1
|
Ling Y, Zheng Q, Jing J, Sui M, Zhu L, Li Y, Zhang Y, Liu Y, Fang F, Zhang X. RNA-Seq Reveals miRNA Role Shifts in Seven Stages of Skeletal Muscles in Goat Fetuses and Kids. Front Genet 2020; 11:684. [PMID: 32733538 PMCID: PMC7358459 DOI: 10.3389/fgene.2020.00684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/04/2020] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) are indispensable for the regulation of skeletal muscle. We performed RNA sequencing (RNA-seq) to establish a comprehensive miRNA profiling of goats in seven stages, namely, 45- (F45), 65- (F65), 90- (F90), 120- (F120), and 135-day (F135) fetuses, newborn (B1), and 90-day-old (B90) kids. In total, 421 known miRNAs and 228 goat novel miRNAs were identified in the data, and the average abundance of 19 miRNAs in seven stages exceeds 10,000 reads per million. Furthermore, 420 differentially expressed miRNAs (DEmiRNAs) were identified in all comparison group at seven stages, 80 of which were uniquely differentially expressed in the B1 and B90 comparison groups. Pathway analysis indicated that this group was associated with the release of muscle hypertrophy and regulation of myoblast proliferation. Besides, 305 DEmiRNAs were clustered into three significantly enriched profiles (profiles 11, 16, and 19). Function analysis revealed that profile 16 was related to muscle hypertrophy and differentiation. Profile 11 was involved in multiple enzyme activities and metabolic processes in muscle cells. And profile 19 was involved in material transport and structural stability. Two highly expressed miRNAs and three key miRNAs (chi-miR-328-3p, chi-miR-767, and chi-miR-150) of these profiles were verified to be consistent with the data by quantitative real-time PCR. These results provided a catalog of goat muscle-associated miRNAs, allowing us to better understand the transformation of miRNA roles during mammalian muscle development.
Collapse
Affiliation(s)
- Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Jing Jing
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Menghua Sui
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Lu Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Yunsheng Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Ya Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Fugui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Xiaorong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| |
Collapse
|
3
|
Karabowicz P, Schlicker E, Pędzińska-Betiuk A, Kloza M, Malinowska B. The adrenal medulla, not CB1 receptors, mediates the inhibitory effect of acute transverse aortic constriction on the neurogenic vasopressor response. Life Sci 2015; 138:86-93. [PMID: 25498898 DOI: 10.1016/j.lfs.2014.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/12/2014] [Accepted: 11/21/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Piotr Karabowicz
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicz str. 2A, 15-222 Białystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicz str. 2A, 15-222 Białystok, Poland
| | - Monika Kloza
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicz str. 2A, 15-222 Białystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicz str. 2A, 15-222 Białystok, Poland.
| |
Collapse
|
5
|
Abstract
Hypoxia-inducible factor (HIF) is a set of transcription factors that regulate the cellular response to hypoxia. There is a great body of evidence supporting the protective role of HIF-1α in cardiovascular pathophysiology, however, newer studies are hinting at a maladaptive and deleterious role of this transcription factor that merits further investigation. There is a general agreement, however, that HIF-mediated responses appear to differ under conditions of acute and chronic oxygen deprivation. The intensity and sustainability of HIF-1α activation are major determinants of whether the responses are pathological or beneficial. HIF activation is seen to be beneficial in the setting of acute myocardial ischemia and deleterious in chronic conditions. In this review, we will focus on recent insights into the role of HIF-1α in the heart and especially in the setting of ischemic heart disease.
Collapse
|
6
|
Clerico A, Giannoni A, Vittorini S, Passino C. Thirty years of the heart as an endocrine organ: physiological role and clinical utility of cardiac natriuretic hormones. Am J Physiol Heart Circ Physiol 2011; 301:H12-20. [DOI: 10.1152/ajpheart.00226.2011] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thirty years ago, De Bold et al. ( 20 ) reported that atrial extracts contain some biologically active peptides, which promote a rapid and massive diuresis and natriuresis when injected in rats. It is now clear that the heart also exerts an endocrine function and in this way plays a key role in the regulation of cardiovascular and renal systems. The aim of this review is to discuss some recent insights and still-debated findings regarding the cardiac natriuretic hormones (CNHs) produced and secreted by cardiomyocytes (i.e., atrial natriuretic peptide and B-type natriuretic peptide). The functional status of the CNH system depends not only on the production/secretion of CNHs by cardiomyocytes but also on both the peripheral activation of circulating inactive precursor of natriuretic hormones and the transduction of the hormone signal by specific receptors. In this review, we will discuss the data supporting the hypothesis that the production and secretion of CNHs is the result of a complex integration among mechanical, chemical, hemodynamic, humoral, ischemic, and inflammatory inputs. The cross talk among endocrine function, adipose tissue, and sex steroid hormones will be discussed more in detail, considering the clinically relevant relationships linking together cardiovascular risk, sex, and body fat development and distribution. Finally, we will review the pathophysiological role and the clinical relevance of both peripheral maturation of the precursor of B-type natriuretic peptides and hormone signal transduction .
Collapse
Affiliation(s)
- Aldo Clerico
- Scuola Superiore Sant'Anna, Fondazione del Consiglio Nazionale delle Ricerche e della Regione Toscana, Gabriele Monasterio, Pisa, Italy
| | - Alberto Giannoni
- Scuola Superiore Sant'Anna, Fondazione del Consiglio Nazionale delle Ricerche e della Regione Toscana, Gabriele Monasterio, Pisa, Italy
| | - Simona Vittorini
- Scuola Superiore Sant'Anna, Fondazione del Consiglio Nazionale delle Ricerche e della Regione Toscana, Gabriele Monasterio, Pisa, Italy
| | - Claudio Passino
- Scuola Superiore Sant'Anna, Fondazione del Consiglio Nazionale delle Ricerche e della Regione Toscana, Gabriele Monasterio, Pisa, Italy
| |
Collapse
|