1
|
Wacker M, Riedel J, Walles H, Scherner M, Awad G, Varghese S, Schürlein S, Garke B, Veluswamy P, Wippermann J, Hülsmann J. Comparative Evaluation on Impacts of Fibronectin, Heparin-Chitosan, and Albumin Coating of Bacterial Nanocellulose Small-Diameter Vascular Grafts on Endothelialization In Vitro. NANOMATERIALS 2021; 11:nano11081952. [PMID: 34443783 PMCID: PMC8398117 DOI: 10.3390/nano11081952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/18/2022]
Abstract
In this study, we contrast the impacts of surface coating bacterial nanocellulose small-diameter vascular grafts (BNC-SDVGs) with human albumin, fibronectin, or heparin–chitosan upon endothelialization with human saphenous vein endothelial cells (VEC) or endothelial progenitor cells (EPC) in vitro. In one scenario, coated grafts were cut into 2D circular patches for static colonization of a defined inner surface area; in another scenario, they were mounted on a customized bioreactor and subsequently perfused for cell seeding. We evaluated the colonization by emerging metabolic activity and the preservation of endothelial functionality by water soluble tetrazolium salts (WST-1), acetylated low-density lipoprotein (AcLDL) uptake assays, and immune fluorescence staining. Uncoated BNC scaffolds served as controls. The fibronectin coating significantly promoted adhesion and growth of VECs and EPCs, while albumin only promoted adhesion of VECs, but here, the cells were functionally impaired as indicated by missing AcLDL uptake. The heparin–chitosan coating led to significantly improved adhesion of EPCs, but not VECs. In summary, both fibronectin and heparin–chitosan coatings could beneficially impact the endothelialization of BNC-SDVGs and might therefore represent promising approaches to help improve the longevity and reduce the thrombogenicity of BNC-SDVGs in the future.
Collapse
Affiliation(s)
- Max Wacker
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
- Correspondence: ; Tel.: +49-391-67-14102
| | - Jan Riedel
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Heike Walles
- Core Facility Tissue Engineering, Otto-Von-Guericke University Magdeburg, 39106 Magdeburg, Germany;
| | - Maximilian Scherner
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - George Awad
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Sam Varghese
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Sebastian Schürlein
- Department Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070 Würzburg, Germany;
| | - Bernd Garke
- Institute of Experimental Physics, Otto-Von-Guericke University Magdeburg, 39106 Magdeburg, Germany;
| | - Priya Veluswamy
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Jens Wippermann
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Jörn Hülsmann
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| |
Collapse
|
2
|
Dymkowska D, Wrzosek A, Zabłocki K. Atorvastatin and pravastatin stimulate nitric oxide and reactive oxygen species generation, affect mitochondrial network architecture and elevate nicotinamide N-methyltransferase level in endothelial cells. J Appl Toxicol 2020; 41:1076-1088. [PMID: 33073877 DOI: 10.1002/jat.4094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022]
Abstract
Statins belong to the most often prescribed medications, which efficiently normalise hyperlipidaemia and prevent cardiovascular complications in obese and diabetic patients. However, beside expected therapeutic results based on the inhibition of 3-hydroxyl-3-methylglutaryl-CoA reductase, these drugs exert multiple side effects of poorly understood characteristic. In this study, side effects of pravastatin and atorvastatin on EA.hy926 endothelial cell line were investigated. It was found that both statins activate proinflammatory response, elevate nitric oxide and reactive oxygen species (ROS) generation and stimulate antioxidative response in these cells. Moreover, only slight stimulation of the mitochondrial biogenesis and significant changes in the mitochondrial network organisation have been noted. Although biochemical bases behind these effects are not clear, they may partially be explained as an elevation of AMP-activated protein kinase (AMPK) activity and an increased activating phosphorylation of sirtuin 1 (Sirt1), which were observed in statins-treated cells. In addition, both statins increased nicotinamide N-methyltransferase (NNMT) protein level that may explain a reduced fraction of methylated histone H3. Interestingly, a substantial reduction of the total level of histone H3 in cells treated with pravastatin but not atorvastatin was also observed. These results indicate a potential additional biochemical target for statins related to reduced histone H3 methylation due to increased NNMT protein level. Thus, NNMT may directly modify gene activity.
Collapse
Affiliation(s)
- Dorota Dymkowska
- The Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Antoni Wrzosek
- The Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Krzysztof Zabłocki
- The Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
3
|
Avari H, Rogers KA, Savory E. Quantification of Morphological Modulation, F-Actin Remodeling and PECAM-1 (CD-31) Re-distribution in Endothelial Cells in Response to Fluid-Induced Shear Stress under Various Flow Conditions. J Biomech Eng 2019; 141:2723101. [PMID: 30673068 DOI: 10.1115/1.4042601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVDs) are the number one cause of death globally. Arterial endothelial cell (EC) dysfunction plays a key role in many of these CVDs, such as atherosclerosis. Blood flow-induced wall shear stress (WSS), among many other pathophysiological factors, is known to significantly contribute to EC dysfunction. The present study reports an in vitro investigation of the effect of quantified WSS on ECs, analyzing the EC morphometric parameters as well as cytoskeletal remodeling. The effects of four different flow cases (low steady laminar (LSL), medium steady laminar (MSL), non-zero-mean sinusoidal laminar (NZMSL) and laminar carotid (LCRD) waveforms) on EC area, perimeter, shape index (SI), angle of orientation, F-actin bundle remodeling and PECAM-1 localization were studied. For the first time, a flow facility was fully quantified for the uniformity of flow over ECs as well as for WSS determination (as opposed to relying on analytical equations). The SI and angle of orientation were found to be the most flow-sensitive morphometric parameters. A 2D Fast Fourier Transform based image processing technique was applied to analyze the F-actin directionality and an alignment index (AI) was defined accordingly. Also, a significant peripheral loss of PECAM-1 in ECs subjected to atheroprone cases (LSL and NZMSL) with high cell surface/cytoplasm stain of this protein is reported, which may shed light on of the mechanosensory role of PECAM-1 in mechanotransduction.
Collapse
Affiliation(s)
- Hamed Avari
- Advanced Fluid Mechanics Research Group, Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, Canada, N6A 3K7
| | - Kem A Rogers
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada, N6A 3K7
| | - Eric Savory
- Advanced Fluid Mechanics Research Group, Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, Canada, N6A 3K7
| |
Collapse
|
4
|
Palko-Łabuz A, Środa-Pomianek K, Wesołowska O, Kostrzewa-Susłow E, Uryga A, Michalak K. MDR reversal and pro-apoptotic effects of statins and statins combined with flavonoids in colon cancer cells. Biomed Pharmacother 2018; 109:1511-1522. [PMID: 30551403 DOI: 10.1016/j.biopha.2018.10.169] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022] Open
Abstract
The resistance of cancer cells to a variety of structurally non-related cytotoxic drugs is known as multidrug resistance phenomenon (MDR). In cellular membranes an activity of MDR transporters such as P-glycoprotein (ABCB1) is affected by their lipid environment. Many various compounds have been examined for their ability to restore drug-sensitivity of resistant cancer cells. Statins, inhibitors of the key enzyme of mevalonate pathway HMG-CoA (3-hydroxy-3-methyl-glutaryl-coenzyme A) reductase are drugs commonly prescribed in order to reduce serum level of cholesterol and to diminish the risk of cardiovascular disease. Statins as drugs that influence lipid composition of cell membrane and in that way they also exert influence on lipid bilayer properties appear to be good candidates as MDR modulators. In this work it was shown that statins - mevastatin and simvastatin exert antiproliferative, pro-apoptotic and reversing drug resistance effect in human colon adenocarcinoma cell line LoVo and its drug-resistant subline LoVo/Dx. A hypothesis was also checked whether flavones, which as it is well known are able to influence the biosynthesis of cholesterol, may change the anticancer activity of statins. Our investigations have revealed that combined use of statins and studied flavonoids results in enhanced cell growth inhibition and apoptosis and lower cancer cell proliferation as compared to the application only statins alone. Moreover, in drug resistant LoVo/Dx cells a stronger decrease of resistance to doxorubicine was observed in the presence of statins in combination with flavones as compared to the effect observed for statins only.
Collapse
Affiliation(s)
- Anna Palko-Łabuz
- Department of Biophysics, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland.
| | - Kamila Środa-Pomianek
- Department of Biophysics, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland
| | - Olga Wesołowska
- Department of Biophysics, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wroclaw, Poland
| | - Anna Uryga
- Department of Biophysics, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland
| | - Krystyna Michalak
- Department of Biophysics, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland
| |
Collapse
|
5
|
Wang J, Ren Y, Huang Y, Du R, Xi Y, Yin T, Wang Y, Zhang D, Chen J, Wang G. An asymmetrical dual coating on the stent prepared by ultrasonic atomization. J Biomed Mater Res B Appl Biomater 2018; 107:825-837. [PMID: 30296364 DOI: 10.1002/jbm.b.34179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/08/2018] [Accepted: 05/28/2018] [Indexed: 02/01/2023]
Abstract
This study aims to design an asymmetric dual coating (ADC) on the stent by ultrasonic atomization to solve the problem of delayed endothelialization and late or very late stent thrombosis which caused by drug eluting stent (DES) with symmetric coating. Chitosan-loaded monoclonal platelet glycoprotein IIIa receptor antibody SZ-21 coating (CSC) was sprayed on inner surface of stents, and outer surface was sprayed CSC and poly(lactic-co-glycolic acid) (PLGA) loaded with docetaxel (DTX) coating (PDC). The coated surface was uniform without aggregation and no shedding phenomenon either before or after stent expanded. Fluorescence labeling has confirmed that the coating has an asymmetric structure. The cumulative release for SZ-21 and DTX was 40.11% and 27.22% within first 24 h, then DTX became the major released drug from 24 h to 7 d, after released for 28 d about 40% of the SZ-21 and 50% DTX still remained on the coated stent. It achieved that ADC can inhibit thrombosis at earlier period and inhibit vascular smooth muscle cells (VSMCs) proliferation at later period. And that ADC has good hemocompatibility and can significantly inhibit VSMCs proliferation. Finally, 4 and 12 weeks after the stent with ADC implanted into rabbit carotid arteries, it showed that the stent with ADC was safe and could effectively prevent thrombosis and in-stent restenosis. © 2018 Wiley Periodicals, Inc. J. Biomed. Mater. Res. Part B, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 825-837, 2019.
Collapse
Affiliation(s)
- Jingjing Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory For Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Yuzhen Ren
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory For Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Yuhua Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory For Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Ruolin Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory For Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Yadong Xi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory For Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory For Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Yazhou Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory For Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Dechuan Zhang
- Department of Radiology, Chongqing Emergency Medical Center, Chongqing, China
| | - Jinju Chen
- School of Engineering, Newcastle University, NE1 7RU, UK
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory For Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Han Y, Kim SJ. Simvastatin-dependent actin cytoskeleton rearrangement regulates differentiation via the extracellular signal-regulated kinase-1/2 and p38 kinase pathways in rabbit articular chondrocytes. Eur J Pharmacol 2018; 834:197-205. [PMID: 30009811 DOI: 10.1016/j.ejphar.2018.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022]
Abstract
Alterations in cell morphology involve changes in the actin cytoskeleton and play crucial roles in determining chondrocyte phenotypes. Although the effects of simvastatin (SV) have been demonstrated in various cell types, the mechanisms and effects of SV on chondrocyte differentiation and actin cytoskeletal rearrangement are still unclear. Here, we investigated the roles of actin filament rearrangement on SV-induced differentiation of rabbit articular chondrocytes. Treatment with SV caused actin remodeling in comparison with that in untreated chondrocytes, as determined by immunofluorescence staining. Moreover, treatment with cytochalasin D (CD) and jasplakinolide (JAS), which modulate actin filament formation, resulted in reorganization of the actin cytoskeleton compared with that induced by SV in chondrocytes. In addition, CD synergistically enhanced the SV-induced increase in type II collagen expression, whereas JAS dramatically inhibited SV-induced differentiation. We also found that differentiation via SV-dependent actin cytoskeleton changes was regulated by the extracellular signal-regulated kinase (ERK)-1/2 and p38 kinase pathways. These results demonstrated that actin cytoskeletal rearrangement by SV regulated type II collagen expression and suggested that ERK-1/2 and p38 kinase pathways may play important roles in SV-induced type II collagen expression by altering actin cytoskeletal reorganization in rabbit articular chondrocytes.
Collapse
Affiliation(s)
- Yohan Han
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea.
| |
Collapse
|
7
|
Kraft ML. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It. Front Cell Dev Biol 2017; 4:154. [PMID: 28119913 PMCID: PMC5222807 DOI: 10.3389/fcell.2016.00154] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/27/2016] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are structural components in the plasma membranes of eukaryotic cells. Their metabolism produces bioactive signaling molecules that modulate fundamental cellular processes. The segregation of sphingolipids into distinct membrane domains is likely essential for cellular function. This review presents the early studies of sphingolipid distribution in the plasma membranes of mammalian cells that shaped the most popular current model of plasma membrane organization. The results of traditional imaging studies of sphingolipid distribution in stimulated and resting cells are described. These data are compared with recent results obtained with advanced imaging techniques, including super-resolution fluorescence detection and high-resolution secondary ion mass spectrometry (SIMS). Emphasis is placed on the new insight into the sphingolipid organization within the plasma membrane that has resulted from the direct imaging of stable isotope-labeled lipids in actual cell membranes with high-resolution SIMS. Super-resolution fluorescence techniques have recently revealed the biophysical behaviors of sphingolipids and the unhindered diffusion of cholesterol analogs in the membranes of living cells are ultimately in contrast to the prevailing hypothetical model of plasma membrane organization. High-resolution SIMS studies also conflicted with the prevailing hypothesis, showing sphingolipids are concentrated in micrometer-scale membrane domains, but cholesterol is evenly distributed within the plasma membrane. Reductions in cellular cholesterol decreased the number of sphingolipid domains in the plasma membrane, whereas disruption of the cytoskeleton eliminated them. In addition, hemagglutinin, a transmembrane protein that is thought to be a putative raft marker, did not cluster within sphingolipid-enriched regions in the plasma membrane. Thus, sphingolipid distribution in the plasma membrane is dependent on the cytoskeleton, but not on favorable interactions with cholesterol or hemagglutinin. The alternate views of plasma membrane organization suggested by these findings are discussed.
Collapse
Affiliation(s)
- Mary L Kraft
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana, IL, USA
| |
Collapse
|
8
|
Wolf F, Vogt F, Schmitz-Rode T, Jockenhoevel S, Mela P. Bioengineered vascular constructs as living models for in vitro cardiovascular research. Drug Discov Today 2016; 21:1446-1455. [PMID: 27126777 DOI: 10.1016/j.drudis.2016.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases represent the most common cause of morbidity and mortality worldwide. In this review, we explore the potential of bioengineered vascular constructs as living models for in vitro cardiovascular research to advance the current knowledge of pathophysiological processes and support the development of clinical therapies. Bioengineered vascular constructs capable of recapitulating the cellular and mechanical environment of native vessels represent a valuable platform to study cellular interactions and signaling cascades, test drugs and medical devices under (patho)physiological conditions, with the additional potential benefit of reducing the number of animals required for preclinical testing.
Collapse
Affiliation(s)
- Frederic Wolf
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Felix Vogt
- Department of Cardiology, Pulmonology, Intensive Care and Vascular Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thomas Schmitz-Rode
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; Institut für Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen, Germany; Aachen-Maastricht Institute for Biobased Materials, Maastricht University at Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Petra Mela
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| |
Collapse
|
9
|
Emmott A, Garcia J, Chung J, Lachapelle K, El-Hamamsy I, Mongrain R, Cartier R, Leask RL. Biomechanics of the Ascending Thoracic Aorta: A Clinical Perspective on Engineering Data. Can J Cardiol 2016; 32:35-47. [DOI: 10.1016/j.cjca.2015.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/17/2015] [Accepted: 10/18/2015] [Indexed: 12/14/2022] Open
|
10
|
Avari H, Savory E, Rogers KA. An In Vitro Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells. Cardiovasc Eng Technol 2015; 7:44-57. [PMID: 26621672 DOI: 10.1007/s13239-015-0250-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 11/20/2015] [Indexed: 11/27/2022]
Abstract
Numerous in vitro systems have previously been developed and employed for studying the effects of hemodynamics on endothelial cell (EC) dysfunction. In the majority of that work, accurate flow quantification (e.g., uniformity of the flow over the ECs) remains elusive and wall shear stress (WSS) quantifications are determined using theoretical relationships (without considering the flow channel aspect ratio effects). In addition, those relationships are not applicable to flows other than steady laminar cases. The present work discusses the development of a novel hemodynamic flow system for studying the effects of various well-quantified flow regimes over ECs. The current work presents a novel hemodynamic flow system applying the concept of a parallel plate flow chamber (PPFC) with live microscopy access for studying the effects of quantified WSS on ECs. A range of steady laminar, pulsatile (carotid wave form) and low-Reynolds number turbulent WSSs were quantified through velocity field measurements by a laser Doppler velocimetry (LDV) system, to validate the functionality of the current hemodynamic flow system. Uniformity of the flow across the channel width can be analyzed with the current system (e.g., the flow was uniform across about 65-75% of the channel width for the steady cases). The WSS obtained from the experiments had higher values in almost all of the cases when compared to the most commonly-used theoretical solution (9% < error < 16%), whereas another relationship, which considers the channel dimensions, had better agreement with the experimental results (1% < error < 8%). Additionally, the latter relationship predicted the uniform flow region in the PPFC with an average difference of <5% when compared to the experimental results. The experimental data also showed that the WSS at various locations (D, E and F) at the test section differed by less than 4% for the laminar cases representing a fully developed flow. WSS was also determined for a low-Re (Re = 2750) turbulent flow using (1) the Reynolds shears stress and (2) the time-averaged velocity profile gradient at the wall, with a good agreement (differences <16%) between the two where the first method returned a higher value than the second. Porcine aortic endothelial cell (PAEC) viability in the system and morphological cell response to laminar WSS of about 11 dyne/cm(2), were observed. These results provide performance validation of this novel in vitro system with many improved features compared to previous similar prototypes for investigation of flow effects on ECs. The integration of the LDV technique in the current study and the comparison of the results with those from theory revealed that great care must be taken when using PPFCs since the commonly used theoretical relation for laminar steady flows is unable to predict the flow uniformity (which may introduce significant statistical bias in biological studies) and the predicted WSS was subjected to greater error when compared to a more comprehensive equation presented in the current work. Moreover, application of the LDV technique in the current system is essential for studies of more complex cases, such as disturbed flows, where the WSS cannot be predicted using theoretical or numerical modelling methods.
Collapse
Affiliation(s)
- Hamed Avari
- Advanced Fluid Mechanics Research Group, Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B8, Canada.
| | - Eric Savory
- Advanced Fluid Mechanics Research Group, Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B8, Canada.
| | - Kem A Rogers
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 5B8, Canada.
| |
Collapse
|
11
|
Dick M, MacDonald K, Tardif JC, Leask RL. The effect of simvastatin treatment on endothelial cell response to shear stress and tumor necrosis factor alpha stimulation. Biomed Eng Online 2015; 14:58. [PMID: 26091905 PMCID: PMC4475335 DOI: 10.1186/s12938-015-0057-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/12/2015] [Indexed: 11/15/2022] Open
Abstract
Background Statin drugs are one of the most commonly prescribed pharmaceuticals by physicians. By blocking the rate-limiting step in the cholesterol biosynthesis pathway, statins inhibit cholesterol synthesis, which benefits patient health. However, since many other important cellular processes are regulated within this pathway, they may also be influenced by statin therapy. These pleiotropic effects of statins have not been fully investigated, but are believed to positively influence endothelial cells (ECs), which line the vasculature in a confluent monolayer. Few studies have considered the effect of blood flow on ECs and how this may augment EC response to statins. Methods In this study, the effect of statin treatment on ECs is investigated for cells stimulated with tumor necrosis factor alpha (TNF-α), an inflammatory cytokine that promotes an atheroprone endothelium. Additionally, ECs are exposed to a physiologically relevant wall shear stress (WSS) of 12.5 dynes/cm2 using a three-dimensional tissue culture model to provide a realistic hemodynamic environment. ECs are analyzed for morphology using light microscopy as well as cytoskeletal structure and alignment using confocal microscopy. Statistical analysis is performed on the results using both the one-way analysis of variance with Bonferroni post-tests and the two-tailed t test. Results We have shown that statin treatment caused cells to adapt to a rounded, atheroprone morphology, with a significantly higher shape index. Oppositely, TNF-α stimulation caused cells to elongate to an atheroprotective morphology, with a significantly lower shape index. WSS and TNF-α were unable to reverse any statin-induced cell rounding or F-actin disruption. Conclusion Further work is therefore needed to determine why statin drugs cause cells to have an atheroprone morphology, but an atheroprotective genotype, and why TNF-α stimulation causes an atheroprotective morphology, but an atheroprone genotype. Despite the morphological changes due to statins or stimulation, ECs still respond to WSS. Understanding how statins influence ECs will allow for more targeted treatments for hypercholestemia and potentially other diseases.
Collapse
Affiliation(s)
- Melissa Dick
- Department of Chemical Engineering, McGill University, 3610 University Avenue, Montreal, QC, H3A 2B2, Canada. .,Montreal Heart Institute, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada.
| | - Katherine MacDonald
- Department of Chemical Engineering, McGill University, 3610 University Avenue, Montreal, QC, H3A 2B2, Canada.
| | - Jean-Claude Tardif
- Montreal Heart Institute, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada.
| | - Richard L Leask
- Department of Chemical Engineering, McGill University, 3610 University Avenue, Montreal, QC, H3A 2B2, Canada. .,Montreal Heart Institute, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada.
| |
Collapse
|