1
|
Zeng Q, Lu W, Deng Z, Zhang B, Wu J, Chai J, Chen X, Xu X. The toxin mimic FS48 from the salivary gland of Xenopsylla cheopis functions as a Kv1.3 channel-blocking immunomodulator of T cell activation. J Biol Chem 2022; 298:101497. [PMID: 34919963 PMCID: PMC8732088 DOI: 10.1016/j.jbc.2021.101497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/14/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
The Kv1.3 channel has been widely demonstrated to play crucial roles in the activation and proliferation of T cells, which suggests that selective blockers could serve as potential therapeutics for autoimmune diseases mediated by T cells. We previously described that the toxin mimic FS48 from salivary gland of Xenopsylla cheopis downregulates the secretion of proinflammatory factors by Raw 264.7 cells by blocking the Kv1.3 channel and the subsequent inactivation of the proinflammatory MAPK/NF-κB pathways. However, the effects of FS48 on human T cells and autoimmune diseases are unclear. Here, we described its immunomodulatory effects on human T cells derived from suppression of Kv1.3 channel. Kv1.3 currents in Jurkat T cells were recorded by whole-cell patch-clamp, and Ca2+ influx, cell proliferation, and TNF-α and IL-2 secretion were measured using Fluo-4, CCK-8, and ELISA assays, respectively. The in vivo immunosuppressive activity of FS48 was evaluated with a rat DTH model. We found that FS48 reduced Kv1.3 currents in Jurkat T cells in a concentration-dependent manner with an IC50 value of about 1.42 μM. FS48 also significantly suppressed Kv1.3 protein expression, Ca2+ influx, MAPK/NF-κB/NFATc1 pathway activation, and TNF-α and IL-2 production in activated Jurkat T cells. Finally, we show that FS48 relieved the DTH response in rats. We therefore conclude that FS48 can block the Kv1.3 channel and inhibit human T cell activation, which most likely contributes to its immunomodulatory actions and highlights the great potential of this evolutionary-guided peptide as a drug template in future studies.
Collapse
Affiliation(s)
- Qingye Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wancheng Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhenhui Deng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Lu J, Guan H, Wu D, Hu Z, Zhang H, Jiang H, Yu J, Zeng K, Li H, Zhang H, Pan C, Cai D, Yu X. Pseudolaric acid B ameliorates synovial inflammation and vessel formation by stabilizing PPARγ to inhibit NF-κB signalling pathway. J Cell Mol Med 2021; 25:6664-6678. [PMID: 34117708 PMCID: PMC8278075 DOI: 10.1111/jcmm.16670] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/10/2021] [Accepted: 05/08/2021] [Indexed: 12/16/2022] Open
Abstract
Synovial macrophage polarization and inflammation are essential for osteoarthritis (OA) development, yet the molecular mechanisms and regulation responsible for the pathogenesis are still poorly understood. Here, we report that pseudolaric acid B (PAB) attenuated articular cartilage degeneration and synovitis during OA. PAB, a diterpene acid, specifically inhibited NF-κB signalling and reduced the production of pro-inflammatory cytokines, which further decreased M1 polarization and vessel formation. We further provide in vivo and in vitro evidences that PAB suppressed NF-κB signalling by stabilizing PPARγ. Using PPARγ antagonist could abolish anti-inflammatory effect of PAB and rescue the activation of NF-κB signalling during OA. Our findings identify a previously unrecognized role of PAB in the regulation of OA and provide mechanisms by which PAB regulates NF-κB signalling through PPARγ, which further suggest targeting synovial inflammation or inhibiting vessel formation at early stage could be an effective preventive strategy for OA.
Collapse
Affiliation(s)
- Jiansen Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University Guangdong Province, Guangzhou, China
| | - Hong Guan
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.,Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dan Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongbo Zhang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.,Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Huaji Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingyao Yu
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Ke Zeng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongyu Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haiyan Zhang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.,Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Chenglong Pan
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University Guangdong Province, Guangzhou, China
| | - Daozhang Cai
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.,Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University Guangdong Province, Guangzhou, China.,Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Guan D, Li C, Lv X, Yang Y. Pseudolaric acid B inhibits PAX2 expression through Wnt signaling and induces BAX expression, therefore promoting apoptosis in HeLa cervical cancer cells. J Gynecol Oncol 2019; 30:e77. [PMID: 31328459 PMCID: PMC6658601 DOI: 10.3802/jgo.2019.30.e77] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/11/2019] [Accepted: 03/05/2019] [Indexed: 01/05/2023] Open
Abstract
Objectives Pseudolaric acid B (PAB) has been shown to inhibit the growth of various tumor cells, but the molecular details of its function are still unknown. This study investigated the molecular mechanisms by which PAB induces apoptosis in HeLa cells. Methods The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed to investigate the effect of PAB treatment in various cervical cancer cell lines. Annexin V/propidium iodide staining combined with flow cytometry and Hoechst 33258 staining were used to assess PAB-induced apoptosis. Additionally, we performed bioinformatics analyses and identified a paired box 2 (PAX2) binding site on the BAX promoter. We then validated the binding using luciferase and chromatin immunoprecipitation assays. Finally, western blotting assays were used to investigate PAB effect on the Wnt signaling and the involved signaling molecules. Results PAB promotes apoptosis and downregulates PAX2 expression in HeLa cells in a time- and concentration-dependent manner. PAX2 binds to the promoter of BAX and inhibits its expression; therefore, PAX2 inhibition is associated with increased levels of BAX, which induces apoptosis of HeLa cells via the mitochondrial pathway. Additionally, PAB inhibits classical Wnt signaling. Conclusion PAB effectively inhibits Wnt signaling and PAX2 expression, and increases BAX levels, which induce apoptosis in HeLa cells. Therefore, PAB is a promising natural molecule for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Defeng Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Chenyang Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xiao Lv
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yongxiu Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China.,Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
4
|
Pseudolaric acid B attenuates atherosclerosis progression and inflammation by suppressing PPARγ-mediated NF-κB activation. Int Immunopharmacol 2018; 59:76-85. [DOI: 10.1016/j.intimp.2018.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/20/2018] [Accepted: 03/31/2018] [Indexed: 12/12/2022]
|
5
|
Yang Z, Liu M, Wang W, Wang Y, Cao B, Gao Y, Chen H, Li T. Pseudolaric acid B attenuates atopic dermatitis-like skin lesions by inhibiting interleukin-17-induced inflammation. Sci Rep 2017; 7:7918. [PMID: 28801611 PMCID: PMC5554149 DOI: 10.1038/s41598-017-08485-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022] Open
Abstract
Pseudolaric acid B (PB), isolated from the extract of the root bark of Pseudolarix kaempferi Gordon, has been used as a traditional remedy for the treatment of skin diseases. However, the information of PB on atopic dermatitis (AD) remains largely unknown. In the present study, oral administration with PB improved the severity scores of AD-like skin lesions dose-dependently in NC/Nga mice through reducing serum IgE, pro-inflammatory cytokines, and the infiltration of inflammatory cells. In addition, PB significantly attenuated the levels of IL-17 and IL-22, and the proportion of Th17 cells in NC/Nga mice, as well as decreased IL-17-induced inflammation in RAW264.7 cells. Moreover, PB inhibited the phosphorylation of IκBα and miR-155 expression both in NC/Nga mice and in IL-17-stimulated RAW264.7 cells, which could be reversed by GW9662, a specific antagonist for PPARγ. The incorporation of GW9662 reversed the inhibitory effect of PB on the RORγ-mediated activation of the Il17 promoter. Transfection with PPARγ luciferase reporter gene further demonstrated the enhancement of PB on PPARγ transactivation. These findings indicate that PB could ameliorate AD-like skin lesions by inhibiting IL-17-induced inflammation in a PPARγ-dependent manner, which would provide experimental evidence of PB for the therapeutic potential on AD and other inflammatory skin diseases.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Science Research, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, P.R. China
| | - Meilun Liu
- Department of Pharmacognosy and Pharmaceutics, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, P.R. China
| | - Wei Wang
- Department of Urology, The Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin, 300162, P.R. China
| | - Yiteng Wang
- Department of Pharmacognosy and Pharmaceutics, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, P.R. China
| | - Bo Cao
- Department of Pharmacognosy and Pharmaceutics, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, P.R. China
| | - Ying Gao
- Department of Pharmacognosy and Pharmaceutics, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, P.R. China
| | - Hong Chen
- Department of Pharmacognosy and Pharmaceutics, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, P.R. China.
| | - Tan Li
- Department of Pathogen Biology and Immunology, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, P.R. China.
| |
Collapse
|
6
|
Liu ML, Sun D, Li T, Chen H. A Systematic Review of the Immune-Regulating and Anticancer Activities of Pseudolaric Acid B. Front Pharmacol 2017; 8:394. [PMID: 28701952 PMCID: PMC5487521 DOI: 10.3389/fphar.2017.00394] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/06/2017] [Indexed: 01/01/2023] Open
Abstract
Cortex pseudolaricis, the root bark of Pseudolarix kaempferi Gord, has been used to treat tinea and other skin diseases for the antimicrobial activities in Traditional Chinese Medicine (TCM). Pseudolaric acid B (PAB) has been identified as the major component responsible for the action of C. pseudolaricis. Recently, PAB has been demonstrated to be used as novel treatments for cancer, immune disorders, inflammatory diseases, and immunosuppression. However, the mechanisms through which PAB exerts its properties are not understood well, and little attention in the literature has been given to review its pharmacological activities before. In this review, we performed a systematic summary of the literature with respect to the anticancer, immunosuppressive and anti-inflammatory properties of PAB and its derivatives. Currently available data suggest that PAB is a promising immunosuppressive and anti-inflammatory agent candidate and should be explored further in cancer treatment and prevention.
Collapse
Affiliation(s)
- Mei-Lun Liu
- Department of Pharmacognosy and Pharmaceutics, Logistics University of the Chinese People's Armed Police ForceTianjin, China
| | - Dan Sun
- Department of Pharmacognosy and Pharmaceutics, Logistics University of the Chinese People's Armed Police ForceTianjin, China
| | - Tan Li
- Department of Pathogen Biology and Immunology, Logistics University of the Chinese People's Armed Police ForceTianjin, China
| | - Hong Chen
- Department of Pharmacognosy and Pharmaceutics, Logistics University of the Chinese People's Armed Police ForceTianjin, China
| |
Collapse
|
7
|
Wen C, Chen J, Zhang D, Wang H, Che J, Qin Q, He L, Cai Z, Lin M, Lou Q, Huang L, Chen D, Iwamoto A, Ren D, Wang L, Lan P, Wang J, Liu H, Yang X. Pseudolaric acid B induces mitotic arrest and apoptosis in both 5-fluorouracil-sensitive and -resistant colorectal cancer cells. Cancer Lett 2016; 383:295-308. [PMID: 27713084 DOI: 10.1016/j.canlet.2016.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/18/2016] [Accepted: 09/18/2016] [Indexed: 01/10/2023]
Abstract
5-fluorouracil (5-FU)-based chemotherapy is the main chemotherapeutic approach for colorectal cancer (CRC) treatment. Because chemoresistance occurs frequently and significantly limits CRC therapies, a novel agent is needed. Pseudolaric acid B (PAB), a small molecule derived from the Chinese medicinal herb ''Tujinpi'', exhibits strong cytotoxic effects on a variety of cancers. However, the detailed mechanisms by which PAB inhibits CRC cell growth and its potential role in overcoming 5-FU resistance have not been well studied. In this study, we showed that PAB significantly inhibited the viability of various CRC cell lines but induced minor cytotoxicity in normal cells. Both the in vitro and in vivo results showed that PAB induced proliferation inhibition, mitotic arrest and subsequently caspase-dependent apoptosis in both 5-FU-sensitive and -resistant CRC cells. Moreover, PAB was shown to interfere with CRC cell mitotic spindle apparatus and activate the spindle assembly checkpoint. Finally, CDK1 activity was involved in PAB-induced mitotic arrest and apoptosis in CRC cells. Taken together, these data reveal that PAB induces CRC cell mitotic arrest followed by apoptosis and overcomes 5-FU resistance in vitro and in vivo, suggesting that PAB may be a potential agent for CRC treatment, particularly for 5-FU-resistant CRC.
Collapse
Affiliation(s)
- Chuangyu Wen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Junxiong Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Zhang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huihui Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jia Che
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Qiyuan Qin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu He
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zerong Cai
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengmeng Lin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiong Lou
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Lanlan Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Daici Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Aikichi Iwamoto
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Donglin Ren
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping Lan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianping Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huanliang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Xiangling Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Zhou H, Zhang W, Bi M, Wu J. The molecular mechanisms of action of PPAR-γ agonists in the treatment of corneal alkali burns (Review). Int J Mol Med 2016; 38:1003-11. [PMID: 27499172 PMCID: PMC5029963 DOI: 10.3892/ijmm.2016.2699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/03/2016] [Indexed: 12/16/2022] Open
Abstract
Corneal alkali burns (CAB) are characterized by injury-induced inflammation, fibrosis and neovascularization (NV), and may lead to blindness. This review evaluates the current knowledge of the molecular mechanisms responsible for CAB. The processes of cytokine production, chemotaxis, inflammatory responses, immune response, cell signal transduction, matrix metalloproteinase production and vascular factors in CAB are discussed. Previous evidence indicates that peroxisome proliferator-activated receptor γ (PPAR-γ) agonists suppress immune responses, inflammation, corneal fibrosis and NV. This review also discusses the role of PPAR-γ as an anti-inflammatory, anti-fibrotic and anti-angiogenic agent in the treatment of CAB, as well as the potential role of PPAR-γ in the pathological process of CAB. There have been numerous studies evaluating the clinical profiles of CAB, and the aim of this systematic review was to summarize the evidence regarding the treatment of CAB with PPAR-γ agonists.
Collapse
Affiliation(s)
- Hongyan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Wensong Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Miaomiao Bi
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jie Wu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
9
|
Wan T, Xu T, Pan J, Qin M, Pan W, Zhang G, Wu Z, Wu C, Xu Y. Microemulsion based gel for topical dermal delivery of pseudolaric acid B: In vitro and in vivo evaluation. Int J Pharm 2015. [DOI: 10.1016/j.ijpharm.2015.07.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|