1
|
Dey S, Murmu N, Mondal T, Saha I, Chatterjee S, Manna R, Haldar S, Dash SK, Sarkar TR, Giri B. Multifaceted entrancing role of glucose and its analogue, 2-deoxy-D-glucose in cancer cell proliferation, inflammation, and virus infection. Biomed Pharmacother 2022; 156:113801. [DOI: 10.1016/j.biopha.2022.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
|
2
|
Umapathy D, Karthikeyan MC, Ponnuchamy K, Kannan MK, Ganeshan M, Arockiam AJV. The absence of cellular glucose triggers oncogene AEG-1 that instigates VEGFC in HCC: A possible genetic root cause of angiogenesis. Gene X 2022; 826:146446. [PMID: 35337853 DOI: 10.1016/j.gene.2022.146446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Astrocyte Elevated Gene-1 (AEG-1) is the master and multi-regulator of the various transcriptional factor primarily regulating chemoresistance, angiogenesis, metastasis, and invasion under the pathological condition, including liver cancer. This study was focused on investigating the process of tumor angiogenesis in liver carcinoma by studying the role of AEG-1 under GD/2DG conditions. METHOD AND RESULTS The PCR and western blot analysis revealed that glucose depletion (GD) induces the overexpression of AEG-1. Further, it leads to the constant expression of VEGFC through the activation of HIF-1α/CCR7 via the stimulations of PI3K/Akt signaling pathways. GLUT2 is the major transporter of a glucose molecule that is highly participating under GD through the expression of AEG-1 and constantly expresses glucokinase (GCK). The obtained data suggest that AEG-1 act as an angiogenesis and glycolysis regulator by modulating the expression of GCK through HIF-1α and GLUT2. 2-deoxy-D-glucose (2DG) is a glycolysis inhibitor that induces impaired glycolysis and cellular apoptosis by cellular oxidative stress. The administration of 2DG has led to the chemoresistance of AEG-1. CONCLUSION The total findings of the study judged that disruption of cellular energy metabolism induced by the absence of glucose or the presence of mutant glucose moiety (2DG) promotes the overexpression of AEG-1. The GD/2DG activates the VEGFC by inducing the HIF-1α and CCR7. Moreover, AEG-1 induces the expression of OPN, which regulates metastasis, angiogenesis, and actively participates in protective autophagy by promoting LC3 a/b.
Collapse
Affiliation(s)
- Devan Umapathy
- Department of Biochemistry, Molecular Oncology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Mano Chitra Karthikeyan
- Department of Biochemistry, Molecular Oncology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Kumar Ponnuchamy
- Department of Animal Health and Management, Food Chemistry and Molecular Cancer Biology Laboratory, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Mahesh Kumar Kannan
- Department of Biochemistry, Molecular Oncology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Mathan Ganeshan
- Cancer Biology Laboratory, Department of Biomedical Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Antony Joseph Velanganni Arockiam
- Department of Biochemistry, Molecular Oncology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
3
|
Dikici S, Yar M, Bullock AJ, Shepherd J, Roman S, MacNeil S. Developing Wound Dressings Using 2-deoxy- D-Ribose to Induce Angiogenesis as a Backdoor Route for Stimulating the Production of Vascular Endothelial Growth Factor. Int J Mol Sci 2021; 22:ijms222111437. [PMID: 34768868 PMCID: PMC8583821 DOI: 10.3390/ijms222111437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
2-deoxy-D-Ribose (2dDR) was first identified in 1930 in the structure of DNA and discovered as a degradation product of it later when the enzyme thymidine phosphorylase breaks down thymidine into thymine. In 2017, our research group explored the development of wound dressings based on the delivery of this sugar to induce angiogenesis in chronic wounds. In this review, we will survey the small volume of conflicting literature on this and related sugars, some of which are reported to be anti-angiogenic. We review the evidence of 2dDR having the ability to stimulate a range of pro-angiogenic activities in vitro and in a chick pro-angiogenic bioassay and to stimulate new blood vessel formation and wound healing in normal and diabetic rat models. The biological actions of 2dDR were found to be 80 to 100% as effective as VEGF in addition to upregulating the production of VEGF. We then demonstrated the uptake and delivery of the sugar from a range of experimental and commercial dressings. In conclusion, its pro-angiogenic properties combined with its improved stability on storage compared to VEGF, its low cost, and ease of incorporation into a range of established wound dressings make 2dDR an attractive alternative to VEGF for wound dressing development.
Collapse
Affiliation(s)
- Serkan Dikici
- Department of Bioengineering, Izmir Institute of Technology, 35430 Izmir, Turkey
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (A.J.B.); (S.R.)
- Correspondence: (S.D.); (S.M.)
| | - Muhammad Yar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan;
| | - Anthony J. Bullock
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (A.J.B.); (S.R.)
| | - Joanna Shepherd
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
| | - Sabiniano Roman
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (A.J.B.); (S.R.)
| | - Sheila MacNeil
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (A.J.B.); (S.R.)
- Correspondence: (S.D.); (S.M.)
| |
Collapse
|
4
|
Gao J, Zhang Y, Liu X, Wu X, Huang L, Gao W. Triptolide: pharmacological spectrum, biosynthesis, chemical synthesis and derivatives. Theranostics 2021; 11:7199-7221. [PMID: 34158845 PMCID: PMC8210588 DOI: 10.7150/thno.57745] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022] Open
Abstract
Triptolide, an abietane-type diterpenoid isolated from Tripterygium wilfordii Hook. F., has significant pharmacological activity. Research results show that triptolide has obvious inhibitory effects on many solid tumors. Therefore, triptolide has become one of the lead compounds candidates for being the next "blockbuster" drug, and multiple triptolide derivatives have entered clinical research. An increasing number of researchers have developed triptolide synthesis methods to meet the clinical need. To provide new ideas for researchers in different disciplines and connect different disciplines with researchers aiming to solve scientific problems more efficiently, this article reviews the research progress made with analyzes of triptolide pharmacological activity, biosynthetic pathways, and chemical synthesis pathways and reported in toxicological and clinical studies of derivatives over the past 20 years, which have laid the foundation for subsequent researchers to study triptolide in many ways.
Collapse
Affiliation(s)
- Jie Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yifeng Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xihong Liu
- Basic Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiayi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
5
|
Kim HY, Park JH, Kim MJ, Lee JH, Oh SH, Byun JH. The effects of VEGF-centered biomimetic delivery of growth factors on bone regeneration. Biomater Sci 2021; 9:3675-3691. [PMID: 33899852 DOI: 10.1039/d1bm00245g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It is accepted that biomimetic supply of signaling molecules during bone regeneration can provide an appropriate environment for accelerated new bone formation. In this study, we developed a growth factor delivery system based on porous particles and a thermosensitive hydrogel that allowed fast, continuous, and delayed/continuous release of growth factors to mimic their biological production during bone regeneration. It was observed that the Continuous group (continuous release of growth factors) provides a better environment for the osteogenic differentiation of hPDCs than the Biomimetic group (biomimetic release of growth factors), and thus is anticipated to promote bone regeneration. However, contrary to expectation, the Biomimetic group promoted significant new bone formation compared to the Continuous group. From the systematic cell culture experiments, the initial supply of VEGF was considered to have more favorable effects on the osteoclastogenesis than osteogenesis, which may hinder bone regeneration. Our results indicated that the continuous supply of VEGF (in particular, at early stage) from VEGF-loaded biomaterial might not be conducive to new bone formation. Therefore, we suggest that a biomimetic supply of growth factors is a more pivotal parameter for sufficient tissue regeneration. Its use as a molecular delivery system may also serve as a useful tool for the investigation of biological processes and molecules during tissue regeneration processes.
Collapse
Affiliation(s)
- Ho Yong Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea.
| | - Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea. and Department of Convergence Medical Science, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea.
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon 34054, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea.
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea. and Department of Convergence Medical Science, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
6
|
Yan W, Wang Y, Chen Y, Guo Y, Li Q, Wei X. Exosomal miR-130b-3p Promotes Progression and Tubular Formation Through Targeting PTEN in Oral Squamous Cell Carcinoma. Front Cell Dev Biol 2021; 9:616306. [PMID: 33829013 PMCID: PMC8019696 DOI: 10.3389/fcell.2021.616306] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), accounting for two-thirds of head and neck cancer, is characterized by poor prognosis and a high rate of mortality. Exosomes have emerged as potential molecule-shuttle in intercellular communication, thereby regulating the physiological processes of recipient cells. To date, the effect of exosomal microRNAs (miRNAs) on the progression of OSCC has not been fully investigated. In this study, we found that the protein, but not mRNA expression of Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was decreased in OSCC. The results revealed that miR-130b-3p was an important negative regulator for PTEN expression. Additionally, overexpression and knockdown of miR-130b-3p enhanced and inhibited angiogenesis in human umbilical vein endothelial cells (HUVECs), respectively. Also, miR-130b-3p was transferred by exosomes to HUVECs and then promoted angiogenesis and inhibit the expression of PTEN. Furthermore, exosomal miR-130b-3p derived from OSCC cells promoted tumor growth and blood vessel formation in the xenograft mice model. Taken together, we demonstrated that exosome-mediated miR-130b-3p promoted progression and tubular formation in OSCC in vitro and in vivo. These results would provide new insight into exploring biomarkers and effective therapeutic strategies for OSCC.
Collapse
Affiliation(s)
- Wei Yan
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Yuping Wang
- Department of Stomatology of Shennongju Hospital, Huanghua, China
| | - Yong Chen
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Yanjun Guo
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Qiang Li
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Xiaotong Wei
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
7
|
Laussel C, Léon S. Cellular toxicity of the metabolic inhibitor 2-deoxyglucose and associated resistance mechanisms. Biochem Pharmacol 2020; 182:114213. [PMID: 32890467 DOI: 10.1016/j.bcp.2020.114213] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Abstract
Most malignant cells display increased glucose absorption and metabolism compared to surrounding tissues. This well-described phenomenon results from a metabolic reprogramming occurring during transformation, that provides the building blocks and supports the high energetic cost of proliferation by increasing glycolysis. These features led to the idea that drugs targeting glycolysis might prove efficient in the context of cancer treatment. One of these drugs, 2-deoxyglucose (2-DG), is a synthetic glucose analog that can be imported into cells and interfere with glycolysis and ATP generation. Its preferential targeting to sites of cell proliferation is supported by the observation that a derived molecule, 2-fluoro-2-deoxyglucose (FDG) accumulates in tumors and is used for cancer imaging. Here, we review the toxicity mechanisms of this drug, from the early-described effects on glycolysis to its other cellular consequences, including inhibition of protein glycosylation and endoplasmic reticulum stress, and its interference with signaling pathways. Then, we summarize the current data on the use of 2-DG as an anti-cancer agent, especially in the context of combination therapies, as novel 2-DG-derived drugs are being developed. We also show how the use of 2-DG helped to decipher glucose-signaling pathways in yeast and favored their engineering for biotechnologies. Finally, we discuss the resistance strategies to this inhibitor that have been identified in the course of these studies and which may have important implications regarding a medical use of this drug.
Collapse
Affiliation(s)
- Clotilde Laussel
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Sébastien Léon
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France.
| |
Collapse
|
8
|
Dikici S, Bullock AJ, Yar M, Claeyssens F, MacNeil S. 2-deoxy-d-ribose (2dDR) upregulates vascular endothelial growth factor (VEGF) and stimulates angiogenesis. Microvasc Res 2020; 131:104035. [PMID: 32593538 DOI: 10.1016/j.mvr.2020.104035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Delayed neovascularisation of tissue-engineered (TE) complex constructs is a major challenge that causes their failure post-implantation. Although significant progress has been made in the field of angiogenesis, ensuring rapid neovascularisation still remains a challenge. The use of pro-angiogenic agents is an effective approach to promote angiogenesis, and vascular endothelial growth factor (VEGF) has been widely studied both at the biological and molecular levels and is recognised as a key stimulator of angiogenesis. However, the exogenous use of VEGF in an uncontrolled manner has been shown to result in leaky, permeable and haemorrhagic vessels. Thus, researchers have been actively seeking alternative agents to upregulate VEGF production rather than exogenous use of VEGF in TE systems. We have previously revealed the potential of 2-deoxy-d-ribose (2dDR) as an alternative pro-angiogenic agent to induce angiogenesis and accelerates wound healing. However, to date, there is not any clear evidence on whether 2dDR influences the angiogenic cascade that involves VEGF. METHODS In this study, we explored the angiogenic properties of 2dDR either by its direct application to human aortic endothelial cells (HAECs) or when released from commercially available alginate dressings and demonstrated that when 2dDR promotes angiogenesis, it also increases the VEGF production of HAECs. RESULTS The VEGF quantification results suggested that VEGF production by HAECs was increased with 2dDR treatment but not with other sugars, including 2-deoxy-l-ribose (2dLR) and d-glucose (DG). The stability studies demonstrated that approximately 40-50% of the 2dDR had disappeared in the media over 14 days, either in the presence or absence of HAECs, and the reduction was higher when cells were present. The concentration of VEGF in the media also fell after day 4 associated with the reduction in 2dDR. CONCLUSION This study suggests that 2dDR (but not other sugars tested in this study) stimulates angiogenesis by increasing the production of VEGF. We conclude 2dDR appears to be a practical and effective indirect route to upregulating VEGF for several days, leading to increased angiogenesis.
Collapse
Affiliation(s)
- Serkan Dikici
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Anthony J Bullock
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Muhammad Yar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Frederik Claeyssens
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Sheila MacNeil
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
9
|
Jiang JH, Pi J, Cai JY. Oridonin exhibits anti-angiogenic activity in human umbilical vein endothelial cells by inhibiting VEGF-induced VEGFR-2 signaling pathway. Pathol Res Pract 2020; 216:153031. [PMID: 32703495 DOI: 10.1016/j.prp.2020.153031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023]
Abstract
Oridonin has been found to be a potential anti-angiogenesis agent. However, its functional targets and the underlying mechanisms are still vague. In vitro studies we found that oridonin not only inhibited VEGF-induced cell proliferation, migration and tube formation but also caused G2/M phase arrest and triggered cellular apoptosis in HUVECs. In mechanistic studies revealed that oridonin exhibited the anti-angiogenic potency, at least in part, through the down-regulation of VEGFR2-mediated FAK/MMPs, mTOR/PI3K/Akt and ERK/p38 signaling pathways which led to reduced invasion, migration, and tube formation in HUVECs. Our results could provide evidence that oridonin exerts strong anti-angiogenesis activities via specifically targeting VEGFR2 and its signaling pathway.
Collapse
Affiliation(s)
- Jin-Huan Jiang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China.
| | - Jiang Pi
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ji-Ye Cai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| |
Collapse
|
10
|
Guan T, Huang K, Liu Y, Hou S, Hu C, Li Y, Zhang J, Zhao J, Zhang J, Wang R, Huang Y. Aristolochic acid inhibits Slit2-induced migration and tube formation via inactivation of Robo1/Robo2-NCK1/NCK2 signaling pathway in human umbilical vein endothelial cells. Toxicol Lett 2018; 300:51-58. [PMID: 30381256 DOI: 10.1016/j.toxlet.2018.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022]
Abstract
Robo1/Robo2-NCK1/NCK2 signaling pathway controls endothelial cell sprouting and migration induced by Slit2 or VEGF, but whether it is involved in peritubular capillary (PTC) rarefaction of Aristolochic acid nephropathy (AAN) is unclear. In the present study, we evaluated whether AA exerts antiangiogenic effects by targeting this signaling pathways in HUVECs. HUVECs or lentivirus-mediated NCK1-overexpressing HUVECs were stimulated with AA (1, 2 or 3 μg/ml) in the absence or presence of 6 nM Slit2. Our results showed that AAІ (1-3 μg/ml) dose-dependently inhibited the migration and tube formation of HUVECs. This inhibition was in parallel with down-regulated mRNA and protein expression of Slit2/Robo1/Robo2-NCK1/NCK2 signaling pathway. Importantly, overexpression of NCK1 rescued AAІ-impaired angiogenesis, as evidenced by the increase of cell migration and tube formation of HUVECs in response to Slit2. The down-regulation of NCK2 and decreased activation of Rac1 was also restored by overexpression of NCK1. Taken together, our findings show that AA inhibits Slit2-induced migration and tube formation via inactivation of Robo1/Robo2-NCK1/NCK2 signaling pathway in HUVECs, and NCK1 might be a potential agent for vascular remodeling in AAN and diseases associated with impaired angiogenesis.
Collapse
Affiliation(s)
- Tao Guan
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Ke Huang
- Department of Dermatology, Rheumatic immunology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing, 400037, PR China
| | - Yuanyuan Liu
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Shihui Hou
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Chengfang Hu
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Yi Li
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Jingbo Zhang
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Jinghong Zhao
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Jun Zhang
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Rupeng Wang
- Department of Dermatology, Rheumatic immunology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing, 400037, PR China
| | - Yunjian Huang
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China.
| |
Collapse
|
11
|
Using a Classifier Fusion Strategy to Identify Anti-angiogenic Peptides. Sci Rep 2018; 8:14062. [PMID: 30218091 PMCID: PMC6138733 DOI: 10.1038/s41598-018-32443-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/07/2018] [Indexed: 12/27/2022] Open
Abstract
Anti-angiogenic peptides perform distinct physiological functions and potential therapies for angiogenesis-related diseases. Accurate identification of anti-angiogenic peptides may provide significant clues to understand the essential angiogenic homeostasis within tissues and develop antineoplastic therapies. In this study, an ensemble predictor is proposed for anti-angiogenic peptide prediction by fusing an individual classifier with the best sensitivity and another individual one with the best specificity. We investigate predictive capabilities of various feature spaces with respect to the corresponding optimal individual classifiers and ensemble classifiers. The accuracy and Matthew’s Correlation Coefficient (MCC) of the ensemble classifier trained by Bi-profile Bayes (BpB) features are 0.822 and 0.649, respectively, which represents the highest prediction results among the investigated prediction models. Discriminative features are obtained from BpB using the Relief algorithm followed by the Incremental Feature Selection (IFS) method. The sensitivity, specificity, accuracy, and MCC of the ensemble classifier trained by the discriminative features reach up to 0.776, 0.888, 0.832, and 0.668, respectively. Experimental results indicate that the proposed method is far superior to the previous study for anti-angiogenic peptide prediction.
Collapse
|
12
|
Duan D, Wang H, Zhou R, Jiang Q, Xiao R. The PR-1 domain accounts for the anti-angiogenic activity of a cysteine-rich secretory protein member from the buccal glands of Lampetra japonica. Int J Biol Macromol 2017; 107:2102-2112. [PMID: 29042283 DOI: 10.1016/j.ijbiomac.2017.10.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 10/18/2022]
Abstract
Previous studies have shown that cysteine-rich buccal gland protein (CRBGP) from buccal glands of Lampetra japonica could suppress angiogenesis in chick chorioallantoic membrane models. As CRBGP is composed of a pathogenesis-related group 1 (PR-1) domain and a cysteine-rich domain (CRD), which domain accounts for the effects of CRBGP on anti-angiogenesis? In the present study, recombinant PR-1 and CRD (rL-PR-1 and rL-CRD) were obtained. MTT assays showed rL-PR-1 inhibited the proliferation of HUVECs significantly in a dose-dependent manner with an IC50 of 2μM, while rL-CRD had no obviously inhibitory effect on the proliferation of HUVECs, suggested that PR-1 is the main function domain on the anti-angiogenic activity of CRBGP. Similar to CRBGP, rL-PR-1 induced apoptosis in HUVECs in a mitochondrial-dependent pathway by affecting the level of BAX, BCL2 and caspase 3. Also, the cytotoxic property of rL-PR-1 might be one of the factors which suppressed the proliferation of HUVECs. Furthermore, rL-PR-1 blocked the adhesion, migration, invasion and tube formation of HUVECs by disturbing the cytoskeleton arrangement and down-regulating the level of matrix metallo-peptidase 2. In summary, rL-PR-1 has the anti-angiogenic activity which would provide the information on the functions and mechanisms of cysteine-rich secretory protein family members.
Collapse
Affiliation(s)
- Dandan Duan
- School of Life Sciences, Liaoning Normal University, Dalian 116081, PR China
| | - Hongyan Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, PR China
| | - Rong Zhou
- School of Life Sciences, Liaoning Normal University, Dalian 116081, PR China
| | - Qi Jiang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, PR China
| | - Rong Xiao
- School of Life Sciences, Liaoning Normal University, Dalian 116081, PR China.
| |
Collapse
|
13
|
Contribution of vascular endothelial growth factor receptor-2 sialylation to the process of angiogenesis. Oncogene 2017; 36:6531-6541. [PMID: 28783175 DOI: 10.1038/onc.2017.243] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/30/2017] [Accepted: 06/12/2017] [Indexed: 01/18/2023]
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR2) is the main pro-angiogenic receptor expressed by endothelial cells (ECs). Using surface plasmon resonance, immunoprecipitation, enzymatic digestion, immunofluorescence and cross-linking experiments with specific sugar-binding lectins, we demonstrated that VEGFR2 bears both α,1-fucose and α(2,6)-linked sialic acid (NeuAc). However, only the latter is required for VEGF binding to VEGFR2 and consequent VEGF-dependent VEGFR2 activation and motogenic response in ECs. Notably, downregulation of β-galactoside α(2,6)-sialyltransferase expression by short hairpin RNA transduction inhibits VEGFR2 α(2,6) sialylation that is paralleled by an increase of β-galactoside α(2,3)-sialyltransferase expression. This results in an ex-novo α(2,3)-NeuAc sialylation of the receptor that functionally replaces the lacking α(2,6)-NeuAc, thus allowing VEGF/VEGFR2 interaction. In keeping with the role of VEGFR2 sialylation in angiogenesis, the α(2,6)-NeuAc-binding lectin Sambucus nigra (SNA) prevents VEGF-dependent VEGFR2 autophosphorylation and EC motility, proliferation and motogenesis. In addition, SNA exerts a VEGF-antagonist activity in tridimensional angiogenesis models in vitro and in the chick-embryo chorioallantoic membrane neovascularization assay and mouse matrigel plug assay in vivo. In conclusion, VEGFR2-associated NeuAc plays an important role in modulating VEGF/VEGFR2 interaction, EC pro-angiogenic activation and neovessel formation. VEGFR2 sialylation may represent a target for the treatment of angiogenesis-dependent diseases.
Collapse
|
14
|
Wang G, Yuan N, Huang S, Feng L, Han R, Zhang Y, Ren J, Meng M, Zhao X. The CNGRCLLII(KLAKLAK)2 peptide shows cytotoxicity against HUVECs by inducing apoptosis: An in vitro and in vivo study. Tumour Biol 2017; 39:1010428317701649. [PMID: 28475015 DOI: 10.1177/1010428317701649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fibrinogen Asn-Gly-Arg motif can specifically recognize and bind to Aminopeptidase N (CD13) on vascular endothelial cells in newly formed tumor vessels. Adipose-derived stem cells can serve as ideal vectors for gene therapy because of their ability of migrating to tumor tissues. First, this study was aimed to design a new peptide (CNGRCLLII(KLAKLAK)2) named CNAK which contains cyclic Asn-Gly-Arg motif and test its biological activity against human umbilical vein endothelial cells. Second, we aimed to construct stably transfected adipose-derived stem cells which express the CNAK peptide and investigate their anti-angiogenic activity in vivo. Adipose-derived stem cells were employed to localize CNAK on vascular endothelial cells in tumors based on their homing property. First of all, the new peptide was synthesized, which effectively entered into CD13+ human umbilical vein endothelial cells and showed cytotoxicity against human umbilical vein endothelial cells. The peptide induced apoptosis of human umbilical vein endothelial cells in a time- and dose-dependent manner, inhibited the expression of Bcl-2, and promoted the expression of Caspase-3 in human umbilical vein endothelial cells. Furthermore, the migration and tube formation of human umbilical vein endothelial cells were inhibited by CNAK. Primary adipose-derived stem cells were then isolated and identified. Stably transfected adipose-derived stem cells which express CNAK peptide (CNAK-ASCs) were successfully established, and the migration of CNAK-ASCs was assessed. In vivo, CNAK-ASCs were found to inhibit the growth and angiogenesis of breast cancer xenografts. This effect may be through inhibiting the secretion of matrix metalloproteinase-2 and membrane type 1-matrix metalloproteinase in vivo. It was also found that CNAK-ASCs reduced the quantity of breast cancer stem cells in tumor tissues. Our data suggested that the new peptide CNAK containing Asn-Gly-Arg motif had anti-angiogenic activity in vitro and in vivo.
Collapse
Affiliation(s)
- Guanying Wang
- 1 Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Na Yuan
- 2 Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shangke Huang
- 1 Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lu Feng
- 1 Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Rui Han
- 1 Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yujiao Zhang
- 1 Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Juan Ren
- 3 Department of Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Min Meng
- 4 Department of Oncology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, People's Republic of China
| | - Xinhan Zhao
- 1 Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
15
|
Zhang W, Li F, Gao W. Tripterygium wilfordii Inhibiting Angiogenesis for Rheumatoid Arthritis Treatment. J Natl Med Assoc 2017; 109:142-148. [PMID: 28599756 DOI: 10.1016/j.jnma.2017.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/11/2017] [Accepted: 02/18/2017] [Indexed: 01/01/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease with a serious pre-vascular inflammatory phase, followed by significant increase in vessel growth. Inhibition of angiogenesis is a novel therapeutic strategy against RA. The Chinese herbal remedy Tripterygium wilfordii, Hook. f. (TwHf) has been reported to be therapeutically efficacious in the treatment of RA. Recent studies have revealed that treatment with TwHf extracts inhibit angiogenesis of RA, thereby elaborately attenuation RA symptom. This review mainly addresses the anti-angiogenesis effect of TwHf in treatment of RA.
Collapse
Affiliation(s)
- Weisan Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300020, China
| | - Fengtan Li
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300020, China.
| | - Wenyuan Gao
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300020, China.
| |
Collapse
|
16
|
Zhang D, Fei Q, Li J, Zhang C, Sun Y, Zhu C, Wang F, Sun Y. 2-Deoxyglucose Reverses the Promoting Effect of Insulin on Colorectal Cancer Cells In Vitro. PLoS One 2016; 11:e0151115. [PMID: 26939025 PMCID: PMC4777557 DOI: 10.1371/journal.pone.0151115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022] Open
Abstract
An increased risk of colorectal cancer is related to the development of metabolic syndromes including hyperglycemia, and hyperinsulinemia. The high circulatory levels of glucose and/or insulin or the application of exogenous insulin may promote carcinogenesis, cancer progression and metastasis, which can be attributed to the Warburg effect or aerobic glycolysis. We attempted to resolve these existing questions by applying the glucose analog 2-deoxyglucose (2DG). According to the in vitro studies we performed, the glycolysis of colorectal cancer cells could be interrupted by 2DG as it decreased the cellular productions of ATP and lactate. In addition, 2DG induced apoptosis and cell cycle arrest, and inhibited proliferation, migration and invasion of these cells. Since insulin can stimulate the cellular uptake of hexose, including 2DG, the combination of 2DG and insulin improved the cytotoxicity of 2DG and meanwhile overcame the cancer-promoting effects of insulin. This in vitro study provided a viewpoint of 2DG as a potential therapeutic agent against colorectal cancer, especially for patients with concomitant hyperinsulinemia or treated with exogenous insulin.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiang Fei
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunyan Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fengzhen Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yueming Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|