1
|
Ko H, Kim BS, Lee YE, Choi TH, Lee Y, Youn HS, Gu GJ. Anti-inflammatory effects of Gingerenone A through modulation of toll-like receptor signaling pathways. Eur J Pharmacol 2024; 983:176997. [PMID: 39271039 DOI: 10.1016/j.ejphar.2024.176997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Toll-like receptors (TLRs) play a pivotal role in initiating immune responses, particularly in the context of inflammation. However, an excessive inflammation can detrimentally affect the immune homeostasis Thus, it is important to regulate TLR signaling pathways appropriately. Gingerenone A (GIA), a bioactive compound derived from ginger, has garnered significant attention due to its potential anti-inflammatory properties. In this study, we investigate modulatory effects of GIA on TLR signaling pathways. Results showed that GIA effectively suppressed TLR-mediated inflammatory responses by modulating key signaling molecules such as nuclear factor kappa B and interferon regulatory factor 3. These results indicate that GIA is a novel regulator of TLR signaling, offering promising avenues for the development of new anti-inflammatory agents.
Collapse
Affiliation(s)
- Hanbin Ko
- Department of Medical Science, Graduate School, Soonchunhyang University, Chungnam, Asan-si, 31538, Republic of Korea
| | - Byoung Soo Kim
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - Ye Eun Lee
- Department of Medical Science, Graduate School, Soonchunhyang University, Chungnam, Asan-si, 31538, Republic of Korea
| | - Tae Hyun Choi
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - Younghyun Lee
- Department of Medical Science, Graduate School, Soonchunhyang University, Chungnam, Asan-si, 31538, Republic of Korea; Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Chungnam, Asan-si, 31538, Republic of Korea
| | - Hyung-Sun Youn
- Department of Medical Science, Graduate School, Soonchunhyang University, Chungnam, Asan-si, 31538, Republic of Korea; Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Chungnam, Asan-si, 31538, Republic of Korea.
| | - Gyo Jeong Gu
- Department of Medical Science, Graduate School, Soonchunhyang University, Chungnam, Asan-si, 31538, Republic of Korea.
| |
Collapse
|
2
|
Zhang C, Zhao Y, Guo S, Li F, Gong X, Gao J, Jiang L, Tong J. Comparison of lipidome profiles in serum from lactating dairy cows supplemented with Acremonium terrestris culture based on UPLC-QTRAP-MS/MS. BMC Biotechnol 2024; 24:56. [PMID: 39135176 PMCID: PMC11318124 DOI: 10.1186/s12896-024-00881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
This study evaluated the effects of supplementing the diet of lactating cows with Acremonium terrestris culture (ATC) on milk production, serum antioxidant capacity, inflammatory indices, and serum lipid metabolomics. Over 90 days, 24 multiparous Chinese Holstein cows in mid-lactation (108 ± 10.4 days in milk, 637 ± 25 kg body weight, 30.23 ± 3.7 kg/d milk yield) were divided into either a control diet (CON) or a diet supplemented with 30 g of ATC daily. All the data were analyzed using Student's t test with SPSS 20.0 software. The results showed that compared with CON feeding, ATC feeding significantly increased milk yield, antioxidant capacity, and immune function. Lipidome screening identified 143 lipid metabolites that differed between the two groups. Further analysis using "random forest" machine learning revealed three glycerophospholipid serum metabolites that could serve as lipid markers with a predictive accuracy of 91.67%. This study suggests that ATC can be a useful dietary supplement for improving lactational performance in dairy cows and provides valuable insights into developing nutritional strategies to maintain metabolic homeostasis in ruminants.
Collapse
Affiliation(s)
- Chenmiao Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, P. R. China
| | - Yiran Zhao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, P. R. China
| | - Shijiao Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, P. R. China
| | - Feifei Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, P. R. China
| | - Xu Gong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, P. R. China
| | - Jiarui Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, P. R. China
| | - Linshu Jiang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, P. R. China
| | - Jinjin Tong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, P. R. China.
| |
Collapse
|
3
|
Shin S, Park J, Lee YE, Ko H, Youn HS. Isobavachalcone suppresses the TRIF-dependent signaling pathway of Toll-like receptors. Arch Pharm (Weinheim) 2021; 355:e2100404. [PMID: 34964142 DOI: 10.1002/ardp.202100404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022]
Abstract
Toll-like receptors (TLRs) are integral membrane-bound receptors that are central to innate and adaptive immune responses. They are known to activate a cascade of downstream signals to induce the secretion of inflammatory cytokines, chemokines, and type I interferons. Dysregulated activation of TLR signaling pathways can induce the activation of various transcription factors, such as nuclear factor kappa B (NF-κB) and interferon regulatory factor 3 (IRF3). TLRs act via MyD88- and TRIF-mediated pathways to induce inflammatory responses. To evaluate the therapeutic potential of isobavachalcone (IBC), a natural chalcone component of Angelica keiskei, we examined its effects on signal transduction via TLR signaling pathways. IBC inhibited the activation of NF-κB and IRF3 induced by TLR agonists and their target genes. IBC also inhibited the activation of NF-κB and IRF3 induced by overexpression of downstream signaling components of TLR signaling pathways. These results suggest that IBC can regulate both MyD88- and TRIF-dependent signaling pathways of TLRs, resulting in a dramatic increase of new therapeutic options for various inflammatory diseases involving TLRs.
Collapse
Affiliation(s)
- Seokwon Shin
- Department of ICT Environmental Health System, Graduate School, SoonChunHyang University, Asan-si, Chungnam, South Korea
| | - Jayeon Park
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan-si, Chungnam, South Korea
| | - Ye Eun Lee
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan-si, Chungnam, South Korea
| | - Hanbin Ko
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan-si, Chungnam, South Korea
| | - Hyung-Sun Youn
- Department of ICT Environmental Health System, Graduate School, SoonChunHyang University, Asan-si, Chungnam, South Korea.,Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan-si, Chungnam, South Korea
| |
Collapse
|
4
|
Kim SY, Heo S, Kim SH, Kwon M, Sung NJ, Ryu AR, Lee MY, Park SA, Youn HS. Suppressive effects of dehydrocostus lactone on the toll-like receptor signaling pathways. Int Immunopharmacol 2019; 78:106075. [PMID: 31812722 DOI: 10.1016/j.intimp.2019.106075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 01/17/2023]
Abstract
Toll-like receptors (TLRs) are a group of pattern-recognition receptors (PRRs) that are at the core of innate and adaptive immune responses. TLRs activation triggers the activation of two downstream signaling pathways, the myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-β (TRIF)-dependent pathways. To evaluate the therapeutic potential of DHL, a natural sesquiterpene lactone derived from Inulahelenium L. and Saussurea lappa, we examined its effect on signal transduction via the TLR signaling pathways. DHL inhibited the activation of nuclear factor-κB (NF-κB) and interferon regulatory factor 3 (IRF3), the representative transcription factors involved in the inflammatory response, induced by TLR agonists, as well as the expression of cyclooxygenase-2 and interferon inducible protein-10. DHL also inhibited the activation of NF-κB and IRF3 induced by the overexpression of downstream signaling components of the TLRs signaling pathways. All results suggest that DHL might become a new therapeutic drug for a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Su Yeon Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Sunghye Heo
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Seung Han Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Minji Kwon
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Nam Ji Sung
- Department of Medical Science, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - A-Reum Ryu
- Department of Medical Science, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Mi-Young Lee
- Department of Medical Science, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Sin-Aye Park
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Hyung-Sun Youn
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea.
| |
Collapse
|
5
|
Shin HM, Shim HJ, Kim AY, Lee YJ, Youn HS. Differential modulation of toll-like receptor agonists-induced iNOS expression by polyunsaturated and saturated fatty acids. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1326468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Hyeon-Myeong Shin
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Hyun-Jin Shim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Ah-Yeon Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Yoo Jung Lee
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Hyung-Sun Youn
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| |
Collapse
|
6
|
Yu QW, Wang H, Huo JT, An XF, Gao P, Jiang ZZ, Zhang LY, Yan M. Suppression of Baeckea frutescens L. and its components on MyD88-dependent NF-κB pathway in MALP-2-stimulated RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 207:92-99. [PMID: 28576579 DOI: 10.1016/j.jep.2017.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/07/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baeckea frutescens L. is commonly used as a folk medicinal material. There are nineteen components in its volatile oil, including Pcymol which has effects of eliminating phlegm, relieving asthma and antiviral. This study was aimed to investigate the anti-infectious inflammatory activities of Baeckea frutescens L. and its conponents and analyzing the mechanisms. MATERIALS AND METHODS The anti-infectious inflammation of Baeckea frutescens L. were studied by using macrophage activating lipopeptide-2 (MALP-2)-stimulated RAW264.7 cell model in vitro. Secretion of nitric oxide (NO), expression of inducible NO synthase (iNOS) and cytokines were detected as classic inflammatory index. Expression of Myeloid differentiation factor 88 (MyD88), degradation of inhibitory κBα (IκBα) and nuclear translocation of NF-κB p65 were further investigated. RESULTS The results suggested that Baeckea frutescens L. has effect on suppression of MALP-2-mediated inflammation in RAW264.7 cells. The secretion of NO and the expression of iNOS could be inhibited. The secretion of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were also declined. Baeckea frutescens L. significantly decreased the expression of MyD88, therefore, inhibited the degradation of IκBα, reduced the level of nuclear translocation of p65. CONCLUSION The results of this study indicated that Baeckea frutescens L. and its components could inhibit the anti-infectious inflammatory events and iNOS expression in MALP-2 stimulated RAW264.7 cells. Among them, BF-2 might play a role through the inhibition of the MyD88 and NF-κB pathway. Our study might provide a new strategy to design and develop this kind of drug towards mycoplasma-infected inflammation.
Collapse
Affiliation(s)
- Qin-Wei Yu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Ting Huo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Fei An
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210008, China
| | - Peng Gao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
7
|
Chen S, Yang Q, Chen G, Zhang JH. An Update on Inflammation in the Acute Phase of Intracerebral Hemorrhage. Transl Stroke Res 2014; 6:4-8. [DOI: 10.1007/s12975-014-0384-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
|