1
|
Kingma J, Simard C, Drolet B. Overview of Cardiac Arrhythmias and Treatment Strategies. Pharmaceuticals (Basel) 2023; 16:844. [PMID: 37375791 DOI: 10.3390/ph16060844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Maintenance of normal cardiac rhythm requires coordinated activity of ion channels and transporters that allow well-ordered propagation of electrical impulses across the myocardium. Disruptions in this orderly process provoke cardiac arrhythmias that may be lethal in some patients. Risk of common acquired arrhythmias is increased markedly when structural heart disease caused by myocardial infarction (due to fibrotic scar formation) or left ventricular dysfunction is present. Genetic polymorphisms influence structure or excitability of the myocardial substrate, which increases vulnerability or risk of arrhythmias in patients. Similarly, genetic polymorphisms of drug-metabolizing enzymes give rise to distinct subgroups within the population that affect specific drug biotransformation reactions. Nonetheless, identification of triggers involved in initiation or maintenance of cardiac arrhythmias remains a major challenge. Herein, we provide an overview of knowledge regarding physiopathology of inherited and acquired cardiac arrhythmias along with a summary of treatments (pharmacologic or non-pharmacologic) used to limit their effect on morbidity and potential mortality. Improved understanding of molecular and cellular aspects of arrhythmogenesis and more epidemiologic studies (for a more accurate portrait of incidence and prevalence) are crucial for development of novel treatments and for management of cardiac arrhythmias and their consequences in patients, as their incidence is increasing worldwide.
Collapse
Affiliation(s)
- John Kingma
- Department of Medicine, Ferdinand Vandry Pavillon, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Chantale Simard
- Faculty of Pharmacy Ferdinand Vandry Pavillon, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval 2725 Chemin Sainte-Foy, Québec City, QC G1V 4G5, Canada
| | - Benoît Drolet
- Faculty of Pharmacy Ferdinand Vandry Pavillon, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval 2725 Chemin Sainte-Foy, Québec City, QC G1V 4G5, Canada
| |
Collapse
|
2
|
Szobi A, Farkašová‐Ledvényiová V, Lichý M, Muráriková M, Čarnická S, Ravingerová T, Adameová A. Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane. J Cell Mol Med 2018; 22:4183-4196. [PMID: 29921042 PMCID: PMC6111849 DOI: 10.1111/jcmm.13697] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
Necroptosis, a form of cell loss involving the RIP1-RIP3-MLKL axis, has been identified in cardiac pathologies while its inhibition is cardioprotective. We investigated whether the improvement of heart function because of ischaemic preconditioning is associated with mitigation of necroptotic signaling, and these effects were compared with a pharmacological antinecroptotic approach targeting RIP1. Langendorff-perfused rat hearts were subjected to ischaemic preconditioning with or without a RIP1 inhibitor (Nec-1s). Necroptotic signaling and the assessment of oxidative damage and a putative involvement of CaMKII in this process were analysed in whole tissue and subcellular fractions. Ischaemic preconditioning, Nec-1s and their combination improved postischaemic heart function recovery and reduced infarct size to a similar degree what was in line with the prevention of MLKL oligomerization and translocation to the membrane. On the other hand, membrane peroxidation and apoptosis were unchanged by either approach. Ischaemic preconditioning failed to ameliorate ischaemia-reperfusion-induced increase in RIP1 and RIP3 while pSer229-RIP3 levels were reduced only by Nec-1s. In spite of the additive phosphorylation of CaMKII and PLN because of ditherapy, the postischaemic contractile force and relaxation was comparably improved in all the intervention groups while antiarrhythmic effects were observed in the ischaemic preconditioning group only. Necroptosis inhibition seems to be involved in cardioprotection of ischaemic preconditioning and is comparable but not intensified by an anti-RIP1 agent. Changes in oxidative stress nor CaMKII signaling are unlikely to explain the beneficial effects.
Collapse
Affiliation(s)
- Adrián Szobi
- Faculty of PharmacyComenius University in BratislavaBratislavaSlovakia
| | | | - Martin Lichý
- Faculty of PharmacyComenius University in BratislavaBratislavaSlovakia
| | - Martina Muráriková
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesBratislavaSlovakia
| | - Slávka Čarnická
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesBratislavaSlovakia
| | - Tatiana Ravingerová
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesBratislavaSlovakia
| | - Adriana Adameová
- Faculty of PharmacyComenius University in BratislavaBratislavaSlovakia
| |
Collapse
|
3
|
Zhao Y, Zheng ZN, Liu X, Dai G, Jin SQ. Effects of preconditioned plasma collected during the late phase of remote ischaemic preconditioning on ventricular arrhythmias caused by myocardial ischaemia reperfusion in rats. J Int Med Res 2018; 46:1370-1379. [PMID: 29436250 PMCID: PMC6091815 DOI: 10.1177/0300060518755268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective The administration of preconditioned plasma collected during the late phase of preconditioning has been shown to reduce myocardial infarct size. This study aimed to investigate if preconditioned plasma could attenuate ventricular arrhythmias in a rat model in vivo. Methods Eighty rats were randomized to eight groups (10 rats/group). Two groups provided preconditioned or non-preconditioned plasma 48 h after transient limb ischaemia or the control protocol. Six groups of ischaemia-reperfusion (IR) rats received normal saline, non-preconditioned plasma, or preconditioned plasma, respectively, 1 h (groups A1, A2, A3) or 24 h (groups B1, B2, B3) before undergoing myocardial IR. Electrocardiograms were monitored using a BIOPAC system, and the incidence and duration of ventricular tachycardia (VT) and ventricular fibrillation (VF) were analysed. Results No significant differences existed in the incidence and duration of VT or VF among groups A1-A3 or in the incidence and duration of VT among groups B1-B3. However, there was a significantly lower incidence and shorter duration of VF in group B3 rats than in group B1 rats. Conclusion Preconditioned plasma collected during the late phase of preconditioning can reduce the incidence and duration of VF compared with normal saline, suggesting its anti-arrhythmic potential.
Collapse
Affiliation(s)
- Yang Zhao
- 1 Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhi-Nan Zheng
- 1 Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiang Liu
- 1 Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Gang Dai
- 2 The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - San-Qing Jin
- 1 Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Maslov LN, Podoksenov YK, Tsibul’nikov SY, Gorbunov AS, Tsepokina AV, Khutornaya MV, Kutikhin AG, Zhang Y, Pei JM. The Phenomenon of Remote Preconditioning of the Heart and Its Main Manifestations. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2017; 47:667-674. [DOI: 10.1007/s11055-017-0453-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Galagudza MM, Sonin DL, Vlasov TD, Kurapeev DI, Shlyakhto EV. Remote vs. local ischaemic preconditioning in the rat heart: infarct limitation, suppression of ischaemic arrhythmia and the role of reactive oxygen species. Int J Exp Pathol 2016; 97:66-74. [PMID: 26990944 DOI: 10.1111/iep.12170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/30/2015] [Indexed: 12/13/2022] Open
Abstract
The unmet clinical need for myocardial salvage during ischaemia-reperfusion injury requires the development of new techniques for myocardial protection. In this study the protective effect of different local ischaemic preconditioning (LIPC) and remote ischaemic preconditioning (RIPC) protocols was compared in the rat model of myocardial ischaemia-reperfusion, using infarct size and ischaemic tachyarrhythmias as end-points. In addition, the hypothesis that there is involvement of reactive oxygen species (ROS) in the protective signalling by RIPC was tested, again in comparison with LIPC. The animals were subjected to 30-min coronary occlusion and 90-min reperfusion. RIPC protocol included either transient infrarenal aortic occlusion (for 5, 15 and 30 min followed by 15-min reperfusion) or 15-min mesenteric artery occlusion with 15-min reperfusion. Ventricular tachyarrhythmias during test ischaemia were quantified according to Lambeth Conventions. It was found that the infarct-limiting effect of RIPC critically depends on the duration of a single episode of remote ischaemia, which fails to protect the heart from infarction when it is too short or, instead, too prolonged. It was also shown that RIPC is ineffective in reducing the incidence and severity of ischaemia-induced ventricular tachyarrhythmias. According to our data, the infarct-limiting effect of LIPC could be partially eliminated by the administration of ROS scavenger N-2-mercaptopropionylglycine (90 mg/kg), whereas the same effect of RIPC seems to be independent of ROS signalling.
Collapse
Affiliation(s)
- Michael M Galagudza
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St. Petersburg, Russian Federation.,ITMO University, St. Petersburg, Russian Federation
| | - Dmitry L Sonin
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St. Petersburg, Russian Federation.,Department of Pathophysiology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russian Federation
| | - Timur D Vlasov
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St. Petersburg, Russian Federation.,Department of Pathophysiology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russian Federation
| | - Dmitry I Kurapeev
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St. Petersburg, Russian Federation
| | - Eugene V Shlyakhto
- Institute of Heart and Vessels, Federal Almazov North-West Medical Research Centre, St. Petersburg, Russian Federation.,Department of Internal Medicine, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russian Federation
| |
Collapse
|
6
|
FERKO M, KANCIROVÁ I, JAŠOVÁ M, ČARNICKÁ S, MURÁRIKOVÁ M, WACZULÍKOVÁ I, SUMBALOVÁ Z, KUCHARSKÁ J, ULIČNÁ O, RAVINGEROVÁ T, ZIEGELHÖFFER A. Remote Ischemic Preconditioning of the Heart: Protective Responses in Functional and Biophysical Properties of Cardiac Mitochondria. Physiol Res 2014; 63:S469-78. [DOI: 10.33549/physiolres.932933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Remote ischemic preconditioning (RIP)-induced protection of myocardial energetics was well documented on the level of tissue, but data concerning the involvement of mitochondria were missing. We aimed at the identification of changes in membrane properties and respiratory functions induced in rat heart mitochondria by RIP. Experiments were performed on 46 male Wistar rats divided into control and RIP-treated groups of 21 animals each. Blood flow in the occluded area was recorded by MRI angiography in four animals. RIP protocol comprised of three successive 5-min occlusions each followed by 5-min reperfusions of descending branches of the right hind limb femoral artery. The efficacy of RIP was evaluated as the extent of RIP-induced protection against damage to the functions of mitochondria isolated by differential centrifugation after 30-min global ischemia followed by 40-min reperfusion of the hearts in Langendorff mode. Assessments: mitochondrial membrane fluidity with a fluorescent probe DPH, CoQ9 and CoQ10 with HPLC, mitochondrial respiration with the Oxygraph-2k (Oroboros). Results revealed that RIP was affecting the mitochondria. The immediate protection conferred by RIP involves beneficial and prognostically significant effects: a total elimination of ischemia/reperfusion-induced depression of mitochondrial membrane fluidity and a trend for better preservation of mitochondrial state 3 respiration.
Collapse
Affiliation(s)
- M. FERKO
- Institute for Heart Research, Centre of Excellence SAS NOREG, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Castillo RL, Arias C, Farías JG. Omega 3 chronic supplementation attenuates myocardial ischaemia-reperfusion injury through reinforcement of antioxidant defense system in rats. Cell Biochem Funct 2013; 32:274-81. [DOI: 10.1002/cbf.3012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/24/2013] [Accepted: 10/02/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Rodrigo L. Castillo
- Pathophysiology Program, Biomedical Sciences Institute, Faculty of Medicine; Universidad de Chile; Santiago Chile
| | - Consuelo Arias
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias; Universidad de la Frontera; Temuco Chile
| | - Jorge G. Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias; Universidad de la Frontera; Temuco Chile
| |
Collapse
|