1
|
Niu Y, Zhao W, Xiao Z, Zhu J, Xiong W, Chen F. Characterization of aroma compounds and effects of amino acids on the release of esters in Laimao baijiu. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1784-1799. [PMID: 36260337 DOI: 10.1002/jsfa.12281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Laimao baijiu is a typical soy-sauce aroma-type baijiu in China. Amino acids are non-volatile compounds in baijiu and are beneficial to human health. Aroma is one of the important indicators that are used to evaluate the quality of baijiu. The interaction between aroma-active compounds and non-volatile compounds can also affect the release of aroma compounds. In this study, we identified the active-aroma compounds and amino acids in Laimao baijiu by stir bar sorptive extraction (SBSE), gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS), and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The interaction between amino acids and key esters was investigated by sensory analysis and partition coefficients. RESULTS A total of 63 aroma compounds and 21 amino acids were identified. Twenty-one esters were identified from them as major aroma-active ester compounds with odor activity values ≥ 1. Finally, sensory analysis revealed that l-alanine had a significant effect on the strength of the aromas of esters, suggesting that low concentrations of amino acids were more likely to promote the release of esters and high concentrations were more likely to inhibit this. The partition coefficient can be a good explanation for this phenomenon. CONCLUSION l-Alanine can significantly affect the aroma intensity of key ester aroma compounds in Laimao baijiu, and the effects of different concentrations of amino acids are different. This work shows that amino acids, as non-volatile compounds, have a regulatory effect on the release of aroma compounds in alcoholic beverages, which may provide new technical support for the aroma modulation of alcoholic beverages. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Wenqi Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiancai Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Wen Xiong
- China Tobacco Yunnan Industrial Co. LTD, Kunming, China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
2
|
Regulatory effect of moderate Jiang-flavour baijiu (Chinese liquor) dosage on organ function and gut microbiota in mice. J Biosci Bioeng 2023; 135:298-305. [PMID: 36781353 DOI: 10.1016/j.jbiosc.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 02/13/2023]
Abstract
Chinese baijiu, an ancient fermented alcoholic beverage, contains ethanol and a variety of compounds. One of the most popular types of Chinese baijiu is Jiang-flavor baijiu. To investigate the effects of Jiang-flavor baijiu on organ function and gut microbiota, we developed a moderate drinking mouse model and studied its effects on the liver, kidney biomarkers, memory function, and gut microbiota. The results showed that ethanol caused more hepatic steatosis, liver and kidney damage, and memory impairment than Jiang-flavour baijiu consumption. Furthermore, Jiang-flavor baijiu altered the gut microbiota by increasing the abundance of beneficial taxa such as Lactobacillus and Akkermansia, whereas ethanol increased the abundance of harmful bacteria such as Prevotella and Mucispirillum. Our findings provide preliminary evidence that moderate dose Jiang-flavor baijiu regulates gut microbiota and organ function and provide a theoretical foundation for future research on the positive health effects of particular varieties of Chinese baijiu.
Collapse
|
3
|
Guo X, Cheng Y, Huang Y. Study on the drunkenness of Chinese Baijiu with representative flavor based on behavioral characteristics. Front Nutr 2022; 9:1014813. [PMID: 36245514 PMCID: PMC9561937 DOI: 10.3389/fnut.2022.1014813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
The essential role of drunkenness on the healthy development of Chinese Baijiu was studied in this research. This study revealed the effects of Baijiu on the behaviors of mice and evaluated the degree of drunkenness of soy sauce-, strong-, light-, and light and soy sauce-flavored Baijiu. The parameters obtained from the open field test were transformed into the behavioral drunkenness index by mathematical statistical analysis and the drunkenness-associated key compounds of Baijiu were analyzed. The results showed that strong- and light-flavored Baijiu presented higher levels of drunkenness and sobriety than soy sauce-flavored Baijiu. Interestingly, light and soy sauce-flavored Baijiu showed low drunkenness but a high sobriety degree. Specifically, the degree of drunkenness was positively correlated with fusel alcohol and aldehydes but negatively correlated with esters and acids. This study will enrich references for Baijiu behavior studies and lay a foundation for the research and development of healthy Baijiu.
Collapse
Affiliation(s)
- Xuefeng Guo
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yuxin Cheng
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yongguang Huang
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, China
| |
Collapse
|
4
|
Camelo C, Vilas-Boas F, Cepeda AP, Real C, Barros-Martins J, Pinto F, Soares H, Marinho HS, Cyrne L. Opi1p translocation to the nucleus is regulated by hydrogen peroxide in Saccharomyces cerevisiae. Yeast 2017; 34:383-395. [PMID: 28581036 DOI: 10.1002/yea.3240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 01/12/2023] Open
Abstract
During exposure of yeast cells to low levels of hydrogen peroxide (H2 O2 ), the expression of several genes is regulated for cells to adapt to the surrounding oxidative environment. Such adaptation involves modification of plasma membrane lipid composition, reorganization of ergosterol-rich microdomains and altered gene expression of proteins involved in lipid and vesicle traffic, to decrease permeability to exogenous H2 O2 . Opi1p is a transcriptional repressor that is inactive when present at the nuclear membrane/endoplasmic reticulum, but represseses transcription of inositol upstream activating sequence (UASINO )-containing genes, many of which are involved in the synthesis of phospholipids and fatty acids, when it is translocated to the nucleus. We investigated whether H2 O2 in concentrations inducing adaptation regulates Opi1p function. We found that, in the presence of H2 O2 , GFP-Opi1p fusion protein translocates to the nucleus and, concomitantly, the expression of UASINO -containing genes is affected. We also investigated whether cysteine residues of Opi1p were implicated in the H2 O2 -mediated translocation of this protein to the nucleus and identified cysteine residue 159 as essential for this process. Our work shows that Opi1p is redox-regulated and establishes a new mechanism of gene regulation involving Opi1p, which is important for adaptation to H2 O2 in yeast cells. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Carolina Camelo
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Filipe Vilas-Boas
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Andreia Pereira Cepeda
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Carla Real
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Joana Barros-Martins
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Francisco Pinto
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.,BioISI - Biosystems and Integrative Sciences Institute, Campo Grande, Lisboa, Portugal
| | - Helena Soares
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, 1990-096, Lisboa, Portugal
| | - H Susana Marinho
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Luisa Cyrne
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|