1
|
Jiang L, Li Y, Shi W, Chen W, Ma Z, Feng J, Hashem AS, Wu H. Cloning and expression of the mitochondrial cytochrome c oxidase subunit II gene in Sitophilus zeamais and interaction mechanism with allyl isothiocyanate. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105392. [PMID: 37105630 DOI: 10.1016/j.pestbp.2023.105392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
In the United States, allyl isothiocyanate (AITC) has been registered as an insecticide, bactericide, and nematicide. And it has been confirmed that AITC has significant insecticidal activities against four stored product pests including Sitophilus zeamais Mostchulky (Coleoptera: Curculionidae). This study aimed to verify the mechanism of action of AITC on cytochrome c oxidase core subunits II in S. zeamais. Enzyme - catalyzed reactions and Fourier transform infrared spectrometer (FTIR) analysis revealed that the expressed COX II proteins could competitively bind and inhibit the activity of COX II. Furthermore, molecular docking results showed that a sulfur atom of AITC could form a 2.9 Å hydrogen bond with Ile-30, having a binding energy of -2.46 kcal/mol.
Collapse
Affiliation(s)
- Linlin Jiang
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Yue Li
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Weilin Shi
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Wei Chen
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Juntao Feng
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Ahmed S Hashem
- Stored Product Pests Research Department, Plant Protection Research Institute Agricultural Research Center Sakha, Kafr El-Sheikh, Egypt
| | - Hua Wu
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
2
|
Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009-2019). Org Biomol Chem 2021; 19:1644-1704. [PMID: 33320161 DOI: 10.1039/d0ob02162h] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungal meroterpenoids are secondary metabolites from mixed terpene-biosynthetic origins. Their intriguing chemical structural diversification and complexity, potential bioactivities, and pharmacological significance make them attractive targets in natural product chemistry, organic synthesis, and biosynthesis. This review provides a systematic overview of the isolation, chemical structural features, biological activities, and fungal biodiversity of 1585 novel meroterpenoids from 79 genera terrestrial and marine-derived fungi including macrofungi, Basidiomycetes, in 441 research papers in 2009-2019. Based on the nonterpenoid starting moiety in their biosynthesis pathway, meroterpenoids were classified into four categories (polyketide-terpenoid, indole-, shikimate-, and miscellaneous-) with polyketide-terpenoids (mainly tetraketide-) and shikimate-terpenoids as the primary source. Basidiomycota produced 37.5% of meroterpenoids, mostly shikimate-terpenoids. The genera of Ganoderma, Penicillium, Aspergillus, and Stachybotrys are the four dominant producers. Moreover, about 56% of meroterpenoids display various pronounced bioactivities, including cytotoxicity, enzyme inhibition, antibacterial, anti-inflammatory, antiviral, antifungal activities. It's exciting that several meroterpenoids including antroquinonol and 4-acetyl antroquinonol B were developed into phase II clinically used drugs. We assume that the chemical diversity and therapeutic potential of these fungal meroterpenoids will provide biologists and medicinal chemists with a large promising sustainable treasure-trove for drug discovery.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| |
Collapse
|
3
|
Structure and biological activity of Metarhizin C, a stereoisomer of BR-050 from Tolypocladium album RK17-F0007. J Antibiot (Tokyo) 2019; 72:996-1000. [PMID: 31481762 DOI: 10.1038/s41429-019-0229-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/26/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
Abstract
Metarhizin C, a stereoisomer of BR-050 was isolated from a fungus Tolypocladium album RK17-F0007 through a screening program to search for new antitumor compounds. A structure of the isomer was determined by spectroscopic methods including detailed analysis of NOESY correlation and mass spectrometry, and found to be identical to that of 3-desacylmetarhizin A with the absolute structure. Previously, it had been isolated by Kikuchi et al and proposed as BR-050 including the stereo-structure. However, detailed analysis for the newly isolated isomer confirmed that 3-desacylmetarhizin A was not identical to BR-050. Therefore, we assigned it metarhizin C as a new BR-050 isomer. Metarhizin C showed selective cytotoxicity against osteosarcoma MG-63 cells in a glucose independent condition with IC50 value of 0.79 µg/ml, while > 30 µg/ml of IC50 value in a normal condition, and inhibited a mitochondrial respiration.
Collapse
|
4
|
Sbaraini N, Guedes RLM, Andreis FC, Junges Â, de Morais GL, Vainstein MH, de Vasconcelos ATR, Schrank A. Secondary metabolite gene clusters in the entomopathogen fungus Metarhizium anisopliae: genome identification and patterns of expression in a cuticle infection model. BMC Genomics 2016; 17:736. [PMID: 27801295 PMCID: PMC5088523 DOI: 10.1186/s12864-016-3067-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background The described species from the Metarhizium genus are cosmopolitan fungi that infect arthropod hosts. Interestingly, while some species infect a wide range of hosts (host-generalists), other species infect only a few arthropods (host-specialists). This singular evolutionary trait permits unique comparisons to determine how pathogens and virulence determinants emerge. Among the several virulence determinants that have been described, secondary metabolites (SMs) are suggested to play essential roles during fungal infection. Despite progress in the study of pathogen-host relationships, the majority of genes related to SM production in Metarhizium spp. are uncharacterized, and little is known about their genomic organization, expression and regulation. To better understand how infection conditions may affect SM production in Metarhizium anisopliae, we have performed a deep survey and description of SM biosynthetic gene clusters (BGCs) in M. anisopliae, analyzed RNA-seq data from fungi grown on cattle-tick cuticles, evaluated the differential expression of BGCs, and assessed conservation among the Metarhizium genus. Furthermore, our analysis extended to the construction of a phylogeny for the following three BGCs: a tropolone/citrinin-related compound (MaPKS1), a pseurotin-related compound (MaNRPS-PKS2), and a putative helvolic acid (MaTERP1). Results Among 73 BGCs identified in M. anisopliae, 20 % were up-regulated during initial tick cuticle infection and presumably possess virulence-related roles. These up-regulated BGCs include known clusters, such as destruxin, NG39x and ferricrocin, together with putative helvolic acid and, pseurotin and tropolone/citrinin-related compound clusters as well as uncharacterized clusters. Furthermore, several previously characterized and putative BGCs were silent or down-regulated in initial infection conditions, indicating minor participation over the course of infection. Interestingly, several up-regulated BGCs were not conserved in host-specialist species from the Metarhizium genus, indicating differences in the metabolic strategies employed by generalist and specialist species to overcome and kill their host. These differences in metabolic potential may have been partially shaped by horizontal gene transfer (HGT) events, as our phylogenetic analysis provided evidence that the putative helvolic acid cluster in Metarhizium spp. originated from an HGT event. Conclusions Several unknown BGCs are described, and aspects of their organization, regulation and origin are discussed, providing further support for the impact of SM on the Metarhizium genus lifestyle and infection process. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3067-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolau Sbaraini
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Lucas Muniz Guedes
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Laboratório Nacional de Computação Científica, LNCC, Petrópolis, RJ, Brazil
| | - Fábio Carrer Andreis
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ângela Junges
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Loss de Morais
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Laboratório Nacional de Computação Científica, LNCC, Petrópolis, RJ, Brazil
| | - Marilene Henning Vainstein
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Tereza Ribeiro de Vasconcelos
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Laboratório Nacional de Computação Científica, LNCC, Petrópolis, RJ, Brazil
| | - Augusto Schrank
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil. .,Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Suzuki T, Kikuchi H, Ogura M, Homma MK, Oshima Y, Homma Y. Weight loss by Ppc-1, a novel small molecule mitochondrial uncoupler derived from slime mold. PLoS One 2015; 10:e0117088. [PMID: 25668511 PMCID: PMC4323345 DOI: 10.1371/journal.pone.0117088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/19/2014] [Indexed: 01/06/2023] Open
Abstract
Mitochondria play a key role in diverse processes including ATP synthesis and apoptosis. Mitochondrial function can be studied using inhibitors of respiration, and new agents are valuable for discovering novel mechanisms involved in mitochondrial regulation. Here, we screened small molecules derived from slime molds and other microorganisms for their effects on mitochondrial oxygen consumption. We identified Ppc-1 as a novel molecule which stimulates oxygen consumption without adverse effects on ATP production. The kinetic behavior of Ppc-1 suggests its function as a mitochondrial uncoupler. Serial administration of Ppc-1 into mice suppressed weight gain with no abnormal effects on liver or kidney tissues, and no evidence of tumor formation. Serum fatty acid levels were significantly elevated in mice treated with Ppc-1, while body fat content remained low. After a single administration, Ppc-1 distributes into various tissues of individual animals at low levels. Ppc-1 stimulates adipocytes in culture to release fatty acids, which might explain the elevated serum fatty acids in Ppc-1-treated mice. The results suggest that Ppc-1 is a unique mitochondrial regulator which will be a valuable tool for mitochondrial research as well as the development of new drugs to treat obesity.
Collapse
Affiliation(s)
- Toshiyuki Suzuki
- Fukushima Medical University School of Medicine, Fukushima, 960–1295, Japan
| | - Haruhisa Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980–8678, Japan
| | - Masato Ogura
- Fukushima Medical University School of Medicine, Fukushima, 960–1295, Japan
| | - Miwako K. Homma
- Fukushima Medical University School of Medicine, Fukushima, 960–1295, Japan
| | - Yoshiteru Oshima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980–8678, Japan
| | - Yoshimi Homma
- Fukushima Medical University School of Medicine, Fukushima, 960–1295, Japan
- * E-mail:
| |
Collapse
|