1
|
Lai Z, Shu Q, Song Y, Tang A, Tian J. Effect of DNA methylation on the osteogenic differentiation of mesenchymal stem cells: concise review. Front Genet 2024; 15:1429844. [PMID: 39015772 PMCID: PMC11250479 DOI: 10.3389/fgene.2024.1429844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have promising potential for bone tissue engineering in bone healing and regeneration. They are regarded as such due to their capacity for self-renewal, multiple differentiation, and their ability to modulate the immune response. However, changes in the molecular pathways and transcription factors of MSCs in osteogenesis can lead to bone defects and metabolic bone diseases. DNA methylation is an epigenetic process that plays an important role in the osteogenic differentiation of MSCs by regulating gene expression. An increasing number of studies have demonstrated the significance of DNA methyltransferases (DNMTs), Ten-eleven translocation family proteins (TETs), and MSCs signaling pathways about osteogenic differentiation in MSCs. This review focuses on the progress of research in these areas.
Collapse
Affiliation(s)
- Zhihao Lai
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qing Shu
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yue Song
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Ao Tang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Jun Tian
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Jiawei Yanghe Decoction Regulates Bone-Lipid Balance through the BMP-SMAD Signaling Pathway to Promote Osteogenic Differentiation of Bone Mesenchymal Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2885419. [PMID: 35769158 PMCID: PMC9236768 DOI: 10.1155/2022/2885419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
Abstract
Background The Jiawei Yanghe decoction (JWYHD) is a traditional Chinese medicine formula for the treatment of osteoporosis, but its therapeutic mechanism has not been fully elucidated, and the therapeutic target of the intervention disease needs to be further verified. The dysfunction of bone mesenchymal stem cells (BMSCs) is considered to be an important pathogenesis of postmenopausal osteoporosis (PMOP). The purpose of this study was to explore how JWYHD regulates BMSC differentiation through the BMP-SMAD signal pathway. Methods In the in vivo study, we used an ovariectomized PMOP rat (n = 36, 2-month-old, 200 ± 20 g) model and femur micro-CT analysis to study the effect of JWYHD on bone loss in rats. By immunofluorescence, the translocation expression of BMP2, a key protein in the pathway, was detected. Serum bone metabolism was detected by an enzyme-linked immunosorbent assay (ELISA). Alkaline phosphatase (ALP) activity was detected by alkaline phosphatase staining (ALPS), osteogenesis and matrix mineralization were detected by alizarin red staining (ARS), the adipogenic ability of BMSCs was detected by oil red staining (ORS), and CFU is used to detect the ability of cells to form colonies. The expression of related proteins was detected by western blotting. Results In vivo and in vitro, the OP phenotypes of SD rats induced by ovariectomy (OVX) included impaired bone mineral density and microstructure, abnormal bone metabolism, and impaired MSC differentiation potential. JWYHD treatment reversed this trend and restored the differentiation potential of MSCs. JWYHD medicated serum and direct intervention of drugs activated the BMP-SMAD signaling pathway, promoted the osteogenic differentiation of BMSCs, and inhibited their adipogenic differentiation. Conclusions Our data identified that JWYHD is an effective alternative drug for the treatment of PMOP that functions to stimulate the differentiation of BMSCs into osteoblasts in the BMP-SMAD signaling-dependent mechanism.
Collapse
|
3
|
Cho JH, Lee JH, Lee KM, Lee CK, Shin DM. BMP-2 Induced Signaling Pathways and Phenotypes: Comparisons Between Senescent and Non-senescent Bone Marrow Mesenchymal Stem Cells. Calcif Tissue Int 2022; 110:489-503. [PMID: 34714366 DOI: 10.1007/s00223-021-00923-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
The use of BMP-2 in orthopedic surgery is limited by uncertainty surrounding its effects on the differentiation of mesenchymal stem cells (MSCs) and how this is affected by cellular aging. This study compared the effects of recombinant human BMP-2 (rhBMP-2) on osteogenic and adipogenic differentiation between senescent and non-senescent MSCs. Senescent and non-senescent MSCs were cultured in osteogenic and adipogenic differentiation medium containing various concentrations of rhBMP-2. The phenotypes of these cells were compared by performing a calcium assay, adipogenesis assay, staining, real-time PCR, western blotting, and microarray analysis. rhBMP-2 induced osteogenic differentiation to a lesser extent (P < 0.001 and P = 0.005 for alkaline phosphatase activity and Ca2+ release) in senescent MSCs regardless of dose-dependent increase in both cells. However, the induction of adipogenic differentiation by rhBMP-2 was comparable between them. There was no difference between these two groups of cells in the adipogenesis assay (P = 0.279) and their expression levels of PPARγ were similar. Several genes such as CHRDL1, NOG, SMAD1, SMAD7, and FST encoding transcription factors were proposed to underlie the different responses of senescent and non-senescent MSCs to rhBMP-2 in microarray analyses. Furthermore, inflammatory, adipogenic, or cell death-related signaling pathways such as NF-kB or p38-MAPK pathways were upregulated by BMP-2 in senescent MSCs, whereas bone forming signaling pathways involving BMP, SMAD, and TGF- ß were upregulated in non-senescent MSCs as expected. This phenomenon explains bone forming dominance by non-senescent MSCs and possible frequent complications such as seroma, osteolysis, or neuritis in senescent MSCs during BMP-2 use in orthopedic surgery.
Collapse
Affiliation(s)
- Jae Hwan Cho
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Hyup Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Boramae-ro 5-gil, Dongjak-Gu, Seoul, Republic of Korea.
| | - Kyung Mee Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Choon-Ki Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Dong-Myung Shin
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Zhu Z, Wang X, Wang Z, Zhao Z, Zhou P, Gao X. Neobavaisoflavone protects osteoblasts from dexamethasone-induced oxidative stress by upregulating the CRNDE-mediated Nrf2/HO-1 signaling pathway. Drug Dev Res 2021; 82:1044-1054. [PMID: 33713471 DOI: 10.1002/ddr.21811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
Neobavaisoflavone (NBIF) is a flavonoid, which has a variety of pharmacological activities. However, the mechanism of NBIF in the treatment of osteoporosis still needs further exploration. The differentiation of osteoblast MC-3T3-E1 cells after treatment was observed by Alizarin red staining. Cell counting kit-8 and flow cytometry were used to detect viability, apoptosis, and reactive oxygen species (ROS) levels of treated MC-3T3-E1 cells, respectively. Malondialdehyde (MDA), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were tested by ELISA kits. The expressions of lncRNA MALAT1, MEG3, CRNDE, Runx2, osteocalcin (OCN), osteopontin (OPN), collagen I (col-I), nuclear Nrf2, cytoplasm Nrf2, heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO1) in treated MC-3T3-E1 cells were examined by Quantitative real-time PCR or Western blot. Dexamethasone (Dex) inhibited the viability of MC-3T3-E1 cells, while the appropriate amount of NBIF had no significantly effect on cell viability. Dex downregulated CRNDE expression, whereas NBIF upregulated CRNDE. Overexpressed CRNDE and NBIF reversed the inhibitory effects of Dex on cell viability, differentiation and levels of SOD, GSH-Px, Runx2, OCN, OPN, col-I, nuclear Nrf2, HO-1 and NQO1 while reversing the promoting effect of Dex on apoptosis and the levels of ROS, MDA, LDH and cytoplasm Nrf2 in MC-3T3-E1 cells, respectively, but shCRNDE further reversed the effects of NBIF in MC-3T3-E1 cells. NBIF protected osteoblasts from Dex-induced oxidative stress by upregulating the CRNDE-mediated Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Zhonglian Zhu
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Xuyi Wang
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Zhaodong Wang
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Zhi Zhao
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Pinghui Zhou
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Xubin Gao
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| |
Collapse
|
5
|
Min SK, Kim M, Park JB. Bone morphogenetic protein 2-enhanced osteogenic differentiation of stem cell spheres by regulation of Runx2 expression. Exp Ther Med 2020; 20:79. [PMID: 32968436 PMCID: PMC7499948 DOI: 10.3892/etm.2020.9206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Bone morphogenetic protein 2 (BMP-2) is a growth factor that is used to induce osteogenic differentiation in stem cells. The present study assessed the effects of BMP-2 on stem cell spheroid morphology, viability and osteogenic differentiation. Stem cell spheres were constructed and treated with BMP-2 at predetermined concentrations (0-100 ng/ml) using concave microwells. Cell viability was qualitatively and quantitatively analyzed via microscopy and a water-soluble tetrazolium salt assay kit, respectively. Alkaline phosphatase activity was assessed and an anthraquinone dye for calcium deposit evaluation was performed to determine osteogenic differentiation. The expressions of (runt-related transcription factor 2) and collagen 1 were also determined via quantitative PCR. Spherical shapes were formed using concave microwells on day 1, which were maintained up to day 21. On day 1, the relative cell viability of 0, 10 and 100 ng/ml BMP-2 treated cells was 100.0±1.9, 97.3±4.4 and 101.3±2.6%, respectively. Significantly higher values for alkaline phosphatase activity were determined in the 100 ng/ml treated group when compared with the control group. Additionally, Runx2 mRNA levels were significantly higher in the 100 ng/ml BMP-2 group compared with the control group, as determined via quantitative PCR. The results of the present study indicated that BMP-2 enhanced the differentiation of stem cell spheres, which was demonstrated by increased alkaline phosphatase activity and Runx2 expression.
Collapse
Affiliation(s)
- Sae Kyung Min
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Minji Kim
- College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
6
|
Wang C, Tanjaya J, Shen J, Lee S, Bisht B, Pan HC, Pang S, Zhang Y, Berthiaume EA, Chen E, Da Lio AL, Zhang X, Ting K, Guo S, Soo C. Peroxisome Proliferator-Activated Receptor-γ Knockdown Impairs Bone Morphogenetic Protein-2-Induced Critical-Size Bone Defect Repair. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:648-664. [PMID: 30593824 PMCID: PMC6412314 DOI: 10.1016/j.ajpath.2018.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/13/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
The Food and Drug Administration-approved clinical dose (1.5 mg/mL) of bone morphogenetic protein-2 (BMP2) has been reported to induce significant adverse effects, including cyst-like adipose-infiltrated abnormal bone formation. These undesirable complications occur because of increased adipogenesis, at the expense of osteogenesis, through BMP2-mediated increases in the master regulatory gene for adipogenesis, peroxisome proliferator-activated receptor-γ (PPARγ). Inhibiting PPARγ during osteogenesis has been suggested to drive the differentiation of bone marrow stromal/stem cells toward an osteogenic, rather than an adipogenic, lineage. We demonstrate that knocking down PPARγ while concurrently administering BMP2 can reduce adipogenesis, but we found that it also impairs BMP2-induced osteogenesis and leads to bone nonunion in a mouse femoral segmental defect model. In addition, in vitro studies using the mouse bone marrow stromal cell line M2-10B4 and mouse primary bone marrow stromal cells confirmed that PPARγ knockdown inhibits BMP2-induced adipogenesis; attenuates BMP2-induced cell proliferation, migration, invasion, and osteogenesis; and escalates BMP2-induced cell apoptosis. More important, BMP receptor 2 and 1B expression was also significantly inhibited by the combined BMP2 and PPARγ knockdown treatment. These findings indicate that PPARγ is critical for BMP2-mediated osteogenesis during bone repair. Thus, uncoupling BMP2-mediated osteogenesis and adipogenesis using PPARγ inhibition to combat BMP2's adverse effects may not be feasible.
Collapse
Affiliation(s)
- Chenchao Wang
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China; Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California; Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, and Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Justine Tanjaya
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Jia Shen
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Soonchul Lee
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California; Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Bharti Bisht
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Hsin Chuan Pan
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Shen Pang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Yulong Zhang
- Departments of Materials Science and Engineering, and Division of Advanced Prosthodontics, University of California, Los Angeles, Los Angeles, California
| | - Emily A Berthiaume
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Eric Chen
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Andrew L Da Lio
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, and Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Xinli Zhang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Kang Ting
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Shu Guo
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China.
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, and Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
7
|
Fawzy El-Sayed KM, Dörfer CE. Animal Models for Periodontal Tissue Engineering: A Knowledge-Generating Process. Tissue Eng Part C Methods 2017; 23:900-925. [DOI: 10.1089/ten.tec.2017.0130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Karim M. Fawzy El-Sayed
- Department of Oral Medicine and Periodontology, Faculty of Oral and Dental Medicine, Cairo University, Giza, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
8
|
Zhang WZ, Lan T, Nie CH, Guan NN, Gao ZX. Characterization and spatiotemporal expression analysis of nine bone morphogenetic protein family genes during intermuscular bone development in blunt snout bream. Gene 2017; 642:116-124. [PMID: 29129809 DOI: 10.1016/j.gene.2017.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 01/24/2023]
Abstract
Intermuscular bones (IBs) only exist in the myosepta of lower teleosts and its molecular mechanism remains to be clarified. Bone morphogenetic proteins (BMPs) have been demonstrated to be involved in various physiological processes, including bone and cartilage formation. In this study, we firstly obtained and characterized nine bmp genes for Megalobrama amblycephala, which belongs to Cyprinidae and have a certain amount of IBs. Sequence alignment and phylogenetic analysis both documented that the mature proteins of M. amblycephala bmp genes were highly conserved with other corresponding homologs, respectively, indicating that the function of each bmp gene has been conserved throughout evolution. As a step to characterize potential involvement of bmp genes in IB formation and development, spatiotemporal expressions of nine bmp genes (bmp2a, bmp2b, bmp3, bmp4, bmp5, bmp7b, bmp8a, bmp14 and bmp16) were investigated during the key development stages of IBs. During the ossification process from stage I (the IBs haven't emerged) to stage IV (all of the IBs ossified in the tail with the mature morphology), the expression profiles revealed that bmp16 was the most abundant transcript while bmp4 had the lowest abundance. The mRNA levels of bmp3, bmp4, bmp5 and bmp8a increased significantly at stage II, suggesting their roles in stimulating IB formation. The expression of bmp7b reached the highest level at stage III (the rapid period of IB development), suggesting potential involvement of bmp7b in promoting osteoblast differentiation. With the exception of bmp7b and bmp16, most bmp genes appeared a significant increase at IB maturation phase (stage IV), which means that they may play important roles in maintenance of IB morphogenesis. Spatial tissue distribution of bmp genes showed that most bmp genes were observed at the highest level in developing IBs at one year old fish. Spatiotemporal expression patterns suggest the potential key roles of these bmp genes in IBs formation and maintenance in fish, being as possible promoters or inhibitors.
Collapse
Affiliation(s)
- Wei-Zhuo Zhang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China; Collaborative Innovation Center for Healthy Freshwater Aquaculture of Hubei Province, Wuhan 430070, China
| | - Tian Lan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China; Collaborative Innovation Center for Healthy Freshwater Aquaculture of Hubei Province, Wuhan 430070, China
| | - Chun-Hong Nie
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China; Collaborative Innovation Center for Healthy Freshwater Aquaculture of Hubei Province, Wuhan 430070, China
| | - Ning-Nan Guan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China; Collaborative Innovation Center for Healthy Freshwater Aquaculture of Hubei Province, Wuhan 430070, China
| | - Ze-Xia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China; Collaborative Innovation Center for Healthy Freshwater Aquaculture of Hubei Province, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
9
|
Jacobs FA, Sadie-Van Gijsen H, van de Vyver M, Ferris WF. Vanadate Impedes Adipogenesis in Mesenchymal Stem Cells Derived from Different Depots within Bone. Front Endocrinol (Lausanne) 2016; 7:108. [PMID: 27536268 PMCID: PMC4971437 DOI: 10.3389/fendo.2016.00108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/22/2016] [Indexed: 01/01/2023] Open
Abstract
Glucocorticoid-induced osteoporosis (GIO) is associated with an increase in bone marrow adiposity, which skews the differentiation of mesenchymal stem cell (MSC) progenitors away from osteoblastogenesis and toward adipogenesis. We have previously found that vanadate, a non-specific protein tyrosine phosphatase inhibitor, prevents GIO in rats, but it was unclear whether vanadate directly influenced adipogenesis in bone-derived MSCs. For the present study, we investigated the effect of vanadate on adipogenesis in primary rat MSCs derived from bone marrow (bmMSCs) and from the proximal end of the femur (pfMSCs). By passage 3 after isolation, both cell populations expressed the MSC cell surface markers CD90 and CD106, but not the hematopoietic marker CD45. However, although variable, expression of the fibroblast marker CD26 was higher in pfMSCs than in bmMSCs. Differentiation studies using osteogenic and adipogenic induction media (OM and AM, respectively) demonstrated that pfMSCs rapidly accumulated lipid droplets within 1 week of exposure to AM, while bmMSCs isolated from the same femur only formed lipid droplets after 3 weeks of AM treatment. Conversely, pfMSCs exposed to OM produced mineralized extracellular matrix (ECM) after 3 weeks, compared to 1 week for OM-treated bmMSCs. Vanadate (10 μM) added to AM resulted in a significant reduction in AM-induced intracellular lipid accumulation and expression of adipogenic gene markers (PPARγ2, aP2, adipsin) in both pfMSCs and bmMSCs. Pharmacological concentrations of glucocorticoids (1 μM) alone did not induce lipid accumulation in either bmMSCs or pfMSCs, but resulted in significant cell death in pfMSCs. Our findings demonstrate the existence of at least two fundamentally different MSC depots within the femur and highlights the presence of MSCs capable of rapid adipogenesis within the proximal femur, an area prone to osteoporotic fractures. In addition, our results suggest that the increased bone marrow adiposity observed in GIO may not be solely due to direct effect of glucocorticoids on bone-derived MSCs, and that an increase in femur lipid content may also arise from increased adipogenesis in MSCs residing outside of the bone marrow niche.
Collapse
Affiliation(s)
- Frans Alexander Jacobs
- Department of Medicine, Division of Endocrinology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape, South Africa
| | - Hanél Sadie-Van Gijsen
- Department of Medicine, Division of Endocrinology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape, South Africa
| | - Mari van de Vyver
- Department of Medicine, Division of Endocrinology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape, South Africa
| | - William Frank Ferris
- Department of Medicine, Division of Endocrinology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape, South Africa
- *Correspondence: William Frank Ferris,
| |
Collapse
|
10
|
Naito M, Vongsa S, Tsukune N, Ohashi A, Takahashi T. Promyelocytic leukemia zinc finger mediates glucocorticoid-induced cell cycle arrest in the chondroprogenitor cell line ATDC5. Mol Cell Endocrinol 2015; 417:114-23. [PMID: 26419928 DOI: 10.1016/j.mce.2015.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/16/2015] [Accepted: 09/24/2015] [Indexed: 12/21/2022]
Abstract
Glucocorticoids (GCs) affect the proliferation of growth plate chondrocytes. In this study, we investigated the role of the GC-inducible promyelocytic leukemia zinc finger (PLZF) gene in chondrocyte differentiation by using the chondrogenic cell line ATDC5. PLZF overexpression suppressed cell cycle progression (p < 0.01) and promoted differentiation into hypertrophic chondrocytes by inducing mRNA expression of alkaline phosphatase (p < 0.01), and the cyclin-dependent kinase (CDK) inhibitor p21 (p < 0.01). In contrast, PLZF knockdown impaired differentiation into hypertrophic chondrocytes and promoted cell cycle progression (p < 0.01). Treatment with the GC analogue dexamethasone (10(-6) M) suppressed cell cycle progression in ATDC5 cells. PLZF shRNA attenuated dexamethasone-induced cell cycle arrest (p < 0.01) by downregulating the mRNA expression of the CDK inhibitors p21 and p57 (p < 0.01). These results clearly indicated that PLZF promoted differentiation into hypertrophic chondrocytes and mediated dexamethasone-induced cell cycle arrest by regulating CDK inhibitors.
Collapse
Affiliation(s)
- Masako Naito
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan.
| | - Souksavanh Vongsa
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Naoya Tsukune
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan; Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Akiko Ohashi
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Tomihisa Takahashi
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
11
|
Dexamethasone inhibits chondrocyte differentiation by suppression of Wnt/β-catenin signaling in the chondrogenic cell line ATDC5. Histochem Cell Biol 2015; 144:261-72. [DOI: 10.1007/s00418-015-1334-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 12/26/2022]
|
12
|
Effect of rhBMP-2 on mineralization of human periodontal ligament cells under high glucose conditions in vitro. Int J Diabetes Dev Ctries 2015. [DOI: 10.1007/s13410-014-0258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
van de Vyver M, Andrag E, Cockburn IL, Ferris WF. Thiazolidinedione-induced lipid droplet formation during osteogenic differentiation. J Endocrinol 2014; 223:119-32. [PMID: 25210048 DOI: 10.1530/joe-14-0425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chronic administration of the insulin-sensitising drugs, thiazolidinediones (TZDs), results in low bone mineral density and 'fatty bones'. This is thought to be due, at least in part, to aberrant differentiation of progenitor mesenchymal stem cells (MSCs) away from osteogenesis towards adipogenesis. This study directly compared the effects of rosiglitazone, pioglitazone, and netoglitazone treatment on osteogenesis and adipogenesis in MSCs derived from subcutaneous (SC) or visceral (PV) white adipose tissue. MSCs were isolated from adipose tissue depots of male Wistar rats and characterised using flow cytometry. The effects of TZD treatment on osteogenic and adipogenic differentiation were assessed histologically (day 14) and by quantitative PCR analysis (Pparγ2 (Pparg2), Ap2 (Fabp4), Adipsin (Adps), Msx2, Collagen I (Col1a1), and Alp) on days 0, 7, and 10. Uniquely, lipid droplet formation and mineralisation were found to occur concurrently in response to TZD treatment during osteogenesis. Compared with SC MSCs, PV MSCs were more prone to lipid accumulation under controlled osteogenic and adipogenic differentiation conditions. This study demonstrated that the extent of lipid accumulation is dependent on the nature of the Ppar ligand and that SC and PV MSCs respond differently to in vitro TZD treatment, suggesting that metabolic status can contribute to the adverse effects associated with TZD treatment.
Collapse
Affiliation(s)
- M van de Vyver
- Division of EndocrinologyDepartment of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, South Africa
| | - E Andrag
- Division of EndocrinologyDepartment of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, South Africa
| | - I L Cockburn
- Division of EndocrinologyDepartment of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, South Africa
| | - W F Ferris
- Division of EndocrinologyDepartment of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, South Africa
| |
Collapse
|
14
|
Suh JS, Lee JY, Choi YJ, You HK, Hong SD, Chung CP, Park YJ. Intracellular delivery of cell-penetrating peptide-transcriptional factor fusion protein and its role in selective osteogenesis. Int J Nanomedicine 2014; 9:1153-66. [PMID: 24648725 PMCID: PMC3956484 DOI: 10.2147/ijn.s55433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Protein-transduction technology has been attempted to deliver macromolecular materials, including protein, nucleic acids, and polymeric drugs, for either diagnosis or therapeutic purposes. Herein, fusion protein composed of an arginine-rich cell-penetrating peptide, termed low-molecular-weight protamine (LMWP), and a transcriptional coactivator with a PDZ-binding motif (TAZ) protein was prepared and applied in combination with biomaterials to increase bone-forming capacity. TAZ has been recently identified as a specific osteogenic stimulating transcriptional coactivator in human mesenchymal stem cell (hMSC) differentiation, while simultaneously blocking adipogenic differentiation. However, TAZ by itself cannot penetrate the cells, and thus needs a transfection tool for translocalization. The LMWP-TAZ fusion proteins were efficiently translocalized into the cytosol of hMSCs. The hMSCs treated with cell-penetrating LMWP-TAZ exhibited increased expression of osteoblastic genes and protein, producing significantly higher quantities of mineralized matrix compared to free TAZ. In contrast, adipogenic differentiation of the hMSCs was blocked by treatment of LMWP-TAZ fusion protein, as reflected by reduced marker-protein expression, adipocyte fatty acid-binding protein 2, and peroxisome proliferator-activated receptor-γ messenger ribonucleic acid levels. LMWP-TAZ was applied in alginate gel for the purpose of localization and controlled release. The LMWP-TAZ fusion protein-loaded alginate gel matrix significantly increased bone formation in rabbit calvarial defects compared with alginate gel matrix mixed with free TAZ protein. The protein transduction of TAZ fused with cell-penetrating LMWP peptide was able selectively to stimulate osteogenesis in vitro and in vivo. Taken together, this fusion protein-transduction technology for osteogenic protein can thus be applied in combination with biomaterials for tissue regeneration and controlled release for tissue-engineering purposes.
Collapse
Affiliation(s)
- Jin Sook Suh
- Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jue Yeon Lee
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, Republic of Korea
| | - Yoon Jung Choi
- Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Hyung Keun You
- Department of Periodontology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Chong Pyoung Chung
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, Republic of Korea
| | - Yoon Jeong Park
- Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea ; Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, Republic of Korea
| |
Collapse
|
15
|
Effect of Emdogain enamel matrix derivative and BMP-2 on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. J Craniomaxillofac Surg 2013; 42:568-76. [PMID: 24080138 DOI: 10.1016/j.jcms.2013.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/05/2013] [Accepted: 07/31/2013] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to evaluate the effect of Emdogain (Enamel Matrix Derivative, EMD) and Bone Morphogenetic Protein-2 (BMP-2), either solely or in combination, on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. Stem/progenitor cells were isolated from human alveolar bone proper, magnetically sorted using STRO-1 antibodies, characterized flowcytometrically for their surface markers' expression, and examined for colony formation and multilineage differentiation potential. Subsequently, cells were treated over three weeks with 100 μg/ml Emdogain (EMD-Group), or 100 ng/ml BMP-2 (BMP-Group), or a combination of 100 ng/ml BMP-2 and 100 μg/ml Emdogain (BMP/EMD-Group). Unstimulated stem/progenitor cells (MACS(+)-Group) and osteoblasts (OB-Group) served as controls. Osteogenic gene expression was analyzed using RTq-PCR after 1, 2 and 3 weeks (N = 3/group). Mineralized nodule formation was evaluated by Alizarin-Red staining. BMP and EMD up-regulated the osteogenic gene expression. The BMP Group showed significantly higher expression of Collagen-I, III, and V, Alkaline phosphatase and Osteonectin compared to MACS(+)- and OB-Group (p < 0.05; Two-way ANOVA/Bonferroni) with no mineralized nodule formation. Under in-vitro conditions, Emdogain and BMP-2 up-regulate the osteogenic gene expression of stem/progenitor cells. The combination of BMP-2 and Emdogain showed no additive effect and would not be recommended for a combined clinical stimulation.
Collapse
|
16
|
Naito M, Mikami Y, Takagi M, Takahashi T. Up-regulation of Axin2 by dexamethasone promotes adipocyte differentiation in ROB-C26 mesenchymal progenitor cells. Cell Tissue Res 2013; 354:761-70. [PMID: 23996200 DOI: 10.1007/s00441-013-1696-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/04/2013] [Indexed: 01/14/2023]
Abstract
Dexamethasone (Dex) regulates osteoblastic and adipocytic differentiation in mesenchymal progenitor cells through regulation of Wnt/β-catenin signaling. To elucidate the regulatory mechanisms underlying the effects of Dex, we examine the expression of Axin2, which is an intracellular inhibitor of Wnt/β-catenin signaling, in ROB-C26 clonal mesenchymal progenitor cells (C26). We observed the induction of Axin2 mRNA in C26 cells in response to Dex treatment. Treatment with a glucocorticoid receptor (GR) antagonist, mifepristone, showed that Dex-induced up-regulation of Axin2 is mediated by the GR. In the absence of Dex, gene silencing by using Axin2-targeted short hairpin RNA increased the number of alkaline phosphatase (ALP)-positive and nuclear β-catenin-positive cells and ALP activity. In the presence of Dex, Axin2 knockdown resulted in an increased number of ALP-positive and nuclear β-catenin-positive cells. Furthermore, Axin2 knockdown in Dex-treated cells suppressed adipocyte differentiation (as determined by reduced Oil Red O staining), reduced the number of PPARγ-positive and aP2-positive cells and decreased the mRNA expression of PPARγ2 and aP2. These results suggest that Axin2 plays a key role in adipocyte and osteoblastic differentiation by controlling β-catenin expression.
Collapse
Affiliation(s)
- Masako Naito
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan,
| | | | | | | |
Collapse
|
17
|
Rui YF, Lui PPY, Wong YM, Tan Q, Chan KM. BMP-2 stimulated non-tenogenic differentiation and promoted proteoglycan deposition of tendon-derived stem cells (TDSCs) in vitro. J Orthop Res 2013; 31:746-53. [PMID: 23238867 DOI: 10.1002/jor.22290] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/14/2012] [Indexed: 02/06/2023]
Abstract
We hypothesized that BMP-2 might induce non-tenocyte differentiation and increase production of proteoglycans of tendon-derived stem cells (TDSCs). This study investigated the effects of BMP-2 on the differentiation and production of proteoglycans in TDSCs in vitro. Rat patellar TDSCs were treated without or with BMP-2. The osteogenic, adipogenic, chondrogenic, and tenogenic differentiation of TDSCs were assessed by (1) Alizarin red-S staining assay; (2) Oil Red-O staining assay; (3) haematoxylin-eosin staining, Safranin-O staining, immunohistochemical staining of Sox9, and collagen type II; and (4) qRT-PCR analysis of lineage-specific markers. The production of glycoaminoglycans (GAG) in the BMP-2-treated TDSCs was assessed by alcian blue staining. The mRNA expression of aggrecan (Acan), decorin (Dcn), biglycan (Bgn), and fibromodulin (Fmod) in TDSCs after BMP-2 treatment was assessed by qRT-PCR. BMP-2 promoted the osteogenic, adipogenic, and chondrogenic differentiation but inhibited tenogenic marker expression of TDSCs. GAG production and Acan increased while Dcn, Bgn, and Fmod decreased in TDSCs after BMP-2 stimulation. In conclusion, BMP-2 promoted GAG deposition, aggrecan expression, and enhanced non-tenocyte differentiation of TDSCs in vitro. The effect of BMP-2 on TDSCs might provide insights into the histopathological changes of tendinopathy.
Collapse
Affiliation(s)
- Yun Feng Rui
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
18
|
Inhibition of Wnt/β-catenin signaling by dexamethasone promotes adipocyte differentiation in mesenchymal progenitor cells, ROB-C26. Histochem Cell Biol 2012; 138:833-45. [DOI: 10.1007/s00418-012-1007-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2012] [Indexed: 12/25/2022]
|
19
|
Expression of BMP-2 and Ets1 in BMP-2-stimulated mouse pre-osteoblast differentiation is regulated by microRNA-370. FEBS Lett 2012; 586:1693-701. [DOI: 10.1016/j.febslet.2012.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/23/2012] [Accepted: 04/11/2012] [Indexed: 11/20/2022]
|
20
|
Sadie-Van Gijsen H, Smith W, du Toit EF, Michie J, Hough FS, Ferris WF. Depot-specific and hypercaloric diet-induced effects on the osteoblast and adipocyte differentiation potential of adipose-derived stromal cells. Mol Cell Endocrinol 2012; 348:55-66. [PMID: 21827826 DOI: 10.1016/j.mce.2011.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/22/2011] [Accepted: 07/13/2011] [Indexed: 12/30/2022]
Abstract
Adipose-derived stromal cells (ADSCs) can be differentiated in vitro into several mesenchyme-derived cell types. We had previously described depot-specific differences in the adipocyte differentiation of ADSCs, and consequently we hypothesized that there may also be depot-specific differences in osteoblast differentiation of ADSCs. For this study, the osteoblast differentiation potential of rat subcutaneous ADSCs (scADSCs) and perirenal visceral ADSCs (pvADSCs) was compared. Osteoblast differentiation media (OM) induced markers of the osteoblastic phenotype in scADSCs, but not in pvADSCs. ADSCs harvested from rats with diet-induced visceral obesity (DIO) exhibited reduced osteoinduction, compared to lean controls, but adipocyte differentiation was not affected. Expression of the pro-osteogenic transcription factor Msx2 was significantly higher in naïve scADSCs from lean and DIO rats than in pvADSCs. Our findings indicate that ADSCs from different anatomical sites are uniquely pre-programmed in vivo in a depot-specific manner, and that diet-induced metabolic disturbances translate into reduced osteoblast differentiation of ADSCs.
Collapse
Affiliation(s)
- Hanel Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Health Sciences, University of Stellenbosch, Tygerberg Campus, P.O. Box 19063, Francie van Zijl Drive, Parow 7505, South Africa
| | | | | | | | | | | |
Collapse
|
21
|
Naito M, Omoteyama K, Mikami Y, Takagi M, Takahashi T. Suppression of lamin A/C by short hairpin RNAs promotes adipocyte lineage commitment in mesenchymal progenitor cell line, ROB-C26. Histochem Cell Biol 2011; 137:235-47. [PMID: 22119912 DOI: 10.1007/s00418-011-0890-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2011] [Indexed: 01/07/2023]
Abstract
Lamin A/C gene encodes a nuclear membrane protein, and mutations in this gene are associated with diverse degenerative diseases that are linked to premature aging. While lamin A/C is involved in the regulation of tissue homeostasis, the distinct expression patterns are poorly understood in the mesenchymal cells differentiating into adipocytes. Here, we examined the expression of lamin A/C in a rat mesenchymal progenitor cell-line, ROB-C26 (C26). Immunocytochemical analysis showed that lamin A/C was transiently down-regulated in immature adipocytes, but its expression increased with terminal differentiation. To elucidate the role of lamin A/C expression on mesenchymal cell differentiation, lamin A/C expression was suppressed using short hairpin RNA (shRNA) molecules in C26 cells. In the absence of adipogenic stimuli, lamin A/C shRNA decreased alkaline phosphatase (ALP) activity, but induced preadipocyte factor -1 (Pref-1) mRNA expression. In the presence of adipogenic stimuli, lamin A/C knockdown promotes adipocytes differentiation, as assessed by the detection of an increase in Oil Red O staining. RT-PCR analysis showed that lamin A/C shRNA resulted in increased mRNA expression of PPARγ2 and aP2 during adipocyte differentiation. These results suggest that decreased lamin A/C expression levels not only suppress osteoblast phenotypes but also promote adipocyte differentiation in C26 cells.
Collapse
Affiliation(s)
- Masako Naito
- Department of Anatomy, Nihon University School of Dentistry, Kanda-Surugadai, Chiyodaku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
22
|
Kantawong F, Robertson ME, Gadegaard N, Oreffo ROC, Burchmore RJ, Dalby MJ. Protein Expression of STRO-1 Cells in Response to Different Topographic Features. J Tissue Eng 2011; 2011:534603. [PMID: 21772957 PMCID: PMC3136090 DOI: 10.4061/2011/534603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 05/26/2011] [Indexed: 12/16/2022] Open
Abstract
Human skeletal stem cells (STRO-1 positive) display distinct responses to different topographical features. On a flat surface, skeletal cells spread, and in vitro, they typically display a polarized, fibroblast-like morphology. However, on microgrooved surfaces, these cells prefer to stretch along the grooves forming a similar morphology to in vivo, bipolarized fibroblasts. In contrast, on nanopits, these cells display a polygonal and osteoblastic phenotype. We have examined mechanotransduction events of STRO-1 positive in response to fibroblastic, microgrooved and osteogenic, controlled disorder nanopit, topographies using proteomics after 3 days in culture. Protein expression profiles were analyzed by difference gel electrophoresis to identify proteins that showed modulation of expression in response to different topographic features to assess early decision events in these cells on these discrete topographies. After only 72 hours in culture, STRO-1 positive displayed differential regulations of families of proteins involved in cell migration and proliferation. The current study indicated that osteogenic decision specific events had already occurred. Runx2 was localized in nuclei of the skeletal stem cells on the osteogenic nanopits; however, few signaling pathway changes were observed. This study demonstrated that micro- and nanotopographies activated skeletal stem cells at different times and with distinct mechanotransduction profiles.
Collapse
Affiliation(s)
- Fahsai Kantawong
- Division of Clinical Chemistry, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | | | | | | |
Collapse
|
23
|
Schofer MD, Veltum A, Theisen C, Chen F, Agarwal S, Fuchs-Winkelmann S, Paletta JRJ. Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on growth and osteogenic differentiation of human mesenchymal stem cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1753-62. [PMID: 21604139 PMCID: PMC3127010 DOI: 10.1007/s10856-011-4341-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/07/2011] [Indexed: 05/21/2023]
Abstract
Mesenchymal stem cell differentiation of osteoblasts is triggered by a series of signaling processes including integrin and bone morphogenetic protein (BMP), which therefore act in a cooperative manner. The aim of this study was to analyze whether these processes can be remodeled in an artificial poly-(L)-lactide acid (PLLA) based nanofiber scaffold. Matrices composed of PLLA-collagen type I or BMP-2 incorporated PLLA-collagen type I were seeded with human mesenchymal stem cells (hMSC) and cultivated over a period of 22 days, either under growth or osteoinductive conditions. During the course of culture, gene expression of alkaline phosphatase (ALP), osteocalcin (OC) and collagen I (COL-I) as well as Smad5 and focal adhesion kinase (FAK), two signal transduction molecules involved in BMP-2 or integrin signaling were analyzed. Furthermore, calcium and collagen I deposition, as well as cell densities and proliferation, were determined using fluorescence microscopy. The incorporation of BMP-2 into PLLA-collagen type I nanofibers resulted in a decrease in diameter as well as pore sizes of the scaffold. Mesenchymal stem cells showed better adherence and a reduced proliferation on BMP-containing scaffolds. This was accompanied by an increase in gene expression of ALP, OC and COL-I. Furthermore the presence of BMP-2 resulted in an upregulation of FAK, while collagen had an impact on the gene expression of Smad5. Therefore these different strategies can be combined in order to enhance the osteoblast differentiation of hMSC on PLLA based nanofiber scaffold. By doing this, different signal transduction pathways seem to be up regulated.
Collapse
Affiliation(s)
- Markus D. Schofer
- Department of Orthopedics, University Hospital of Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Anne Veltum
- Department of Orthopedics, University Hospital of Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Christina Theisen
- Department of Orthopedics, University Hospital of Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Fei Chen
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Seema Agarwal
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Susanne Fuchs-Winkelmann
- Department of Orthopedics, University Hospital of Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Jürgen R. J. Paletta
- Department of Orthopedics, University Hospital of Marburg, Baldingerstraße, 35043 Marburg, Germany
| |
Collapse
|
24
|
Mikami Y, Lee M, Irie S, Honda MJ. Dexamethasone modulates osteogenesis and adipogenesis with regulation of osterix expression in rat calvaria-derived cells. J Cell Physiol 2011; 226:739-48. [PMID: 20717928 DOI: 10.1002/jcp.22392] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Osteoblasts and adipocytes originate from common mesenchymal progenitor cells and although a number of compounds can induce osteoblastic and adipogenic differentiation from progenitor cells, the underlying mechanisms have not been elucidated. The present study examined the synergistic effects of dexamethasone (Dex) and bone morphogenetic protein (BMP)-2 on the differentiation of clonal mesenchymal progenitor cells isolated from rat calvaria into osteoblasts and adipocytes, as well as the effects of the timing of treatment. Cells were cultured for various periods of time in the presence of Dex and/or BMP-2. When cells were treated with Dex+BMP-2 during the early phase of differentiation, they differentiated into adipocytes. However, when cells were treated with Dex+BMP-2 during the late phase of differentiation, a synergistic effect on in vitro matrix mineralization was observed. To examine differences between the early and late phases of differentiation, ALP activity was measured in the presence of BMP-2. ALP activity increased markedly on Day 9, corresponding to the onset of the synergistic effect of Dex. Dex treatment inhibited osterix (OSX) expression in cells committed to adipogenic differentiation, but not in cells committed to osteogenic differentiation following BMP-2 treatment. The isoform2 OSX promoter region was found to be involved in the effects of Dex on cells during the early phase of differentiation. Furthermore, cells stably expressing OSX (isoform2) formed mineralized nodules even though they had been treated with Dex+BMP-2 during the early phase of differentiation. It appears that Dex modulates osteogenesis and adipogenesis in mesenchymal stem cells by regulating OSX expression.
Collapse
Affiliation(s)
- Yoshikazu Mikami
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | |
Collapse
|
25
|
Lord E, Bergeron E, Senta H, Park H, Faucheux N. Effect of BMP-9 and its derived peptide on the differentiation of human white preadipocytes. Growth Factors 2010; 28:149-56. [PMID: 20102315 DOI: 10.3109/08977190903512610] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several studies have shown that bone morphogenetic proteins (BMPs) can influence adipogenic and osteogenic cell lineages. We have shown that a peptide derived from BMP-9 (pBMP-9) at 400 ng/ml inhibits the proliferation of preosteoblasts and induces differentiation. We have now determined the effects of pBMP-9 (400 ng/ml) and equimolar concentrations of BMP-2 (100 ng/ml), BMP-9 (84.6 ng/ml) and pBMP-9 (9.04 ng/ml) on human white preadipocytes (HWP). pBMP-9 dose dependently reduced the proliferation of HWP without affecting the number of apoptotic cells. Incubation of the cells for 1 h with BMP-2, BMP-9 or pBMP-9 activated the Smad1/5/8 pathway, while incubation for 7 days in adipocyte differentiation (AD) serum-free medium containing ciglitazone and equimolar concentrations of BMP-2, BMP-9 or pBMP-9 enhanced the levels of mRNA of the adipogenic markers aP2 and adipoQ and increased the number of lipid vesicles. Thus, pBMP-9, like BMP-9, can increase the AD of HWP in AD serum-free medium.
Collapse
Affiliation(s)
- E Lord
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| | | | | | | | | |
Collapse
|