this is the first report of the effect of a fungal endophytic extract in controlling inflammation in BV2 microglia cells.
Collapse
|
25
|
Adewusi EA, Steenkamp V. Medicinal plants and their derivatives with amyloid beta inhibitory activity as potential targets for drug discovery. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(15)60810-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Brenn A, Grube M, Jedlitschky G, Fischer A, Strohmeier B, Eiden M, Keller M, Groschup MH, Vogelgesang S. St. John's Wort reduces beta-amyloid accumulation in a double transgenic Alzheimer's disease mouse model-role of P-glycoprotein. Brain Pathol 2013; 24:18-24. [PMID: 23701205 DOI: 10.1111/bpa.12069] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/16/2013] [Indexed: 12/21/2022] Open
Abstract
The adenosine triphosphate-binding cassette transport protein P-glycoprotein (ABCB1) is involved in the export of beta-amyloid from the brain into the blood, and there is evidence that age-associated deficits in cerebral P-glycoprotein content may be involved in Alzheimer's disease pathogenesis. P-glycoprotein function and expression can be pharmacologically induced by a variety of compounds including extracts of Hypericum perforatum (St. John's Wort). To clarify the effect of St. John's Wort on the accumulation of beta-amyloid and P-glycoprotein expression in the brain, St. John's Wort extract (final hyperforin concentration 5%) was fed to 30-day-old male C57BL/6J-APP/PS1(+/-) mice over a period of 60 or 120 days, respectively. Age-matched male C57BL/6J-APP/PS1(+/-) mice receiving a St. John's Wort-free diet served as controls. Mice receiving St. John's Wort extract showed (i) significant reductions of parenchymal beta-amyloid 1-40 and 1-42 accumulation; and (ii) moderate, but statistically significant increases in cerebrovascular P-glycoprotein expression. Thus, the induction of cerebrovascular P-glycoprotein may be a novel therapeutic strategy to protect the brain from beta-amyloid accumulation, and thereby impede the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Anja Brenn
- Department of Neuropathology, Institute of Pathology, University of Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tian X, Zhang L, Wang J, Dai J, Shen S, Yang L, Huang P. The protective effect of hyperbaric oxygen and Ginkgo biloba extract on A?25?35-induced oxidative stress and neuronal apoptosis in rats. Behav Brain Res 2013; 242:1-8. [DOI: 10.1016/j.bbr.2012.12.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 01/21/2023]
|
28
|
Sgarbossa A. Natural biomolecules and protein aggregation: emerging strategies against amyloidogenesis. Int J Mol Sci 2012; 13:17121-37. [PMID: 23242152 PMCID: PMC3546742 DOI: 10.3390/ijms131217121] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/12/2012] [Accepted: 12/12/2012] [Indexed: 01/13/2023] Open
Abstract
Biomolecular self-assembly is a fundamental process in all organisms. As primary components of the life molecular machinery, proteins have a vast array of resources available to them for self-assembly in a functional structure. Protein self-assembly, however, can also occur in an aberrant way, giving rise to non-native aggregated structures responsible for severe, progressive human diseases that have a serious social impact. Different neurodegenerative disorders, like Huntington's, Alzheimer's, and spongiform encephalopathy diseases, have in common the presence of insoluble protein aggregates, generally termed "amyloid," that share several physicochemical features: a fibrillar morphology, a predominantly beta-sheet secondary structure, birefringence upon staining with the dye Congo red, insolubility in common solvents and detergents, and protease resistance. Conformational constrains, hydrophobic and stacking interactions can play a key role in the fibrillogenesis process and protein-protein and peptide-peptide interactions-resulting in self-assembly phenomena of peptides yielding fibrils-that can be modulated and influenced by natural biomolecules. Small organic molecules, which possess both hydrophilic and hydrophobic moieties able to bind to peptide/protein molecules through hydrogen bonds and hydrophobic and aromatic interactions, are potential candidates against amyloidogenesis. In this review some significant case examples will be critically discussed.
Collapse
Affiliation(s)
- Antonella Sgarbossa
- Institute of Biophysics, CNR, Italian National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
29
|
Klemow K, Bartlow A, Crawford J, Kocher N, Shah J, Ritsick M. Medical Attributes of St. John's Wort (Hypericum perforatum). OXIDATIVE STRESS AND DISEASE 2011. [DOI: 10.1201/b10787-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Yoo YJ, Saliba AJ, Prenzler PD. Should Red Wine Be Considered a Functional Food? Compr Rev Food Sci Food Saf 2010; 9:530-551. [PMID: 33467832 DOI: 10.1111/j.1541-4337.2010.00125.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functional foods may be regarded as foods that have nutritional value, but in particular, they also have beneficial effects on one or more body functions. Thus, functional foods may improve health and/or reduce the risk of developing certain diseases when taken in amounts that can be consumed in a normal diet. Based on nearly 2 decades of research since the term "French paradox" was first coined in 1992, wine would appear to fit this definition. Yet there seems to be reluctance to consider wine as a functional food. In this review, we present an overview of the accumulated evidence for the health benefits of wine-and its key phenolic components such as resveratrol, quercetin, catechin-and show that these alone are not enough to firmly establish wine as a functional food. What is required is to create clearly defined products based on wine that are targeted to consumers' needs and expectations when it comes to purchasing functional foods. Moreover, the crucial question of alcohol and health also needs to be addressed by the functional food industry. Suggestions are presented for working through this issue, but in many regards, wine is like any other food-it should be consumed sensibly and in amounts that are beneficial to health. Overindulgence of any kind does not promote good health.
Collapse
Affiliation(s)
- Yung J Yoo
- Authors are with Natl. Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt Univ., Wagga Wagga New South Wales, Australia. Direct inquiries to author Saliba (E-mail: )
| | - Anthony J Saliba
- Authors are with Natl. Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt Univ., Wagga Wagga New South Wales, Australia. Direct inquiries to author Saliba (E-mail: )
| | - Paul D Prenzler
- Authors are with Natl. Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt Univ., Wagga Wagga New South Wales, Australia. Direct inquiries to author Saliba (E-mail: )
| |
Collapse
|
31
|
Rattanajarasroj S, Unchern S. Comparable attenuation of Abeta(25-35)-induced neurotoxicity by quercitrin and 17beta-estradiol in cultured rat hippocampal neurons. Neurochem Res 2010; 35:1196-205. [PMID: 20473637 DOI: 10.1007/s11064-010-0175-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2010] [Indexed: 11/30/2022]
Abstract
In the present work, potential protective effects of quercitrin (a phytoestrogen) on Abeta-induced neurotoxicity in cultured rat hippocampal neurons were investigated in comparison with 17beta-estradiol. Cell viability, oxidative status, and antioxidative potentials were used as comparative parameters. Co-exposure of cultured neurons to Abeta(25-35) with either quercitrin or 17beta-estradiol (50-100 microM) for 72 h attenuated Abeta(25-35)-induced neurotoxicity and lipid peroxidation, but not Abeta(25-35)-induced ROS accumulation. However, only 17beta-estradiol counteracted a reduction in glutathione content and only quercitrin counteracted a reduction in glutathione peroxidase activity. Both compounds displayed no effects on superoxide dismutase activity. A specific estrogen receptor antagonist, ICI 182780, did not abolish neuroprotective effects of quercitrin and 17beta-estradiol. These findings suggested that quercitrin and 17beta-estradiol attenuated Abeta(25-35)-induced neurotoxicity in a comparable manner. Underlying neuroprotective mechanisms of both compounds were probably not related to estrogen receptor-mediated genomic mechanisms but might involve with their antioxidant and free radical scavenging properties.
Collapse
Affiliation(s)
- Sadudee Rattanajarasroj
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
32
|
Aboukhatwa M, Dosanjh L, Luo Y. Antidepressants are a rational complementary therapy for the treatment of Alzheimer's disease. Mol Neurodegener 2010; 5:10. [PMID: 20226030 PMCID: PMC2845130 DOI: 10.1186/1750-1326-5-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/12/2010] [Indexed: 12/17/2022] Open
Abstract
There is a high prevalence rate (30-50%) of Alzheimer's disease (AD) and depression comorbidity. Depression can be a risk factor for the development of AD or it can be developed secondary to the neurodegenerative process. There are numerous documented diagnosis and treatment challenges for the patients who suffer comorbidity between these two diseases. Meta analysis studies have provided evidence for the safety and efficacy of antidepressants in treatment of depression in AD patients. Preclinical and clinical studies show the positive role of chronic administration of selective serotonin reuptake inhibitor (SSRI) antidepressants in hindering the progression of the AD and improving patient performance. A number of clinical studies suggest a beneficial role of combinatorial therapies that pair antidepressants with FDA approved AD drugs. Preclinical studies also demonstrate a favorable effect of natural antidepressants for AD patients. Based on the preclinical studies there are a number of plausible antidepressants effects that may modulate the progression of AD. These effects include an increase in neurogenesis, improvement in learning and memory, elevation in the levels of neurotrophic factors and pCREB and a reduction of amyloid peptide burden. Based on this preclinical and clinical evidence, antidepressants represent a rational complimentary strategy for the treatment of AD patients with depression comorbidity.
Collapse
Affiliation(s)
- Marwa Aboukhatwa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 N Pine St, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
33
|
Shwe H, Aye M, Sein M, Htay K, Kreitmeier P, Gertsch J, Reiser O, Heilmann J. Cytotoxic Steroidal Saponins from the Rhizomes ofTacca integrifolia. Chem Biodivers 2010; 7:610-22. [DOI: 10.1002/cbdv.200900042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Hypericins as potential leads for new therapeutics. Int J Mol Sci 2010; 11:562-94. [PMID: 20386655 PMCID: PMC2852855 DOI: 10.3390/ijms11020562] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 12/22/2022] Open
Abstract
70 years have passed since the first isolation of the naphthodianthrones hypericin and pseudohypericin from Hypericum perforatum L. Today, they continue to be one of the most promising group of polyphenols, as they fascinate with their physical, chemical and important biological properties which derive from their unique chemical structure. Hypericins and their derivatives have been extensively studied mainly for their antitumor, antiviral and antidepressant properties. Notably, hypericin is one of the most potent naturally occurring photodynamic agents. It is able to generate the superoxide anion and a high quantum yield of singlet oxygen that are considered to be primarily responsible for its biological effects. The prooxidant photodynamic properties of hypericin have been exploited for the photodynamic therapy of cancer (PDT), as hypericin, in combination with light, very effectively induces apoptosis and/or necrosis of cancer cells. The mechanism by which these activities are expressed continues to be a main topic of discussion, but according to scientific data, different modes of action (generation of ROS & singlet oxygen species, antiangiogenesis, immune responces) and multiple molecular pathways (intrinsic/extrinsic apoptotic pathway, ERK inhibition) possibly interrelating are implicated. The aim of this review is to analyse the most recent advances (from 2005 and thereof) in the chemistry and biological activities (in vitro and in vivo) of the pure naphthodianthrones, hypericin and pseudohypericin from H. perforatum. Extracts from H. perforatum were not considered, nor pharmakokinetic or clinical data. Computerised literature searches were performed using the Medline (PubMed), ChemSciFinder and Scirus Library databases. No language restrictions were imposed.
Collapse
|
35
|
Ossola B, Kääriäinen TM, Männistö PT. The multiple faces of quercetin in neuroprotection. Expert Opin Drug Saf 2009; 8:397-409. [PMID: 19538101 DOI: 10.1517/14740330903026944] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review discusses the most recent data on the potential of quercetin to confer neuroprotection. Unfortunately, most of the in vitro studies have used quercetin aglycone, which is not detectable in the plasma or in the brain after oral intake. Moreover, quercetin metabolites and glycosides seem to be less neuroprotective and penetrate the BBB less efficiently than aglycone. Surprisingly, quercetin has beneficial effects on various in vivo models of neural disorders, particularly in cerebrovascular insults; contrasting data also do exist. This may be due to an increase of BBB permeability, described in many of these animal models, which would facilitate quercetin brain penetration. Although quercetin causes no significant toxicity in several animal studies, the risk for neurotoxicity is not negligible because of its narrow therapeutic dose-range in vitro. Notably, this risk may be even higher in the case of increased quercetin access to the brain, which may occur pathologically or artificially (e.g., by liposomal preparations). Based on the referred literature, we doubt that quercetin possesses any significant efficacy in neurodegenerative disorders. Instead, therapeutic trials should focus more on the quercetin efficacy in cerebrovascular insults rather than neurodegeneration.
Collapse
Affiliation(s)
- Bernardino Ossola
- University of Helsinki, Division of Pharmacology & Toxicology PO Box 56, (Viikinkaari 5E), Helsinki FIN-00014, Finland
| | | | | |
Collapse
|
36
|
Karioti A, Vincieri FF, Bilia AR. Rapid and efficient purification of naphthodianthrones from St. John's wort extract by using liquid-liquid extraction and SEC. J Sep Sci 2009; 32:1374-82. [PMID: 19360729 DOI: 10.1002/jssc.200800700] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hypericin and pseudohypericin, the main naphthodianthrones present in Hypericum species are among the most promising natural products, but the research concerning their biological activities is hindered by their low content in the plant. In this paper a method for the rapid isolation of hypericin and pseudohypericin from Hypericum perforatum hydro-alcoholic dried extracts has been developed. Briefly, the method consists of a partition of the extract between organic and aqueous layers and further purification of the richest extract in naphthodianthrones with Sephadex LH-20 column chromatography. A final separation of hypericin from pseudohypericin was achieved using Sephadex LH-60 column chromatography. All partitions were carried out in triplicate and monitored by LC-MS and NMR analyses. The best results were obtained by successive extraction with n-hexane, Et(2)O and EtOAc. A three-step fractionation resulted in 98% content in total naphthodianthrones. To the best of our knowledge this is the first report on the separation of hypericin from pseudohypericin using size exclusion chromatography.
Collapse
Affiliation(s)
- Anastasia Karioti
- Department of Pharmaceutical Sciences, University of Florence, Polo Scientifico, Sesto Fiorentino, Florence, Italy.
| | | | | |
Collapse
|
37
|
In vitroperturbation of aggregation processes in β-amyloid peptides: A spectroscopic study. FEBS Lett 2008; 582:3288-92. [DOI: 10.1016/j.febslet.2008.08.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/18/2008] [Accepted: 08/29/2008] [Indexed: 11/20/2022]
|
38
|
Gunasingh MJ, Philip JE, Ashok BS, Kirubagaran R, Jebaraj WCE, Davis GDJ, Vignesh S, Dhandayuthapani S, Jayakumar R. Melatonin prevents amyloid protofibrillar induced oxidative imbalance and biogenic amine catabolism. Life Sci 2008; 83:96-102. [DOI: 10.1016/j.lfs.2008.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/14/2008] [Accepted: 05/09/2008] [Indexed: 01/09/2023]
|