1
|
Wang B, Wu S, Jia S, Ruan X, Sheng C, Zhou Q. Discovery of Indolo[3,2- c]isoquinoline Derivatives as Novel Top1/2 Dual Inhibitors with Orally Efficacious Antitumor Activity and Low Toxicity. J Med Chem 2024; 67:14155-14174. [PMID: 39106476 DOI: 10.1021/acs.jmedchem.4c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Topoisomerase (Top) inhibitors used in clinical cancer treatments are limited because of their toxicity and severe side effects. Noteworthily, Top1/2 dual inhibitors overcome the compensatory effect between Top1 and 2 inhibitors to exhibit stronger antitumor efficacies. In this study, a series of indolo[3,2-c]isoquinoline derivatives were designed as Top1/2 dual inhibitors possessing apparent antiproliferative activities. Mechanistic studies indicated that the optimal compounds 23 and 31 with increasing reactive oxygen species levels damage DNA, inducing both cancer cell apoptosis and cycle arrest. Importantly, the results of the toxicity studies showed that compounds 23 and 31 possessed good oral safety profiles. In xenograft models, compound 23 exhibited remarkable antitumor potency, which was superior to the clinical Top inhibitors irinotecan and etoposide. Overall, this work highlights the therapeutic potential and safety profile of compound 23 as a Top1/2 dual inhibitor in tumor therapy and provides valuable lead compounds for further development of Top inhibitors.
Collapse
Affiliation(s)
- Bichuan Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shanchao Wu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Shuolei Jia
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiuqin Ruan
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Qingfa Zhou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Abstract
Cells that undergo checkpoint adaptation arrest at and then abrogate the G2/M cell cycle checkpoint to enter mitosis with damaged DNA. Cells surviving this process frequently contain micronuclei, which can lead to genomic change and chromothripsis. In this chapter we describe how to induce checkpoint adaptation and detect it by time-lapse video and immunofluorescence microscopy and how to isolate cells undergoing checkpoint adaptation from a total cell population.
Collapse
|
3
|
Lewis CW, Golsteyn RM. Cancer cells that survive checkpoint adaptation contain micronuclei that harbor damaged DNA. Cell Cycle 2016; 15:3131-3145. [PMID: 27636097 DOI: 10.1080/15384101.2016.1231287] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We have examined the relationship between checkpoint adaptation (mitosis with damaged DNA) and micronuclei. Micronuclei in cancer cells are linked to genomic change, and may induce chromothripsis (chromosome shattering). We measured the cytotoxicity of the cancer drug cisplatin in M059K (glioma fibroblasts, IC50 15 μM). Nearly 100% of M059K cells were positive for histone γH2AX staining after 48 h treatment with a cytotoxic concentration of cisplatin. The proportion of micronucleated cells, as confirmed by microscopy using DAPI and lamin A/C staining, increased from 24% to 48%, and the total micronuclei in surviving cells accumulated over time. Promoting entry into mitosis with a checkpoint inhibitor increased the number of micronuclei in cells whereas blocking checkpoint adaptation with a Cdk inhibitor reduced the number of micronuclei. Interestingly, some micronuclei underwent asynchronous DNA replication, relative to the main nuclei, as measured by deoxy-bromo-uracil (BrdU) staining. These micronuclei stained positive for histone γH2AX, which was linked to DNA replication, suggesting that micronuclei arise from checkpoint adaptation and that micronuclei may continue to damage DNA. By contrast the normal cell line WI-38 did not undergo checkpoint adaptation when treated with cisplatin and did not show changes in micronuclei number. These data reveal that the production of micronuclei by checkpoint adaptation is part of a process that contributes to genomic change.
Collapse
Affiliation(s)
- Cody W Lewis
- a Cancer Cell Laboratory, Department of Biological Sciences, University of Lethbridge , Lethbridge , AB , Canada
| | - Roy M Golsteyn
- a Cancer Cell Laboratory, Department of Biological Sciences, University of Lethbridge , Lethbridge , AB , Canada
| |
Collapse
|
4
|
Das T, Roy KS, Chakrabarti T, Mukhopadhyay S, Roychoudhury S. Withaferin A modulates the Spindle assembly checkpoint by degradation of Mad2-Cdc20 complex in colorectal cancer cell lines. Biochem Pharmacol 2014; 91:31-9. [PMID: 24995417 DOI: 10.1016/j.bcp.2014.06.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 02/01/2023]
Abstract
Withania somnifera L. Dunal (Ashwagandha) is used over centuries in the ayurvedic medicines in India. Withaferin A, a withanolide, is the major compound present in leaf extract of the plant which shows anticancer activity against leukemia, breast cancer and colorectal cancer. It arrests the ovarian cancer cells in the G2/M phase in dose dependent manner. In the current study we show the effect of Withaferin A on cell cycle regulation of colorectal cancer cell lines HCT116 and SW480 and its effect on cell fate. Treatment of these cells with this compound leads to apoptosis in a dose dependent manner. It causes the G2/M arrest in both the cell lines. We show that Withaferin A (WA) causes mitotic delay by blocking Spindle assembly checkpoint (SAC) function. Apoptosis induced by Withaferin A is associated with proteasomal degradation of Mad2 and Cdc20, an important constituent of the Spindle Checkpoint Complex. Further overexpression of Mad2 partially rescues the deleterious effect of WA by restoring proper anaphase initiation and keeping more number of cells viable. We hypothesize that Withaferin A kills cancer cells by delaying the mitotic exit followed by inducing chromosome instability.
Collapse
Affiliation(s)
- Tania Das
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Kumar Singha Roy
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tulika Chakrabarti
- Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sibabrata Mukhopadhyay
- Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Susanta Roychoudhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
5
|
Akerman KJ, Fagenson AM, Cyril V, Taylor M, Muller MT, Akerman MP, Munro OQ. Gold(III) macrocycles: nucleotide-specific unconventional catalytic inhibitors of human topoisomerase I. J Am Chem Soc 2014; 136:5670-82. [PMID: 24694294 PMCID: PMC4004252 DOI: 10.1021/ja412350f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Topoisomerase
IB (Top1) is a key eukaryotic nuclear enzyme that
regulates the topology of DNA during replication and gene transcription.
Anticancer drugs that block Top1 are either well-characterized interfacial
poisons or lesser-known catalytic inhibitor compounds. Here we describe
a new class of cytotoxic redox-stable cationic Au3+ macrocycles
which, through hierarchical cluster analysis of cytotoxicity data
for the lead compound, 3, were identified as either poisons
or inhibitors of Top1. Two pivotal enzyme inhibition assays prove
that the compounds are true catalytic inhibitors of Top1. Inhibition
of human topoisomerase IIα (Top2α) by 3 was
2 orders of magnitude weaker than its inhibition of Top1, confirming
that 3 is a type I-specific catalytic inhibitor. Importantly,
Au3+ is essential for both DNA intercalation and enzyme
inhibition. Macromolecular simulations show that 3 intercalates
directly at the 5′-TA-3′ dinucleotide sequence targeted
by Top1 via crucial electrostatic interactions, which include π–π
stacking and an Au···O contact involving a thymine
carbonyl group, resolving the ambiguity of conventional (drug binds
protein) vs unconventional (drug binds substrate) catalytic inhibition
of the enzyme. Surface plasmon resonance studies confirm the molecular
mechanism of action elucidated by the simulations.
Collapse
Affiliation(s)
- Kate J Akerman
- School of Chemistry and Physics, University of KwaZulu-Natal , Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | | | | | | | | | | | | |
Collapse
|
6
|
Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int J Mol Sci 2014; 15:3403-31. [PMID: 24573252 PMCID: PMC3975345 DOI: 10.3390/ijms15033403] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/22/2014] [Accepted: 02/14/2014] [Indexed: 12/19/2022] Open
Abstract
When a human cell detects damaged DNA, it initiates the DNA damage response (DDR) that permits it to repair the damage and avoid transmitting it to daughter cells. Despite this response, changes to the genome occur and some cells, such as proliferating cancer cells, are prone to genome instability. The cellular processes that lead to genomic changes after a genotoxic event are not well understood. Our research focuses on the relationship between genotoxic cancer drugs and checkpoint adaptation, which is the process of mitosis with damaged DNA. We examine the types of DNA damage induced by widely used cancer drugs and describe their effects upon proliferating cancer cells. There is evidence that cell death caused by genotoxic cancer drugs in some cases includes exiting a DNA damage cell cycle arrest and entry into mitosis. Furthermore, some cells are able to survive this process at a time when the genome is most susceptible to change or rearrangement. Checkpoint adaptation is poorly characterised in human cells; we predict that increasing our understanding of this pathway may help to understand genomic instability in cancer cells and provide insight into methods to improve the efficacy of current cancer therapies.
Collapse
|
7
|
Lancelot N, Piotto M, Theret I, Lesur B, Hennig P. Applications of NMR screening techniques to the pharmaceutical target Checkpoint kinase 1. J Pharm Biomed Anal 2013; 93:125-35. [PMID: 24280017 DOI: 10.1016/j.jpba.2013.10.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
Ligand screening techniques based on NMR spectroscopy are not as sensitive as other commonly used methods like fluorescence, radiolabeling and surface plasmon resonance. However, using modern NMR instrumentation, they can achieve reliable screening under near physiological condition using as little as 4.6 nmol of receptor and 100 nmol of ligand. Additionally, these NMR methods can also provide valuable and specific information on the ligand under investigation such as the dissociation constant KD, the binding epitope and most importantly some structural information on the actual conformation in the bound state. In this manuscript, we describe the use of NMR based screening techniques ("Saturation Transfer Difference" (STD) and "Water Ligand Observed via Gradient SpectroscopY" (WaterLOGSY)) to detect small therapeutic molecules that interact with the DNA damage checkpoint enzyme Checkpoint kinase 1 (Chk1). After the identification of the most potent ligand, we used specific NMR experiments to perform the epitope mapping of this ligand ("Group epitope mapping-STD" (GEM-STD), "Difference of Inversion REcovery rate with and without Target IrradiatiON" (DIRECTION)) and to characterize its bound conformation ("Transferred-Nuclear Overhauser Effect SpectroscopY" (tr-NOESY), "Transferred-Rotating frame Overhauser Effect SpectroscopY" (tr-ROESY)). Finally, we used molecular docking procedures to position the ligand within the active site of Chk1. On the experimental level, a comparison between NMR studies performed in a 90%H2O/10%D2O buffer and a 100% D2O buffer is also presented and discussed.
Collapse
Affiliation(s)
- N Lancelot
- Institut de Recherches Servier, Analytical and Physical Chemistry Department, 11 rue des Moulineaux, 92150 Suresnes, France.
| | - M Piotto
- Bruker BioSpin, Laboratoire d'applications RMN, 34 rue de l'industrie, 67166 Wissembourg, France.
| | - I Theret
- Institut de Recherches Servier, Chimie Partenariats et Modélisation Moléculaire, 125 Chemin de Ronde, 78290 Croissy-Sur-Seine, France
| | - B Lesur
- Institut de Recherches Servier, Chimie Partenariats et Modélisation Moléculaire, 125 Chemin de Ronde, 78290 Croissy-Sur-Seine, France
| | - P Hennig
- Institut de Recherches Servier, Analytical and Physical Chemistry Department, 11 rue des Moulineaux, 92150 Suresnes, France
| |
Collapse
|
8
|
A western blot assay to measure cyclin dependent kinase activity in cells or in vitro without the use of radioisotopes. FEBS Lett 2013; 587:3089-95. [DOI: 10.1016/j.febslet.2013.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/22/2013] [Accepted: 08/01/2013] [Indexed: 11/22/2022]
|
9
|
Deslandes S, Lamoral-Theys D, Frongia C, Chassaing S, Bruyère C, Lozach O, Meijer L, Ducommun B, Kiss R, Delfourne E. Synthesis and biological evaluation of analogs of the marine alkaloids granulatimide and isogranulatimide. Eur J Med Chem 2012; 54:626-36. [DOI: 10.1016/j.ejmech.2012.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
|