1
|
Han Y, Dong Q, Peng J, Li B, Sun C, Ma C. Laminar Distribution of Cannabinoid Receptor 1 in the Prefrontal Cortex of Nonhuman Primates. Mol Neurobiol 2024; 61:1-12. [PMID: 38062346 DOI: 10.1007/s12035-023-03828-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/23/2023] [Indexed: 07/11/2024]
Abstract
Cannabis is an annual herb of the genus Cannabis, with a history of medical use going back thousands of years. However, its abuse causes many side-effects, including confusion of consciousness, alienation, and mental disorders such as schizophrenia and depression. Research conducted on rodents suggests that there are two types of cannabinoid receptors-cannabinoid receptor 1 (CB1R) and cannabinoid receptor 2 (CB2R). CB1R is found mostly in the central nervous system, particularly in the prefrontal cortex (PFC), and alterations in its expression in the PFC have been strongly linked to mental disorders. Within the layers of the PFC, Brodmann area 46 is associated with the processing of complex cognitive information. However, it remains unclear whether CB1R is expressed in the PFC 46 area of non-human primate. In this work, we applied western blotting along with immunofluorescent histochemical staining to investigate the distribution pattern of CB1R in the PFC of nonhuman primate, Our findings reveal that CB1R is highly expressed in the monkey PFC, especially in area 46. Furthermore, CB1R exhibits a layered distribution pattern within area 46 of the PFC, with the inner granular layer displaying the highest expression levels. Additionally, CB1R+PV+ cells are widely distributed in lay II-VI of area 46, with layer IV showing notable prevalence. In conclusion, CB1R is distributed in the PV interneurons in area 46 of the prefrontal cortex, particularly in layer IV, suggesting that cannabis may modulate PFC activities via regulating interneuron in the PFC. And cannabis-induced side effects may be caused by abnormal expression of CB1R.
Collapse
Affiliation(s)
- Yingying Han
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qianyu Dong
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Jiyun Peng
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Baoming Li
- Department of Physiology and Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chong Sun
- School of Life Science, Nanchang University, Nanchang, 330031, China.
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Chaolin Ma
- School of Life Science, Nanchang University, Nanchang, 330031, China.
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
2
|
Burgaz S, García C, Gonzalo-Consuegra C, Gómez-Almería M, Ruiz-Pino F, Unciti JD, Gómez-Cañas M, Alcalde J, Morales P, Jagerovic N, Rodríguez-Cueto C, de Lago E, Muñoz E, Fernández-Ruiz J. Preclinical Investigation in Neuroprotective Effects of the GPR55 Ligand VCE-006.1 in Experimental Models of Parkinson's Disease and Amyotrophic Lateral Sclerosis. Molecules 2021; 26:molecules26247643. [PMID: 34946726 PMCID: PMC8708356 DOI: 10.3390/molecules26247643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
Cannabinoids act as pleiotropic compounds exerting, among others, a broad-spectrum of neuroprotective effects. These effects have been investigated in the last years in different preclinical models of neurodegeneration, with the cannabinoid type-1 (CB1) and type-2 (CB2) receptors concentrating an important part of this research. However, the issue has also been extended to additional targets that are also active for cannabinoids, such as the orphan G-protein receptor 55 (GPR55). In the present study, we investigated the neuroprotective potential of VCE-006.1, a chromenopyrazole derivative with biased orthosteric and positive allosteric modulator activity at GPR55, in murine models of two neurodegenerative diseases. First, we proved that VCE-006.1 alone could induce ERK1/2 activation and calcium mobilization, as well as increase cAMP response but only in the presence of lysophosphatidyl inositol. Next, we investigated this compound administered chronically in two neurotoxin-based models of Parkinson's disease (PD), as well as in some cell-based models. VCE-006.1 was active in reversing the motor defects caused by 6-hydroxydopamine (6-OHDA) in the pole and the cylinder rearing tests, as well as the losses in tyrosine hydroxylase-containing neurons and the elevated glial reactivity detected in the substantia nigra. Similar cytoprotective effects were found in vitro in SH-SY5Y cells exposed to 6-OHDA. We also investigated VCE-006.1 in LPS-lesioned mice with similar beneficial effects, except against glial reactivity and associated inflammatory events, which remained unaltered, a fact confirmed in BV2 cells treated with LPS and VCE-006.1. We also analyzed GPR55 in these in vivo models with no changes in its gene expression, although GPR55 was down-regulated in BV2 cells treated with LPS, which may explain the lack of efficacy of VCE-006.1 in such an assay. Furthermore, we investigated VCE-006.1 in two genetic models of amyotrophic lateral sclerosis (ALS), mutant SOD1, or TDP-43 transgenic mice. Neither the neurological decline nor the deteriorated rotarod performance were prevented with this compound, and the same happened with the elevated microglial and astroglial reactivities, albeit modest spinal motor neuron preservation was achieved in both models. We also analyzed GPR55 in these in vivo models and found no changes in both TDP-43 transgenic and mSOD1 mice. Therefore, our findings support the view that targeting the GPR55 may afford neuroprotection in experimental PD, but not in ALS, thus stressing the specificities for the development of cannabinoid-based therapies in the different neurodegenerative disorders.
Collapse
Affiliation(s)
- Sonia Burgaz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.B.); (C.G.); (C.G.-C.); (M.G.-A.); (M.G.-C.); (J.A.); (C.R.-C.); (E.d.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Concepción García
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.B.); (C.G.); (C.G.-C.); (M.G.-A.); (M.G.-C.); (J.A.); (C.R.-C.); (E.d.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Claudia Gonzalo-Consuegra
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.B.); (C.G.); (C.G.-C.); (M.G.-A.); (M.G.-C.); (J.A.); (C.R.-C.); (E.d.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Marta Gómez-Almería
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.B.); (C.G.); (C.G.-C.); (M.G.-A.); (M.G.-C.); (J.A.); (C.R.-C.); (E.d.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Francisco Ruiz-Pino
- Emerald Health Biotechnology España, 14014 Córdoba, Spain; (F.R.-P.); (J.D.U.); (E.M.)
| | - Juan Diego Unciti
- Emerald Health Biotechnology España, 14014 Córdoba, Spain; (F.R.-P.); (J.D.U.); (E.M.)
| | - María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.B.); (C.G.); (C.G.-C.); (M.G.-A.); (M.G.-C.); (J.A.); (C.R.-C.); (E.d.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Juan Alcalde
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.B.); (C.G.); (C.G.-C.); (M.G.-A.); (M.G.-C.); (J.A.); (C.R.-C.); (E.d.L.)
| | - Paula Morales
- Instituto de Química Médica, CSIC, 28006 Madrid, Spain; (P.M.); (N.J.)
| | - Nadine Jagerovic
- Instituto de Química Médica, CSIC, 28006 Madrid, Spain; (P.M.); (N.J.)
| | - Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.B.); (C.G.); (C.G.-C.); (M.G.-A.); (M.G.-C.); (J.A.); (C.R.-C.); (E.d.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Eva de Lago
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.B.); (C.G.); (C.G.-C.); (M.G.-A.); (M.G.-C.); (J.A.); (C.R.-C.); (E.d.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Eduardo Muñoz
- Emerald Health Biotechnology España, 14014 Córdoba, Spain; (F.R.-P.); (J.D.U.); (E.M.)
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Department of Cellular Biology, Physiology and Immunology, University of Córdoba, 14071 Córdoba, Spain
- Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.B.); (C.G.); (C.G.-C.); (M.G.-A.); (M.G.-C.); (J.A.); (C.R.-C.); (E.d.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34–913941450
| |
Collapse
|
3
|
BiP Heterozigosity Aggravates Pathological Deterioration in Experimental Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms222212533. [PMID: 34830414 PMCID: PMC8621319 DOI: 10.3390/ijms222212533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023] Open
Abstract
In the present study, we investigated the involvement of the chaperone protein BiP (also known as GRP78 or Hspa5), a master regulator of intracellular proteostasis, in two mouse models of neurodegenerative diseases: amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD). To this end, we used mice bearing partial genetic deletion of the BiP gene (BiP+/− mice), which, for the ALS model, were crossed with mutant SOD1 (mSOD1) transgenic mice to generate mSOD1/BiP+/− double mutant mice. Our data revealed a more intense neurological decline in the double mutants, reflected in a greater deterioration of the neurological score and rotarod performance, with also a reduced animal survival, compared to mSOD1 transgenic mice. Such worsening was associated with higher microglial (labelled with Iba-1 immunostaining) and, to a lesser extent, astroglial (labelled with GFAP immunostaining) immunoreactivities found in the double mutants, but not with a higher loss of spinal motor neurons (labelled with Nissl staining) in the spinal cord. The morphological analysis of Iba-1 and GFAP-positive cells revealed a higher presence of activated cells, characterized by elevated cell body size and shorter processes, in double mutants compared to mSOD1 mice with normal BiP expression. In the case of the PD model, BiP+/− mice were unilaterally lesioned with the parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA). In this case, however, we did not detect a greater susceptibility to damage in mutant mice, as the motor defects caused by 6-OHDA in the pole test and the cylinder rearing test, as well as the losses in tyrosine hydroxylase-containing neurons and the elevated glial reactivity (labelled with CD68 and GFAP immunostaining) detected in the substantia nigra were of similar magnitude in BiP+/− mice compared with wildtype animals. Therefore, our findings support the view that a dysregulation of the protein BiP may contribute to ALS pathogenesis. As BiP has been recently related to cannabinoid type-1 (CB1) receptor function, our work also opens the door to future studies on a possible link between BiP and the neuroprotective effects of cannabinoids that have been widely reported in this neuropathological context. In support of this possibility, preliminary data indicate that CB1 receptor levels are significantly reduced in mSOD1 mice having partial deletion of BiP gene.
Collapse
|
4
|
He Y, Ao N, Yang J, Wang X, Jin S, Du J. The preventive effect of liraglutide on the lipotoxic liver injury via increasing autophagy. Ann Hepatol 2021; 19:44-52. [PMID: 31787541 DOI: 10.1016/j.aohep.2019.06.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES The incidence of non-alcoholic fatty liver disease (NAFLD) is increasing. Previous studies indicated that Liraglutide, glucagon-like peptide-1 analogue, could regulate glucose homeostasis as a valuable treatment for Type 2 Diabetes. However, the precise effect of Liraglutide on NAFLD model in rats and the mechanism remains unknown. In this study, we investigated the molecular mechanism by which Liraglutide ameliorates hepatic steatosis in a high-fat diet (HFD)-induced rat model of NAFLD in vivo and in vitro. MATERIALS AND METHODS NALFD rat models and hepatocyte steatosis in HepG2 cells were induced by HFD and palmitate fatty acid treatment, respectively. AMPK inhibitor, Compound C was added in HepG2 cells. Autophagy-related proteins LC3, Beclin1 and Atg7, and AMPK pathway-associated proteins were evaluated by Western blot and RT-PCR. RESULTS Liraglutide enhanced autophagy as showed by the increased expression of the autophagy markers LC3, Beclin1 and Atg7 in HFD rats and HepG2 cells treated with palmitate fatty acid. In vitro, The AMPK inhibitor exhibited an inhibitory effect on Liraglutide-induced autophagy enhancement with the deceased expression of LC3, Beclin1 and Atg7. Additionally, Liraglutide treatment elevated AMPK levels and TSC1, decreased p-mTOR expression. CONCLUSIONS Liraglutide could upregulate autophagy to decrease lipid over-accumulation via the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Yini He
- Department of General Practice, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Ao
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jing Yang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaochen Wang
- Department of Endocrinology, The People's Hospital of Liaoning Province, Shenyang, Liaoning, China
| | - Shi Jin
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Du
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
5
|
Perin P, Mabou Tagne A, Enrico P, Marino F, Cosentino M, Pizzala R, Boselli C. Cannabinoids, Inner Ear, Hearing, and Tinnitus: A Neuroimmunological Perspective. Front Neurol 2020; 11:505995. [PMID: 33329293 PMCID: PMC7719758 DOI: 10.3389/fneur.2020.505995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cannabis has been used for centuries for recreational and therapeutic purposes. Whereas, the recreative uses are based on the psychotropic effect of some of its compounds, its therapeutic effects range over a wide spectrum of actions, most of which target the brain or the immune system. Several studies have found cannabinoid receptors in the auditory system, both at peripheral and central levels, thus raising the interest in cannabinoid signaling in hearing, and especially in tinnitus, which is affected also by anxiety, memory, and attention circuits where cannabinoid effects are well described. Available studies on animal models of tinnitus suggest that cannabinoids are not likely to be helpful in tinnitus treatment and could even be harmful. However, the pharmacology of cannabinoids is very complex, and most studies focused on neural CB1R-based responses. Cannabinoid effects on the immune system (where CB2Rs predominate) are increasingly recognized as essential in understanding nervous system pathological responses, and data on immune cannabinoid targets have emerged in the auditory system as well. In addition, nonclassical cannabinoid targets (such as TRP channels) appear to play an important role in the auditory system as well. This review will focus on neuroimmunological mechanisms for cannabinoid effects and their possible use as protective and therapeutic agents in the ear and auditory system, especially in tinnitus.
Collapse
Affiliation(s)
- Paola Perin
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | | | | | | | | | - Roberto Pizzala
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Blázquez C, Ruiz-Calvo A, Bajo-Grañeras R, Baufreton JM, Resel E, Varilh M, Pagano Zottola AC, Mariani Y, Cannich A, Rodríguez-Navarro JA, Marsicano G, Galve-Roperh I, Bellocchio L, Guzmán M. Inhibition of striatonigral autophagy as a link between cannabinoid intoxication and impairment of motor coordination. eLife 2020; 9:56811. [PMID: 32773031 PMCID: PMC7417168 DOI: 10.7554/elife.56811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
The use of cannabis is rapidly expanding worldwide. Thus, innovative studies aimed to identify, understand and potentially reduce cannabis-evoked harms are warranted. Here, we found that Δ9-tetrahydrocannabinol, the psychoactive ingredient of cannabis, disrupts autophagy selectively in the striatum, a brain area that controls motor behavior, both in vitro and in vivo. Boosting autophagy, either pharmacologically (with temsirolimus) or by dietary intervention (with trehalose), rescued the Δ9-tetrahydrocannabinol-induced impairment of motor coordination in mice. The combination of conditional knockout mouse models and viral vector-mediated autophagy-modulating strategies in vivo showed that cannabinoid CB1 receptors located on neurons belonging to the direct (striatonigral) pathway are required for the motor-impairing activity of Δ9-tetrahydrocannabinol by inhibiting local autophagy. Taken together, these findings identify inhibition of autophagy as an unprecedented mechanistic link between cannabinoids and motor performance, and suggest that activators of autophagy might be considered as potential therapeutic tools to treat specific cannabinoid-evoked behavioral alterations.
Collapse
Affiliation(s)
- Cristina Blázquez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Universitario de Investigación Neuroquímica (IUIN) and Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Andrea Ruiz-Calvo
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Universitario de Investigación Neuroquímica (IUIN) and Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Raquel Bajo-Grañeras
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Universitario de Investigación Neuroquímica (IUIN) and Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Jérôme M Baufreton
- Centre National de la Recherche Scientifique (CNRS) and University of Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Eva Resel
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Universitario de Investigación Neuroquímica (IUIN) and Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Marjorie Varilh
- Institut National de la Santé et de la Recherche Médicale (INSERM) and University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France
| | - Antonio C Pagano Zottola
- Institut National de la Santé et de la Recherche Médicale (INSERM) and University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France
| | - Yamuna Mariani
- Institut National de la Santé et de la Recherche Médicale (INSERM) and University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France
| | - Astrid Cannich
- Institut National de la Santé et de la Recherche Médicale (INSERM) and University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France
| | | | - Giovanni Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM) and University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France
| | - Ismael Galve-Roperh
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Universitario de Investigación Neuroquímica (IUIN) and Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Luigi Bellocchio
- Institut National de la Santé et de la Recherche Médicale (INSERM) and University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France
| | - Manuel Guzmán
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Universitario de Investigación Neuroquímica (IUIN) and Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
7
|
Cannabinoid receptor 2 activation alleviates septic lung injury by promoting autophagy via inhibition of inflammatory mediator release. Cell Signal 2020; 69:109556. [DOI: 10.1016/j.cellsig.2020.109556] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
|
8
|
He Q, Xiao F, Yuan Q, Zhang J, Zhan J, Zhang Z. Cannabinoid receptor 2: a potential novel therapeutic target for sepsis? Acta Clin Belg 2019; 74:70-74. [PMID: 29694303 DOI: 10.1080/17843286.2018.1461754] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection. It is the most common cause of death among critically ill patients in non-coronary intensive care units and the incidence continues to rise. Although advanced management was applied, the prognosis of sepsis patients remains poor. As a G-protein coupled receptor, cannabinoid receptor 2 (CB2R) was implicated in a wide variety of diseases. In this study, we aimed to investigate the role of CB2R in sepsis. METHODS Literature search was performed using "sepsis" and "Cannabinoid Receptor" as search terms in PubMed, EMbase, and the Cochrane Library. RESULTS AND DISCUSSION Briefly, 97 records were identified by the search strategy, of which 76 were duplicate or irrelevant publications. With the anti-inflammatory and immunomodulatory effects, CB2R is a novel and promising therapeutic target in the management of sepsis. Indeed, specific CB2R agonists have been reported to attenuate leukocyte recruitment, oxidative burst, systemic inflammatory mediator release, bacteremia, and lung tissue damage, while improving survival in different sepsis models. In addition, autophagy has also been implicated in the protective role of CB2R activation in sepsis. However, almost all of the current outcomes result from animal studies or in vitro cultured cells. Due to the lack of clinical evidence and the ambiguous mechanisms underlying, the clinical application of CB2R stimulation in sepsis is limited. Further studies are needed to delineate the therapeutic effect and the related-pathways of CB2R agonists in sepsis.
Collapse
Affiliation(s)
- Qianwen He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fei Xiao
- Department of Orthopedics, Pu Ai Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qinghong Yuan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingjing Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jia Zhan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Xu C, Qian Y. A selenamorpholine-based redox-responsive fluorescent probe for targeting lysosome and visualizing exogenous/endogenous hydrogen peroxide in living cells and zebrafish. J Mater Chem B 2019; 7:2714-2721. [PMID: 32255004 DOI: 10.1039/c8tb03010c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A simple selenamorpholine-based fluorescent probe has been designed and synthesized using a combination of selenamorpholine and a BODIPY fluorophore. BODIPY-Se has a low pKa value of 4.78 because of the selenamorpholine unit, which is beneficial for the probe to detect the lysosome. BODIPY-Se can turn on partial fluorescence only in lysosomes, due to a PET-inhibited process of protonation of selenamorpholine. In addition, the selenamorpholine unit of BODIPY-Se could selectively react with H2O2 through a redox reaction, leading to the alteration of the valence state of selenium from Se(ii) to Se(iv) and an additional PET-inhibited process. When BODIPY-Se tracked H2O2 in lysosomes, the two PET-inhibited processes would obviously amplify the fluorescence signal in living cells and in vivo. The probe could also detect the redox cycles between H2O2 and GSH continuously. Using confocal fluorescence imaging, the fluorescence localization of lysosomes demonstrated that BODIPY-Se could successfully target lysosomes. The probe could not only detect exogenous/endogenous H2O2 in living cells, but could also realize real-time monitoring of H2O2 in cancer cells and zebrafish. The results proved that BODIPY-Se is a promising fluorescent probe in biological applications.
Collapse
Affiliation(s)
- Chao Xu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | | |
Collapse
|
10
|
The induction of apoptosis in BEL-7402 cells by an iridium(III) complex through lysosome–mitochondria pathway. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.09.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Fan J, Wang S, Zhang X, Chen W, Li Y, Yang P, Cao Z, Wang Y, Lu W, Ju D. Quantum Dots Elicit Hepatotoxicity through Lysosome-Dependent Autophagy Activation and Reactive Oxygen Species Production. ACS Biomater Sci Eng 2018; 4:1418-1427. [PMID: 33418671 DOI: 10.1021/acsbiomaterials.7b00824] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jiajun Fan
- Minhang Branch, Zhongshan Hospital, Fudan University/Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, P. R. China
- Department of Microbiological and Biochemical Pharmacy and Key Lab of Smart Drug Delivery MOE, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Shaofei Wang
- Minhang Branch, Zhongshan Hospital, Fudan University/Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, P. R. China
- Department of Microbiological and Biochemical Pharmacy and Key Lab of Smart Drug Delivery MOE, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Xuyao Zhang
- Minhang Branch, Zhongshan Hospital, Fudan University/Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, P. R. China
- Department of Microbiological and Biochemical Pharmacy and Key Lab of Smart Drug Delivery MOE, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Wei Chen
- Minhang Branch, Zhongshan Hospital, Fudan University/Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, P. R. China
- Department of Microbiological and Biochemical Pharmacy and Key Lab of Smart Drug Delivery MOE, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Yubin Li
- Minhang Branch, Zhongshan Hospital, Fudan University/Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, P. R. China
- Department of Microbiological and Biochemical Pharmacy and Key Lab of Smart Drug Delivery MOE, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Ping Yang
- Instrumental Analysis Center, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Zhonglian Cao
- Instrumental Analysis Center, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yichen Wang
- Minhang Branch, Zhongshan Hospital, Fudan University/Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, P. R. China
- Department of Microbiological and Biochemical Pharmacy and Key Lab of Smart Drug Delivery MOE, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Weiyue Lu
- Department of Microbiological and Biochemical Pharmacy and Key Lab of Smart Drug Delivery MOE, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Dianwen Ju
- Minhang Branch, Zhongshan Hospital, Fudan University/Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, P. R. China
- Department of Microbiological and Biochemical Pharmacy and Key Lab of Smart Drug Delivery MOE, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| |
Collapse
|
12
|
Fernández-Ruiz J, Gómez-Ruiz M, García C, Hernández M, Ramos JA. Modeling Neurodegenerative Disorders for Developing Cannabinoid-Based Neuroprotective Therapies. Methods Enzymol 2017; 593:175-198. [PMID: 28750802 DOI: 10.1016/bs.mie.2017.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The increase in lifespan during the last 50 years, mainly in developed countries, has originated a progressive elevation in the incidence of chronic neurodegenerative disorders, for which aging is the key risk factor. This fact will definitively become the major biomedical challenge during the present century, in part because the expectation of a persisting elevation in the population older than 65 years over the whole population and, on the other hand, because the current lack of efficacious therapies to control these disorders despite years of intense research. This chapter will address this question and will stress the urgency of developing better neuroprotective and neurorepair strategies that may delay/arrest the progression of these disorders, reviewing the major needs to solve the causes proposed for the permanent failures experienced in recent years, e.g., to develop multitarget strategies, to use more predictive experimental models, and to identify early disease biomarkers. This chapter will propose the cannabinoids and their classic (e.g., endocannabinoid receptors and enzymes) and nonclassic (e.g., peroxisome proliferator-activated receptors, transcription factors) targets as a useful strategy for developing novel therapies for these disorders, based on their broad-spectrum neuroprotective profile, their activity as an endogenous protective system, the location of the endocannabinoid targets in cell substrates critical for neuronal survival, and their ability to serve for preservation and rescue, but also for repair and/or replacement, of neurons and glial cells against cytotoxic insults.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - María Gómez-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Facultad de Psicología, Universidad Complutense, Madrid, Spain
| | - Concepción García
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mariluz Hernández
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Facultad de Psicología, Universidad Complutense, Madrid, Spain
| | - José A Ramos
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
13
|
Palomo-Garo C, Gómez-Gálvez Y, García C, Fernández-Ruiz J. Targeting the cannabinoid CB2 receptor to attenuate the progression of motor deficits in LRRK2-transgenic mice. Pharmacol Res 2016; 110:181-192. [PMID: 27063942 DOI: 10.1016/j.phrs.2016.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/13/2016] [Accepted: 04/03/2016] [Indexed: 01/21/2023]
Abstract
Most of cases of Parkinson's disease (PD) have a sporadic origin, with their causes mostly unknown, although overexposure to some environmental factors has been found to occur in some cases. Other forms of parkinsonism are the consequence of dominant or recessive mutations in specific genes, e.g. α-synuclein, parkin and, more recently, leucine-rich repeat kinase 2 (LRRK2), whose G2019S mutation represents the most prevalent form of late-onset, autosomal dominant familial PD. A transgenic mouse model expressing the G2019S mutation of LRRK2 is already available and apparently may represent a valuable experimental model for investigating PD pathogenesis and novel treatments. We designed a long-term study with these animals aimed at: (i) elucidating the changes experienced by the endocannabinoid signaling system in the basal ganglia during the progression of the disease in these mice, paying emphasis in the CB2 receptor, which has emerged as a promising target in PD, and (ii) evaluating the potential of compounds selectively activating this CB2 receptor, as disease-modifying agents in these mice. Our results unequivocally demonstrate that LRRK2 transgenic mice develop motor impairment consisting of small anomalies in rotarod performance (presumably reflecting a deficit in motor coordination and dystonia) and a strong deficiency in the hanging-wire test (reflecting muscle weakness), rather than hypokinesia which was difficult to be demonstrated in the actimeter. These behavioral responses occurred in absence of any evidence of reactive gliosis and neuronal losses, as well as synaptic deterioration in the basal ganglia, except an apparent impairment in autophagy reflected by elevated LAMP-1 immunolabelling in the striatum and substantia nigra. Furthermore, there were no changes in the status of the CB2 receptor, as well as in other elements of the endocannabinoid signaling, in the basal ganglia, but, paradoxically, the selective activation of this receptor partially reversed the deficits in the hanging-wire test of LRRK2 transgenic mice. This was accompanied by normalization in LAMP-1 immunolabelling in the basal ganglia, although it is possible that other CNS structures, remaining to be identified, are involved in the behavioral improvement. In summary, our data support the interest of the CB2 receptor as a potential pharmacological target in LRRK2 transgenic mice, although the neuronal substrates underlying these benefits might be not completely related to the basal ganglia and to the presumed parkinsonian features of these mice.
Collapse
Affiliation(s)
- Cristina Palomo-Garo
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Yolanda Gómez-Gálvez
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Concepción García
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.
| |
Collapse
|