1
|
Zhang X, Li B, Huo S, Du J, Zhang J, Song M, Shao B, Li Y. Hexafluoropropylene oxide trimer acid exposure triggers necroptosis and inflammation through the Wnt/β-catenin/NF-κB axis in the liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167033. [PMID: 37709082 DOI: 10.1016/j.scitotenv.2023.167033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA), an emerging alternative to perfluorooctanoic acid (PFOA), has recently been identified as a significant environmental pollutant. Nevertheless, there is a scarcity of studies regarding the hepatotoxic effects of HFPO-TA. Here, we investigated the types and potential mechanisms of liver damage caused by HFPO-TA. Initially, we validated that the introduction of HFPO-TA resulted in the Wnt/β-catenin signaling (W/β signaling) activation, as well as the induction of necroptosis and inflammation, both in the liver of mice and in HepG2 cells. Subsequently, we established that the W/β signaling mediated the necroptosis and inflammation observed in the liver and HepG2 cells exposed to HFPO-TA. Finally, we demonstrated that the phosphorylated form of NF-κB p65 (p-NF-κB p65) played a role in mediating the necroptosis and inflammation, and its activity could be regulated by the W/β signaling pathway in the liver of mice and HepG2 cells exposed to HFPO-TA. In conclusion, our investigation elucidates the role of HFPO-TA in inducing necroptosis and inflammation in the liver, which is facilitated through the activation of the W/β/NF-κB axis.
Collapse
Affiliation(s)
- Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Huo S, Li B, Du J, Zhang X, Zhang J, Wang Q, Song M, Li Y. Dibutyl phthalate induces liver fibrosis via p38MAPK/NF-κB/NLRP3-mediated pyroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165500. [PMID: 37442457 DOI: 10.1016/j.scitotenv.2023.165500] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/16/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Dibutyl phthalate (DBP) is one of the most employed plasticizers pervading the environment. DBP is a newly identified global organic pollutant that can activate NLRP3 inflammasomes and induce inflammatory liver injury. However, its hepatotoxicity remains poorly understood. The objective of this investigation was to investigate the probable pathways underlying DBP-induced liver injury. First, C57BL/6N mice were orally administered DBP at 10 and 50 mg/kg B.W. doses for 28 days. The observed results indicated a significant increase in liver collagen deposition and upregulated protein expression of fibrosis markers in mice. In addition, the p38MAPK/NF-κB signaling pathway and pyroptosis-related protein expression were upregulated. To establish a correlation between these changes, we conducted a conditioned medium co-culture of human hepatocellular carcinoma (HepG2) and human hepatic stellate (LX-2) cells. We performed inhibitor interventions to validate the mechanism of DBP-induced liver fibrosis in vitro. After treatment with p38MAPK (SB203580), NF-κB (PDTC), and NLRP3 (MCC950) inhibitors, the activation of LX-2 cells, the p38MAPK/NF-κB signaling pathway and pyroptosis due to DBP were alleviated. Therefore, DBP exposure leads to NLRP3-mediated pyroptosis of hepatocytes via the p38MAPK/NF-κB signaling pathway, activating LX-2 cells and causing liver fibrosis. Our findings offer a conceptual framework to understand the pathological underpinnings of DBP-induced liver injury while proposing novel ideas to prevent and treat DBP hepatotoxicity. Thus, targeting p38MAPK, NF-κB, and NLRP3 may prevent DBP-induced liver fibrosis.
Collapse
Affiliation(s)
- Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Li G, Qian Y, Chen Y, Cao M, Yang X, Kong D, Wang G, An H, Yang N, Huang W, Liu Y. Wip1 contributes to the adaptation of HepG2 human liver cancer cells to stress hormone-induced DNA damage. Oncol Lett 2022; 25:31. [PMID: 36589663 PMCID: PMC9773319 DOI: 10.3892/ol.2022.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022] Open
Abstract
Numerous studies have shown that the release of stress hormones resulting from repeated exposure to chronic psychological stress increases DNA damage and promotes tumorigenesis. However, the mechanisms that enable cancerous cells adapt to stress hormone-induced DNA damage and survive remain unclear. The present study aimed to investigate the impact of stress hormones on the survival of liver cancer cells and the underlying mechanism. HepG2 human liver cancer cells were treated with dexamethasone (DEX), epinephrine (EPI) and norepinephrine (NE) and subjected to the testing of DNA damage, cell survival and cell apoptosis by alkaline comet assay, CCK-8 viability assay and flow cytometry, respectively. The protein expression levels of DNA damage response factors were determined by western blotting analysis. The results revealed that treatment of HepG2 cells with DEX, EPI and NE induced DNA damage without affecting cell survival or inducing apoptosis. The protein levels of wild-type p53-induced phosphatase 1 (Wip1), a type 2C family serine/threonine phosphatase, were increased, and the dephosphorylation of DNA damage response factors, including phosphorylated (p-)ataxia-telangiectasia mutated and p-checkpoint kinase 2, occurred following treatment with DEX, EPI and NE. In addition, a cycloheximide chase assay was performed to explore the protein stability under treatment with stress hormones. Compared with vehicle-treated cells, Wip1 exhibited increased protein stability in stress hormone-treated HepG2 cells. Eventually, the depletion of Wip1 using small interfering RNA verified the role of Wip1 in the modulation of stress hormone-induced DNA damage. These findings suggest that cancerous cells likely adapt to stress hormone-induced DNA damage via Wip1 upregulation. The present study provides an insight into the underlying mechanism that links chronic psychological stress with tumor growth and progression.
Collapse
Affiliation(s)
- Gaoxiang Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China,Medical College, Tibet University, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Yazhi Qian
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Yuzhu Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Mingyue Cao
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Xiaozhou Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Dexin Kong
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Guiping Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China,Medical College, Tibet University, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Haiyan An
- Department of Anesthesiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Wei Huang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China,Correspondence to: Dr Yanyong Liu or Dr Wei Huang, Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Dong-Cheng, Beijing 100005, P.R. China, E-mail: , E-mail:
| | - Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China,Medical College, Tibet University, Lhasa, Tibet Autonomous Region 850000, P.R. China,Correspondence to: Dr Yanyong Liu or Dr Wei Huang, Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Dong-Cheng, Beijing 100005, P.R. China, E-mail: , E-mail:
| |
Collapse
|
4
|
Apoptosis and necroptosis-inducing effects of arctigenin on nasal septum carcinoma RPMI-2650 cells in 2D and 3D culture. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-00052-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
|
5
|
Chen YJ, Zhu JQ, Fu XQ, Su T, Li T, Guo H, Zhu PL, Lee SKW, Yu H, Tse AKW, Yu ZL. Ribosome-Inactivating Protein α-Momorcharin Derived from Edible Plant Momordica charantia Induces Inflammatory Responses by Activating the NF-kappaB and JNK Pathways. Toxins (Basel) 2019; 11:toxins11120694. [PMID: 31779275 PMCID: PMC6949964 DOI: 10.3390/toxins11120694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 01/25/2023] Open
Abstract
Alpha-momorcharin (α-MMC), a member of the ribosome-inactivating protein (RIP) family, has been found in the seeds of Momordica charantia (bitter melon). α-MMC contributes a number of pharmacological activities; however, its inflammatory properties have not been well studied. Here, we aim to determine the inflammatory responses induced by recombinant α-MMC and identify the underlying mechanisms using cell culture and animal models. Recombinant α-MMC was generated in Rosetta™(DE3)pLysS and purified by the way of nitrilotriacetic acid (NTA) chromatography. Treatment of recombinant α-MMC at 40 μg/mL exerted sub-lethal cytotoxic effect on THP-1 monocytic cells. Transcriptional profiling revealed that various genes coding for cytokines and other proinflammatory proteins were upregulated upon recombinant α-MMC treatment in THP-1 cells, including MCP-1, IL-8, IL-1β, and TNF-α. Recombinant α-MMC was shown to activate IKK/NF-κB and JNK pathways and the α-MMC-induced inflammatory gene expression could be blocked by IKKβ and JNK inhibitors. Furthermore, murine inflammatory models further demonstrated that α-MMC induced inflammatory responses in vivo. We conclude that α-MMC stimulates inflammatory responses in human monocytes by activating of IKK/NF-κB and JNK pathways, raising the possibility that consumption of α-MMC-containing food may lead to inflammatory-related diseases.
Collapse
Affiliation(s)
- Ying-Jie Chen
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jia-Qian Zhu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xiu-Qiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Tao Su
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ting Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hui Guo
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Pei-Li Zhu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Sally Kin-Wah Lee
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Anfernee Kai-Wing Tse
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
- Correspondence: (A.K.-W.T.); (Z.-L.Y.); Tel.: +86-0756-3620147 (A.K.-W.T.); +852-3411-2465 (Z.-L.Y.)
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Correspondence: (A.K.-W.T.); (Z.-L.Y.); Tel.: +86-0756-3620147 (A.K.-W.T.); +852-3411-2465 (Z.-L.Y.)
| |
Collapse
|
6
|
Tuya N, Wang Y, Tong L, Gao W, Yu R, Xue L. Trichosanthin enhances the antitumor effect of gemcitabine in non-small cell lung cancer via inhibition of the PI3K/AKT pathway. Exp Ther Med 2017; 14:5767-5772. [PMID: 29285119 PMCID: PMC5740788 DOI: 10.3892/etm.2017.5286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2016] [Accepted: 07/14/2017] [Indexed: 12/30/2022] Open
Abstract
Gemcitabine (GEMZ) is the first-line therapy used against non-small cell lung cancer (NSCLC), and studies have focused on investigating the potential effects of agents combined with GEMZ to enhance the anticancer efficacy in NSCLC. Previous studies have reported that trichosanthin (TCS) has various physiological and pharmacological effects, including anti-human influenza virus enzymes, inhibition of protein synthesis and antitumor activity. The purpose of the present study was to investigate if TCS enhanced the antitumor effects of GEMZ in NSCLC. MTT assay demonstrated that TCS significantly enhanced the cytotoxic effect of GEMZ (P>0.05). Furthermore, a propidium iodide/Αnnexin V staining assay revealed that TCS exerted its pharmacological effect by increasing the apoptotic population. In addition, western blot analysis demonstrated that the combination treatment of TCS with GEMZ further decreased the expression level of phosphoinositide 3-kinase (PI3K) and AKT via regulating the expression of insulin growth factor. The results of the present study demonstrated that TCS enhanced the cytotoxic and apoptotic effects of GEMZ in A549 cells via regulating the PI3K/AKT pathway. In conclusion, these observations may provide a potential rational basis for a combination strategy for chemotherapy treatment of NSCLC.
Collapse
Affiliation(s)
- Naren Tuya
- Department of Biology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Radiation Oncology, General Hospital of Beijing Military Region, Beijing 100700, P.R. China.,Department of Chemotherapy Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010020, P.R. China
| | - Yadi Wang
- Department of Biology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Radiation Oncology, General Hospital of Beijing Military Region, Beijing 100700, P.R. China
| | - Lanmei Tong
- Department of Chemotherapy Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010020, P.R. China
| | - Weishi Gao
- Department of Chemotherapy Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010020, P.R. China
| | - Rong Yu
- Department of Radiation Oncology, Inner Mongolia Cancer Hospital, Hohhot, Inner Mongolia 010020, P.R. China
| | - Liying Xue
- Department of Chemotherapy Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010020, P.R. China
| |
Collapse
|
7
|
Argenziano M, Dianzani C, Ferrara B, Swaminathan S, Manfredi A, Ranucci E, Cavalli R, Ferruti P. Cyclodextrin-Based Nanohydrogels Containing Polyamidoamine Units: A New Dexamethasone Delivery System for Inflammatory Diseases. Gels 2017; 3:gels3020022. [PMID: 30920519 PMCID: PMC6318607 DOI: 10.3390/gels3020022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 12/28/2022] Open
Abstract
Glucocorticoids are widely prescribed in treatment of rheumatoid arthritis, asthma, systemic lupus erythematosus, lymphoid neoplasia, skin and eye inflammations. However, well-documented adverse effects offset their therapeutic advantages. In this work, novel nano-hydrogels for the sustained delivery of dexamethasone were designed to increase both bioavailability and duration of the administered drug and reducing the therapeutic dose. Hydrogels are soft materials consisting of water-swollen cross-linked polymers to which the insertion of cyclodextrin (CD) moieties adds hydrophobic drug-complexing sites. Polyamidoamines (PAAs) are biocompatible and biodegradable polymers apt to create CD moieties in hydrogels. In this work, β or γ-CD/PAA nanogels have been developed. In vitro studies showed that a pretreatment for 24⁻48 h with dexamethasone-loaded, β-CD/PAA nanogel (nanodexa) inhibits adhesion of Jurkat cells to human umbilical vein endothelial cells (HUVEC) in conditions mimicking inflammation. This inhibitory effect was faster and higher than that displayed by free dexamethasone. Moreover, nanodexa inhibited COX-2 expression induced by PMA+A23187 in Jurkat cells after 24⁻48 h incubation in the 10-8⁻10-5 M concentration range, while dexamethasone was effective only at 10-5 M after 48 h treatment. Hence, the novel nanogel-dexamethasone formulation combines faster action with lower doses, suggesting the potential for being more manageable than the free drug, reducing its adverse side effects.
Collapse
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Torino, via P. Giuria 9, 10125 Torino, Italy.
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Torino, via P. Giuria 9, 10125 Torino, Italy.
| | - Benedetta Ferrara
- Department of Drug Science and Technology, University of Torino, via P. Giuria 9, 10125 Torino, Italy.
| | - Shankar Swaminathan
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Amedea Manfredi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, via P. Giuria 9, 10125 Torino, Italy.
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
8
|
Zheng S, Luo Q, Peng L, Xu J, Mu JP. Effect and mechanism of application in canicular days plus enteral nutrition for cough variant asthma in kids. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2016. [DOI: 10.1007/s11726-016-0945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022]
|
9
|
ZHU YINGJIE, SUN YUELI, CAI YUCHEN, SHA OU, JIANG WENQI. Trichosanthin reduces the viability of SU-DHL-2 cells via the activation of the extrinsic and intrinsic apoptotic pathways. Mol Med Rep 2015; 13:403-11. [DOI: 10.3892/mmr.2015.4531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2015] [Accepted: 10/06/2015] [Indexed: 11/06/2022] Open
|
10
|
Zhao B, Xie GJ, Li RF, Chen Q, Zhang XQ. Dexamethasone protects normal human liver cells from apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand by upregulating the expression of P-glycoproteins. Mol Med Rep 2015; 12:8093-100. [PMID: 26496964 DOI: 10.3892/mmr.2015.4458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2014] [Accepted: 09/09/2015] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoids are effective for the treatment of acute-on-chronic pre-liver failure, severe chronic hepatitis B and acute liver failure; however, the mechanism underlying the effects of treatment by glucocorticoids remains to be fully elucidated. The role and detailed mechanism of how glucocorticoids prevent liver disease progression can be elucidated by investigating the apoptosis of hepatocytes following glucocorticoid treatment. P‑glycoproteins (P‑gps) also confer resistance to apoptosis induced by a diverse range of stimuli. Glucocorticoids, particularly dexamethasone (DEX), upregulate the expression of P‑gp in several tissues. In the present study, the normal human L‑02 liver cell line was used, and techniques, including immunocytochemistry, western blot analysis, flow cytometry and reverse transcription‑quantitative polymerase chain reaction analysis were used for determining the expression levels of P‑gps, and for evaluating the effect of DEX pretreatment on the expression of P‑gps. DEX (1‑10 µM) was added to the cell culture media and incubated for 24‑72 h. The results revealed that DEX upregulated the mRNA and protein levels of P‑gp in a dose‑ and time‑dependent manner. Subsequently, tumor necrosis factor‑related apoptosis‑inducing ligand (TRAIL) was used for the induction of apoptosis in the cells, followed by a terminal deoxynucleotidyl transferase dUTP nick end labeling assay to assess the apoptotic stages. The results demonstrated that apoptosis in the group of cells, which were pre‑treated with DEX was significantly lower than that in the control group. Treatment with tariquidar, a P‑gp inhibitor, reduced the anti‑apoptotic effects of DEX. These results established that DEX protects normal human liver cells from TRAIL‑induced apoptosis by upregulating the expression of P-gp. These observations may be useful for elucidating the mechanism of DEX for preventing the progression of liver disease.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Gui-Juan Xie
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Rui-Feng Li
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Qing Chen
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xu-Qing Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
11
|
Zhang D, Chen B, Zhou J, Zhou L, Li Q, Liu F, Chou KY, Tao L, Lu LM. Low concentrations of trichosanthin induce apoptosis and cell cycle arrest via c-Jun N-terminal protein kinase/mitogen-activated protein kinase activation. Mol Med Rep 2014; 11:349-56. [PMID: 25351837 DOI: 10.3892/mmr.2014.2760] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2014] [Accepted: 10/14/2014] [Indexed: 11/06/2022] Open
Abstract
Trichosanthin (TCS) is a type I ribosome--inactivating protein, which inhibits cell viability in human epithelial type 2 (HEp-2) and AMC-HN-8 human laryngeal epidermoid carcinoma cells. Although TCS is a potential chemotherapeutic agent, its mechanism of action remains to be elucidated. In the present study, HEp-2 and AMC-HN-8 cells were treated with different concentrations of TCS combined with or without cisplatin. After 5 days of successive treatment, different experimental groups were detected using a cell counting kit-8 and the collected supernatants were analyzed using a lactate dehydrogenase kit. Flow cytometric assays were performed to detect apoptosis and cell cycle arrest in the HEp-2 and AMC-HN-8 cells, reverse transcription quantitative polymerase chain reaction was performed to detect the levels of p27, p21WAF and western blot analysis was performed to detect changes in c-Jun N-terminal protein kinase (JNK)/phosphorylated (phospho)-JNK, p38/phospho-p38, extracellular signal-regulated kinase (ERK)/phospho-ERK, caspase-3 and caspase-9 in the HEp-2 and AMC-HN-8 cancer cells. TCS significantly inhibited the cell viability of the HEp-2 and AMC-HN-8 cells, independently of necrosis. TCS induced apoptosis and increased the percentage of HEp-2 and AMC-HN-8 cells in the S-phase of the cell cycle. In addition, the JNK/mitogen-activated protein kinase (MAPK) pathway was activated by TCS in the HEp-2 and AMC-HN-8 cells. Low concentrations of TCS also induced apoptosis and S-phase cell cycle arrest in the HEp-2 and AMC-HN-8 cells. The antitumor effects of TCS may be associated with JNK/MAPK activation.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Otolaryngology‑Head and Neck Surgery, Eye, Ear, Nose and Throat Hospital, Fudan University School of Medicine, Shanghai 200031, P.R. China
| | - Bin Chen
- Department of Otolaryngology‑Head and Neck Surgery, Eye, Ear, Nose and Throat Hospital, Fudan University School of Medicine, Shanghai 200031, P.R. China
| | - Jian Zhou
- Department of Otolaryngology‑Head and Neck Surgery, Eye, Ear, Nose and Throat Hospital, Fudan University School of Medicine, Shanghai 200031, P.R. China
| | - Lin Zhou
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Qing Li
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Fei Liu
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Kuang-Yen Chou
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Lei Tao
- Department of Otolaryngology‑Head and Neck Surgery, Eye, Ear, Nose and Throat Hospital, Fudan University School of Medicine, Shanghai 200031, P.R. China
| | - Li-Ming Lu
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
12
|
Xu J, Zheng S, Fang W. Role of combining spreading moxibustion and point injection in reducing ECP and LPO levels and improving lung function. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2014. [DOI: 10.1007/s11726-014-0739-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2022]
|
13
|
Park GB, Choi Y, Kim YS, Lee HK, Kim D, Hur DY. ROS and ERK1/2-mediated caspase-9 activation increases XAF1 expression in dexamethasone-induced apoptosis of EBV-transformed B cells. Int J Oncol 2013; 43:29-38. [PMID: 23685456 PMCID: PMC3742161 DOI: 10.3892/ijo.2013.1949] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2013] [Accepted: 04/26/2013] [Indexed: 12/01/2022] Open
Abstract
Dexamethasone (Dex) inhibits the growth of diverse types of cancer cells and is utilized clinically for the therapy of hematological malignancies. In this study, we investigated the molecular mechanisms of Dex action in the apoptosis of Epstein-Barr virus (EBV)-transformed B cells. We showed that Dex inhibited the proliferation of EBV-transformed B cells and induced apoptosis by activating caspase-9, -3 and -8. While activation of caspase-9 was triggered as early as 2 h after Dex treatment, cleavage of caspase-8 was deferred and was found 8 h after the exposure. Dex-dependent activation of caspase-8 was blocked by the specific caspase-9 inhibitor, z-LEHD-fmk. Moreover, Dex significantly increased the expression of X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) and induced the translocation of XAF1 into the cytosol. Cytosolic XAF1 with Puma induced the translocation of Bax into mitochondria. Dex led to up-regulation of reactive oxygen species (ROS) generation and the phosphorylation of ERK1/2 after the exposure. We speculated that ROS generation might be the first event of Dex-induced apoptosis because ROS inhibitor NAC abrogated ROS production and ERK1/2 activation, but PD98059 did not block ROS production. NAC and PD98059 also suppressed the translocation of XAF1, Puma and Bax into mitochondria. These results demonstrated that Dex-mediated activation of caspase-9 via ROS generation and ERK1/2 pathway activation resulted in the activation of caspase-8 and the increment of XAF1, thereby induced apoptosis of EBV-transformed B cells. These findings suggest that Dex constitutes a probable therapy for EBV-associated hematological malignancies.
Collapse
Affiliation(s)
- Ga Bin Park
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | | | | | | | | | | |
Collapse
|
14
|
Trichosanthin inhibits breast cancer cell proliferation in both cell lines and nude mice by promotion of apoptosis. PLoS One 2012; 7:e41592. [PMID: 22957017 PMCID: PMC3434199 DOI: 10.1371/journal.pone.0041592] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2012] [Accepted: 06/28/2012] [Indexed: 12/21/2022] Open
Abstract
Breast cancer ranks as a common and severe neoplasia in women with increasing incidence as well as high risk of metastasis and relapse. Translational and laboratory-based clinical investigations of new/novel drugs are in progress. Medicinal plants are rich sources of biologically active natural products for drug development. The 27-kDa trichosanthin (TCS) is a ribosome inactivating protein purified from tubers of the Chinese herbal plant Trichosanthes kirilowii Maximowicz (common name Tian Hua Fen). In this study, we extended the potential medicinal applications of TCS from HIV, ferticide, hydatidiform moles, invasive moles, to breast cancer. We found that TCS manifested anti-proliferative and apoptosis-inducing activities in both estrogen-dependent human MCF-7 cells and estrogen-independent MDA-MB-231 cells. Flow cytometric analysis disclosed that TCS induced cell cycle arrest. Further studies revealed that TCS-induced tumor cell apoptosis was attributed to activation of both caspase-8 and caspase-9 regulated pathways. The subsequent events including caspase-3 activation, and increased PARP cleavage. With regard to cell morphology, stereotypical apoptotic features were observed. Moreover, in comparison with control, TCS- treated nude mice bearing MDA-MB-231 xenograft tumors exhibited significantly reduced tumor volume and tumor weight, due to the potent effect of TCS on tumor cell apoptosis as determined by the increase of caspase-3 activation, PARP cleavage, and DNA fragmentation using immunohistochemistry. Considering the clinical efficacy and relative safety of TCS on other human diseases, this work opens up new therapeutic avenues for patients with estrogen-dependent and/or estrogen-independent breast cancers.
Collapse
|
15
|
Puri M, Kaur I, Perugini MA, Gupta RC. Ribosome-inactivating proteins: current status and biomedical applications. Drug Discov Today 2012; 17:774-83. [DOI: 10.1016/j.drudis.2012.03.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2011] [Revised: 02/02/2012] [Accepted: 03/21/2012] [Indexed: 12/28/2022]
|
16
|
Liu F, Wang B, Wang Z, Yu S. Trichosanthin down-regulates Notch signaling and inhibits proliferation of the nasopharyngeal carcinoma cell line CNE2 in vitro. Fitoterapia 2012; 83:838-42. [DOI: 10.1016/j.fitote.2012.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
|
17
|
Cai Y, Xiong S, Zheng Y, Luo F, Jiang P, Chu Y. Trichosanthin enhances anti-tumor immune response in a murine Lewis lung cancer model by boosting the interaction between TSLC1 and CRTAM. Cell Mol Immunol 2011; 8:359-67. [PMID: 21572449 DOI: 10.1038/cmi.2011.12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023] Open
Abstract
Trichosanthin (TCS), extracted from the Chinese medicinal herb Trichosanthes kirilowi, has shown promise for the inhibition of tumor growth. However, its immunomodulatory effect on tumor-host interaction remains unknown. In this study, we focused on the effect of TCS on murine anti-tumor immune response in the 3LL Lewis lung carcinoma tumor model and explored the possible molecular pathways involved. In addition to inhibiting cell proliferation and inducing apoptosis in the 3LL tumor, TCS retarded tumor growth and prolonged mouse survival more significantly in C57BL/6 immunocompetent mice than in nude mice. This reflected the fact that the host immune system was involved in tumor eradication. Using FACS analysis, we found that TCS increased the percentage of effector T cells, particularly Interferon-gamma (IFN-γ) producing CD4(+) and CD8(+) T cells from tumor-bearing mice. TCS also promoted the vigorous proliferation of antigen-specific effector T cells, markedly increased Th1 cytokine secretion and elicited more memory T cells in tumor-bearing mice, consequently enhancing the anti-tumor response and inducing immune protection. Furthermore, we found that TCS upregulated the expression of tumor suppressor in lung cancer 1 (TSLC1) in 3LL tumor cells and the expression of its ligand, class I-restricted T cell-associated molecule (CRTAM), in effector T cells. Blocking TSLC1 expression with small interfering RNA (siRNA) significantly eliminated the effects of TCS on the proliferation and cytokine secretion of effector T cells, suggesting that TCS enhances anti-tumor immune response at least partially by boosting the interaction between TSLC1 and CRTAM. Collectively, our data demonstrate that TCS not only affects tumor cells directly, but also enhances anti-tumor immunity via the interaction between TSLC1 and CRTAM. These findings may lead to the development of a novel approach for tumor regression.
Collapse
Affiliation(s)
- Yuchan Cai
- Department of Immunology, Shanghai Medical College, Key Laboratory of Molecular Medicine of Ministry of Education, Fudan University, China
| | | | | | | | | | | |
Collapse
|