1
|
Wan H, Yang X, Zhang Y, Liu X, Li Y, Qin Y, Yan H, Gui L, Li K, Zhang L, Yang L, Zhang B, Wang Y. Polyphenol-Reinforced Glycocalyx-Like Hydrogel Coating Induced Myocardial Regeneration and Immunomodulation. ACS NANO 2024; 18:21512-21522. [PMID: 39096486 DOI: 10.1021/acsnano.4c06332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Although minimally invasive interventional occluders can effectively seal heart defect tissue, they still have some limitations, including poor endothelial healing, intense inflammatory response, and thrombosis formation. Herein, a polyphenol-reinforced medicine/peptide glycocalyx-like coating was prepared on cardiac occluders. A coating consisting of carboxylated chitosan, epigallocatechin-3-gallate (EGCG), tanshinone IIA sulfonic sodium (TSS), and hyaluronic acid grafted with 3-aminophenylboronic acid was prepared. Subsequently, the mercaptopropionic acid-GGGGG-Arg-Glu-Asp-Val peptide was grafted by the thiol-ene "click" reaction. The coating showed good hydrophilicity and free radical-scavenging ability and could release EGCG-TSS. The results of biological experiments suggested that the coating could reduce thrombosis by promoting endothelialization, and promote myocardial repair by regulating the inflammatory response. The functions of regulating cardiomyocyte apoptosis and metabolism were confirmed, and the inflammatory regulatory functions of the coating were mainly dependent on the NF-kappa B and TNF signaling pathway.
Collapse
Affiliation(s)
- Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaohui Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yutong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiyu Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yanyan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hui Yan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lan Gui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ke Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Longjian Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
- Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
2
|
Hu X, Wan X, Diao Y, Shen Z, Zhang Z, Wang P, Hu D, Wang X, Yan W, Yu C, Luo X, Wang H, Ning Q. Fibrinogen-like protein 2 regulates macrophage glycolytic reprogramming by directly targeting PKM2 and exacerbates alcoholic liver injury. Int Immunopharmacol 2023; 124:110957. [PMID: 37734200 DOI: 10.1016/j.intimp.2023.110957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND & AIMS Switching of the macrophage activation phenotype affects the pathogenesis of alcoholic liver diseases, and metabolic reprogramming can provide the energy demand for macrophage phenotypes shift. However, the molecular mechanism by which immune metabolism regulates the activation of proinflammatory macrophages remains unclear. APPROACH Expression of Fgl2 was examined in patients with alcoholic hepatitis and healthy controls. Mice were fed with a Lieber-DeCarli diet. Livers from mice were used to observe liver injury and macrophage activation. Fgl2 overexpressing THP-1 cell was used to find interacting partners through immunoprecipitation plus mass spectrometry. Naive bone marrow derived macrophages stimulated with LPS and ethanol were used for cell experiments. RESULTS Expression of Fgl2 was elevated in macrophages of livers from mice with chronic-binge ethanol feeding or patients with alcoholic hepatitis. Fgl2 depletion ameliorated ethanol diet-induced hepatic steatosis and oxidative injury as well as the levels of proinflammatory cytokines. Fgl2-/- mice exhibited suppressed M1 polarization and glycolysis pathway activation. Fgl2 interacted with the M2 isoform of pyruvate kinase (PKM2) in macrophages and facilitated PKM2 nuclear translocation, thus promoting glycolysis in M1 macrophages and the secretion of proinflammatory cytokines. Furthermore, Fgl2 overexpression in THP-1 cells enhances PKM2-dependent glycolysis and inflammation, which could be reversed by activation of enzymatic PKM2 using DASA58. CONCLUSIONS Taken together, Fgl2 hastens the development of alcoholic liver injury by mediating PKM2 dependent aerobic glycolysis in proinflammatory macrophages. Strategies that inhibiting proinflammatory macrophage activation by silencing Fgl2 might be a potential therapeutic intervention for alcoholic liver injury.
Collapse
Affiliation(s)
- Xue Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, China
| | - Xiaoyang Wan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, China
| | - Yuting Diao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongwei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, China
| | - Peng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, China
| | - Danqin Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Wuhan, China
| | - Hongwu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, China.
| | - Qin Ning
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Zhu PC, Shen J, Qian RY, Xu J, Liu C, Hu WM, Zhang Y, Lv LC. Effect of tanshinone IIA for myocardial ischemia/reperfusion injury in animal model: preclinical evidence and possible mechanisms. Front Pharmacol 2023; 14:1165212. [PMID: 37261285 PMCID: PMC10228700 DOI: 10.3389/fphar.2023.1165212] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/11/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction: Tanshinone IIA (Tan IIA), the major active lipophilic ingredient of Radix Salviae Miltiorrhizae, exerts various therapeutic effects on the cardiovascular system. We aimed to identify the preclinical evidence and possible mechanisms of Tan IIA as a cardioprotective agent in the treatment of myocardial ischemia/reperfusion injury. Methods: The study quality scores of twenty-eight eligible studies and data analyses were separately assessed using the CAMARADES 10-item checklist and Rev-Man 5.3 software. Results: The study quality score ranged from 3/10 to 7/10 points. The present study provided preliminary preclinical evidence that Tan IIA could significantly decrease the myocardial infarct size, cardiac enzyme activity and troponin levels compared with those in the control group (p < 0.05). Discussion: Tan IIA alleviated myocardial I/R injury via antioxidant, anti-inflammatory, anti-apoptosis mechanisms and improved circulation and energy metabolism. Thus, Tan IIA is a promising cardioprotective agent for the treatment of myocardial ischemia/reperfusion injury and should be further investigated in clinical trials.
Collapse
Affiliation(s)
- Peng-Chong Zhu
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Jiayi Shen
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Ren-Yi Qian
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Jian Xu
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Chong Liu
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Wu-Ming Hu
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Ying Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Ling-Chun Lv
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| |
Collapse
|
4
|
Fu L, Liu Z, Liu Y. Fibrinogen-like protein 2 in inflammatory diseases: A future therapeutic target. Int Immunopharmacol 2023; 116:109799. [PMID: 36764282 DOI: 10.1016/j.intimp.2023.109799] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/09/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Fibrinogen-like protein 2 (FGL2), a member of the fibrinogen family, exists as a membrane-bound protein with immune-associated coagulation activity and a soluble form possessing immunosuppressive functions. The immunomodulatory role of FGL2 is evident in fibrin deposition-associated inflammatory diseases and cancer, suggesting that FGL2 expression could be exploited as a disease biomarker and a therapeutic target. Recently, in vitro studies and knockout and transgenic animal FGL2 models have been used by us and others to reveal the involvement of FGL2 in the pathogenesis of various inflammatory diseases. This review summarizes our current knowledge of the immunomodulatory role of FGL2 in inflammatory diseases and examines the role of FGL2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Li Fu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China.
| | - Yang Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China.
| |
Collapse
|
5
|
MRTF-A alleviates myocardial ischemia reperfusion injury by inhibiting the inflammatory response and inducing autophagy. Mol Cell Biochem 2023; 478:343-359. [PMID: 35829871 DOI: 10.1007/s11010-022-04510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/22/2022] [Indexed: 02/02/2023]
Abstract
Myocardin-related transcription factor A (MRTF-A) has an inhibitory effect on myocardial infarction; however, the mechanism is not clear. This study reveals the mechanism by which MRTF-A regulates autophagy to alleviate myocardial infarct-mediated inflammation, and the effect of silent information regulator 1 (SIRT1) on the myocardial protective effect of MRTF-A was also verified. MRTF-A significantly decreased cardiac damage induced by myocardial ischemia. In addition, MRTF-A decreased NLRP3 inflammasome activity, and significantly increased the expression of autophagy protein in myocardial ischemia tissue. Lipopolysaccharide (LPS) and 3-methyladenine (3-MA) eliminated the protective effects of MRTF-A. Furthermore, simultaneous overexpression of MRTF-A and SIRT1 effectively reduced the injury caused by myocardial ischemia; this was associated with downregulation of inflammatory factor proteins and when upregulation of autophagy-related proteins. Inhibition of SIRT1 activity partially suppressed these MRTF-A-induced cardioprotective effects. SIRT1 has a synergistic effect with MRTF-A to inhibit myocardial ischemia injury through reducing the inflammation response and inducing autophagy.
Collapse
|
6
|
Tian D, Miao Y, Hao W, Yang N, Wang P, Ge Q, Zhang C. Tanshinone IIA protects against chronic obstructive pulmonary disease via exosome‑shuttled miR‑486‑5p. Int J Mol Med 2022; 50:97. [PMID: 35621142 PMCID: PMC9186294 DOI: 10.3892/ijmm.2022.5153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/11/2022] [Indexed: 11/06/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the major causes of death worldwide today, and its related morbidity has been predicted to show an increase in subsequent years. Recent studies have shown that Danshen, a Chinese herbal medicine, is a potential drug in the treatment of inflammation-related lung diseases. COPD was induced in this study using cigarette smoke (CS) exposure plus intranasal inhalation of lipopolysaccharide to ascertain whether the main pharmacological component from Danshen, tanshinone IIA (TIIA), and its water soluble form, sodium tanshinone IIA sulfonate (STS), protect against the development of COPD. The weight, lung function, hematoxylin and eosin staining, and Masson Trichrome determinations revealed that TIIA inhalation attenuated lung dysfunction in COPD mice induced by cigarette smoke and lipopolysaccharide exposure. In addition, exosomes derived from TIIA-treated COPD mice exerted similar protective effects against COPD, suggesting that TIIA may protect against COPD through exosome-shuttled signals. miR-486-5p was found to be a key molecule in mediating the protective effects of exosomes derived from TIIA-treated COPD mice using miRNA sequencing and cellular screening. Treatment of COPD mice with an agomiR of miR-486-5p protected lung function in COPD mice, and treatment of COPD mice with an antagomir of miR-486-5p abolished the protective effects of TIIA. Moreover, luciferase activity reporter assay, RT-qPCR, and western blot analyses showed that miR-486-5p exerted protective effects against COPD via targeting phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1). These results suggest that STS protects against COPD through upregulation of miR-486-5p, and that TIIA or miR-486-5p is a potential drug for the treatment of COPD.
Collapse
Affiliation(s)
- Dongdong Tian
- Department of Respiratory, The Affiliated Hospital of Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Yingchun Miao
- Department of Emergency, Yan'an Hospital of Traditional Chinese Medicine, Yan'an, Shaanxi 716000, P.R. China
| | - Wendong Hao
- Department of Respiratory, The Affiliated Hospital of Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Ning Yang
- Department of Respiratory, The Affiliated Hospital of Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Ping Wang
- Department of Respiratory, The Affiliated Hospital of Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Qingyi Ge
- School of Clinical Medicine, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Cailian Zhang
- Department of Respiratory, The Affiliated Hospital of Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| |
Collapse
|
7
|
Chen P, An Q, Huang Y, Zhang M, Mao S. Prevention of endotoxin-induced cardiomyopathy using sodium tanshinone IIA sulfonate: Involvement of augmented autophagy and NLRP3 inflammasome suppression. Eur J Pharmacol 2021; 909:174438. [PMID: 34437885 DOI: 10.1016/j.ejphar.2021.174438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
Increasing evidence indicates that patients or experimental animals exposure to endotoxin (lipopolysaccharides, LPS) exert deleterious cardiac functions that greatly contribute to morbidity and mortality. The pathophysiologic processes, including NLRP3 inflammasome overactivation and cardiac inflammatory injury, are complicated. Sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of tanshinone IIA, is a naturally occurring compound extracted from Salvia miltiorrhiza and has anti-inflammatory and cardioprotective properties. In this study we examined the effect of STS on endotoxin-induced cardiomyopathy and investigated the underlying mechanisms. An endotoxemic mouse model was established by injecting LPS (10 mg/kg). Different doses of STS were administered intraperitoneally (5, 10, or 50 mg/kg) at different time points (2/12 h, 4/12 h, and 8/12 h) after LPS challenge to assess its effect on survival of mice with endotoxemia. In parallel, cardiac function, myocardial inflammatory cytokines, cardiomyocyte pyroptosis and autophagy were evaluated to determine the extent of myocardial damage due to sepsis in the presence and absence of STS at the optimal dose (10 mg/kg) and time-point (2/12 h). The results demonstrated that STS increased the survival rates, improved the compromised cardiac function and reduced myocardial inflammatory injury associated with enhanced autophagy and mitigated NLRP3 inflammasome activation. Moreover, inhibiting of autophagy or blocking the AMPK pathway reversed STS-elicited prevention of cardiomyopathy and activated the NLRP3 inflammasome in endotoxemic mice. Collectively, our study demonstrates that STS attenuates endotoxemia-induced mortality and cardiomyopathy, which may be associated with promotion of autophagy and inhibition of NLRP3 inflammasome overactivation.
Collapse
Affiliation(s)
- Peipei Chen
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Qiyuan An
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China; Southern Medical University, Guangzhou, 510515, China
| | - Yuxin Huang
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Minzhou Zhang
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Shuai Mao
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China; Guangdong Provincial Branch of National Clinical Research Centre for Chinese Medicine Cardiology, Guangzhou, 510120, China.
| |
Collapse
|
8
|
You Y, Huang S, Liu H, Fan C, Liu K, Wang Z. Soluble fibrinogen‑like protein 2 levels are decreased in patients with ischemic heart failure and associated with cardiac function. Mol Med Rep 2021; 24:559. [PMID: 34109427 PMCID: PMC8188637 DOI: 10.3892/mmr.2021.12198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Soluble fibrinogen‑like protein 2 (sFGL2), as a novel effector of regulatory T cells (Tregs), exhibits immune regulatory activity in several inflammatory diseases. Immune activation and persistent inflammation participate in the progression of ischemic heart failure (IHF). The present study aimed to determine serum sFGL2 levels in patients with IHF and explore the relationship between sFGL2 levels and cardiac function. A total of 104 patients with IHF and 32 healthy controls were enrolled. patients with IHF were further split into subgroups according to the New York Heart Association functional classification or left ventricular ejection fraction (LVEF). Serum sFGL2 levels and peripheral Tregs frequencies were analyzed by ELISA and flow cytometry, respectively. The suppressive function of Tregs was measured by proliferation and functional suppression assays. Serum levels of sFGL2 and circulating Tregs frequencies were significantly decreased in patients with IHF compared with healthy controls. In patients with IHF, sFGL2 levels and Tregs frequencies were decreased with the deterioration of cardiac function. Tregs from patients with IHF exhibited compromised ability to suppress CD4+CD25‑ T cells proliferation and inflammatory cytokines secretion. Specifically, sFGL2 levels and Tregs frequencies positively correlated with LVEF, whereas negatively correlated with left ventricular end‑diastolic dimension and N‑terminal pro‑brain natriuretic peptide. sFGL2 levels were positively correlated with Tregs frequencies. In conclusion, the reduction of serum sFGL2 levels are associated with the progression of IHF and sFGL2 could be used as a potential indicator for predicting disease severity.
Collapse
Affiliation(s)
- Ya You
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shiyuan Huang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hui Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhaohui Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
9
|
Nie C, Ding X, A R, Zheng M, Li Z, Pan S, Yang W. Hydrogen gas inhalation alleviates myocardial ischemia-reperfusion injury by the inhibition of oxidative stress and NLRP3-mediated pyroptosis in rats. Life Sci 2021; 272:119248. [PMID: 33621592 DOI: 10.1016/j.lfs.2021.119248] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
AIMS Reperfusion therapy is the most common and effective treatment against ischemic heart disease (IHD), but the process inflicts massive ischemia/reperfusion (I/R) injury for which no treatment exists. Notably, reperfusion after ischemia causes ischemia/reperfusion injury (IR injury) and the "no-reflow" phenomenon seriously affecting the therapeutic effects in clinical practice. The principle purpose of this study is to validate the effect of hydrogen gas on IHD and further explore the mechanism of hydrogen gas in alleviating myocardial I/R injury and no-reflow phenomenon. MATERIALS AND METHODS The rat model of myocardial ischemia-reperfusion was well established. Myocardial infarct size was evaluated by TTC & Evans blue staining. The no-reflow area and the cardiac function were assessed by thioflavin-S staining and echocardiography respectively. Microstructure and mitochondria of myocardial tissue were assessed by transmission electron microscope. Western blot and immunohistochemistry were used to evaluate the expression of NLRP3 mediated pyroptosis related proteins. The 8-OHdG, MDA and serum total ROS were used to evaluate the degree of oxidative stress. KEY FINDINGS The myocardial infarct size, no-reflow area, cardiac function, microstructure and mitochondrial morphology of I/R model rats were significantly improved after hydrogen inhalation. In addition, the expression of 8-OHdG, MDA, ROS and NLRP3 mediated pyroptosis related proteins were significantly decreased. SIGNIFICANCE We found that oxidative stress and NLRP3 mediated pyroptosis are the important mechanisms for hydrogen to alleviate myocardial I/R injury, and we also confirmed that hydrogen can significantly improve no reflow phenomenon caused by ischemia-reperfusion.
Collapse
Affiliation(s)
- Chaoqun Nie
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xue Ding
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Rong A
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China
| | - Min Zheng
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Zhenning Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Shuang Pan
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Wei Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
10
|
Feng J, Liu L, Yao F, Zhou D, He Y, Wang J. The protective effect of tanshinone IIa on endothelial cells: a generalist among clinical therapeutics. Expert Rev Clin Pharmacol 2021; 14:239-248. [PMID: 33463381 DOI: 10.1080/17512433.2021.1878877] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Tanshinone IIa (TSA) has been approved to treat cardiovascular diseases by the China State Food and Drug Administration. TSA has exhibited a variety of pharmacological effects, including vasodilator, antioxidant, anti-inflammatory, and anti-tumor properties. Endothelial cells play an important physiological role in vascular homeostasis and control inflammation, coagulation, and thrombosis. Accumulating studies have shown that TSA can improve endothelial function through various pathways. AREAS COVERED The PubMed database was reviewed for relevant papers published up to 2020. This review summarizes the current clinical and pharmaceutical studies to provide a systemic overview of the pharmacological and therapeutic effects of TSA on endothelial cells. EXPERT OPINION TSA is a representative monomeric compound extracted from Danshen and it exhibits significant pharmacological and therapeutic properties to improve endothelial cell function, including alleviating oxidative stress, attenuating inflammatory injury, modulating ion channels and so on. TSA represents a spectrum of agents that are extracted from plants and can restore the endothelial function to establish the beneficial and harmless molecular therapeutics. This also suggests the possible detection of endothelial cells for very early diagnosis of diseases. In future, precise therapeutic methods will be developed to repair endothelial cells injury and recover endothelial dysfunction.
Collapse
Affiliation(s)
- Jun Feng
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liu
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang Yao
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junshuai Wang
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Qian J, Cao Y, Zhang J, Li L, Wu J, Wei G, Yu J, Huo J. Tanshinone IIA induces autophagy in colon cancer cells through MEK/ERK/mTOR pathway. Transl Cancer Res 2020; 9:6919-6928. [PMID: 35117300 PMCID: PMC8797932 DOI: 10.21037/tcr-20-1963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Background Colon cancer is a common malignancy of the digestive tract. The search for effective drugs to treat colon cancer has become the focus of current researches. Tanshinone IIA (Tan IIA) is a fat-soluble component extracted from tanshinone, a traditional Chinese medicine. Tan IIA can modulate the occurrence and development of tumors, but its effect on autophagy in colon cancer cells has not been reported. Methods Two types of colon cancer cell lines were selected and different concentrations of Tan IIA were used to treat cells at different time points. Cell Counting Kit-8 assay (CCK-8) was used to detect the effect of Tan IIA on cell proliferation; transmission electron microscopy was used to observe the formation of autophagosomes; reverse transcription-polymerase chain reaction (RT-qPCR) and western blot were used to detect the expression of autophagy related genes and proteins. Cell transfection was used to interfere with MEK (mitogen-activated extracellular signal-regulated kinase) expression, and RT-qPCR and western blot were used to detect the expression of MEK/ERK/mTOR pathway-related proteins. Results Tan IIA resulted in a significant reduction in the viability of the two kinds of colon cancer cells. The number of autophagosomes increased significantly after the treatment of Tan IIA into these cells. Addition of autophagy inhibitor 3-MA (3-Methyladenine) improved the increase of autophagosomes in cells induced by Tan IIA. At the same time, Tan IIA induced the expression of autophagy-related proteins in the two colon cancer cell lines. When Tan IIA induced autophagy in colon cancer cells, the expression of MEK/ERK/mTOR pathway-related proteins increased significantly. After interfering with the expression of MEK, the expression of autophagy decreased significantly, indicating that Tan IIA promoted autophagy of colon cancer cells through MEK/ERK/mTOR pathway. Conclusions Tan IIA stimulates autophagy in colon cancer cells through MEK/ERK/mTOR pathway, hence inhibiting the growth of colon cancer cells.
Collapse
Affiliation(s)
- Jun Qian
- Department of Diagnostics of Chinese Medicine, School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Cao
- Research Office of Herbal Literature, Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junfeng Zhang
- Department of Pathogen and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingchang Li
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Wu
- Department of Public health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoli Wei
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jialin Yu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiege Huo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Efficacy of Sodium Tanshinone IIA Sulfonate in Patients with Non-ST Elevation Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention: Results from a Multicentre, Controlled, Randomized Trial. Cardiovasc Drugs Ther 2020; 35:321-329. [PMID: 32940893 DOI: 10.1007/s10557-020-07077-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Sodium tanshinone IIA sulfonate (STS) has been widely used by Chinese medicine practitioners for chronic cardiovascular diseases. However, its direct clinical efficacy in patients with acute coronary syndrome following percutaneous coronary intervention (PCI) has not been reported yet. The present trial aimed to investigate potential cardioprotection of STS in patients undergoing PCI for non-ST elevation acute coronary syndrome (NSTE-ACS). METHODS In a randomized, double-blind, placebo-controlled trial, 372 patients with NSTE-ACS were randomly assigned to receive STS (n = 192) or saline (n = 180) for 2 days before and 3 days after PCI along with standard therapy. The primary endpoint was the composite incidence of major adverse cardiac events (MACEs), including death, non-fatal myocardial infarction, repeated revascularization of the target vessel, and stent thrombosis, within 30 days after PCI. RESULTS The 30-day MACEs occurred in 18.8% of the patients in the STS group and in 27.2% of the patients in the control group (P = 0.038); this difference was mostly driven by reduction of myocardial infarction incidence (17.2% vs. 26.7%, P = 0.027). Post-procedural elevation of troponin-I was also significantly lower in the STS group (26.56% vs. 47.78%, P < 0.001). Multivariable analysis identified STS as a predictor of decreased risk of MACE occurrence (odds ratio: 0.60, 95% confidence interval: 0.36 to 0.99; P = 0.045). CONCLUSION Addition of STS to the standard treatments recommended by the current practice guidelines in patients with NSTE-ACS undergoing PCI could reduce myocardial injury and the occurrence of short-term cardiovascular events, primarily driven by non-fatal myocardial infarction. TRIAL REGISTRATION ChiCTR-TRC-14005182.
Collapse
|
13
|
Zhou ZY, Zhao WR, Zhang J, Chen XL, Tang JY. Sodium tanshinone IIA sulfonate: A review of pharmacological activity and pharmacokinetics. Biomed Pharmacother 2019; 118:109362. [PMID: 31545252 DOI: 10.1016/j.biopha.2019.109362] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023] Open
Abstract
Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivate of tanshinone IIA (Tan IIA) which is an active lipophilic constitute of Chinese Materia Medica Salvia miltiorrhiza Bge. (Danshen). STS presents multiple pharmacological activities, including anti-oxidant, anti-inflammation and anti-apoptosis, and has been approved for treatment of cardiovascular diseases by China State Food and Drug Administration (CFDA). In this review, we comprehensively summarized the pharmacological activities and pharmacokinetics of STS, which could support the further application and development of STS. In the recent decades, numerous experimental and clinical studies have been conducted to investigate the potential treatment effects of STS in various diseases, such as heart diseases, brain diseases, pulmonary diseases, cancers, sepsis and so on. The underlying mechanisms were most related to anti-oxidative and anti-inflammatory effects of STS via regulating various transcription factors, such as NF-κB, Nrf2, Stat1/3, Smad2/3, Hif-1α and β-catenin. Iron channels, including Ca2+, K+ and Cl- channels, were also the important targets of STS. Additionally, we emphasized the differences between STS and Tan IIA despite the interchangeable use of Tan IIA and STS in many previous studies. It is promising to improve the efficacy and reduce side effects of chemotherapeutic drug by the combination use of STS in canner treatment. The application of STS in pregnancy needs to be seriously considered. Moreover, the drug-drug interactions between STS and other drugs needs to be further studied as well as the complications of STS.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Wai-Rong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Cardiac Rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xin-Lin Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Cardiac Rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
14
|
Mao S, Vincent M, Chen M, Zhang M, Hinek A. Exploration of Multiple Signaling Pathways Through Which Sodium Tanshinone IIA Sulfonate Attenuates Pathologic Remodeling Experimental Infarction. Front Pharmacol 2019; 10:779. [PMID: 31354493 PMCID: PMC6639725 DOI: 10.3389/fphar.2019.00779] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
The level of maladaptive myocardial remodeling consistently contributes to the poor prognosis of patients following a myocardial infarction (MI). In this study, we investigated whether and how sodium tanshinone IIA sulfonate (STS) would attenuate the post-infarct cardiac remodeling in mice model of MI developing after surgical ligation of the left coronary artery. All mice subjected to experimental MI or to the sham procedure were then treated for the following 4 weeks, either with STS or with a vehicle alone. Results of our studies indicated that STS treatment of MI mice prevented the left ventricular dilatation and improved their cardiac function. Results of further tests, aimed at mechanistic explanation of the beneficial effects of STS, indicated that treatment with this compound enhanced the autophagy and, at the same time, inhibited apoptosis of the cardiomyocytes. Meaningfully, we have also established that myocardium of STS-treated mice displayed significantly higher levels of adenosine monophosphate kinase than their untreated counterparts and that this effect additionally associated with the significantly diminished activities of apoptotic promoters: mammalian target of rapamycin and P70S6 kinase. Moreover, we also found that additional administration of the adenosine monophosphate kinase inhibitor (compound C) or autophagy inhibitor (chloroquine) practically eliminated the observed beneficial effects of STS. In conclusion, we suggest that the described multistage mechanism triggered by STS treatment enhanced autophagy, thereby attenuating pathologic remodeling of the post-infarct hearts.
Collapse
Affiliation(s)
- Shuai Mao
- Key Discipline of Integrated Traditional Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Matthew Vincent
- Medical School, St. George's, University of London, London, United Kingdom
| | - Maosheng Chen
- Key Discipline of Integrated Traditional Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Minzhou Zhang
- Key Discipline of Integrated Traditional Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Aleksander Hinek
- Physiology & Experimental Medicine, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
15
|
Gao R, Wang J, Zhang S, Yang G, Gao Z, Chen X. The Value of Combining Plasma D-Dimer and Endothelin-1 Levels to Predict No-Reflow After Percutaneous Coronary Intervention of ST-Segment Elevation in Acute Myocardial Infarction Patients with a Type 2 Diabetes Mellitus History. Med Sci Monit 2018; 24:3549-3556. [PMID: 29806659 PMCID: PMC6003259 DOI: 10.12659/msm.908980] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background No-reflow phenomenon is a well-known problem, often accompanying percutaneous coronary intervention (PCI) for ST-segment elevation acute myocardial infarction (STEAMI). This study investigated the value of plasma D-dimer and Endothelin-1 (ET-1) levels on admission in predicting no-reflow after primary PCI and long-term prognosis in STEAMI patients with type 2 diabetes mellitus (T2DM). Material/Methods There were 822 patients with STEAMI and T2DM undergoing successful primary PCI included in this study: 418 patients showed normal re-flow after PCI, while 404 patients showed no-reflow phenomenon after PCI. The predictive value of plasma ET-1 and D-dimer level, and other clinical parameters for the no-reflow phenomenon were analyzed. Results The high plasma ET-1 and D-dimer levels showed predictive value for the no-reflow phenomenon in STEAMI patients with T2DM. Patients with high D-dimer and ET-1 levels showed higher risk (4.212, with 95%CI of 2.973–5.967 and 2.447 with 95%CI of 1.723–3.476, respectively) of no-reflow phenomenon compared with patients with low plasma D-dimer and ET-1 levels. Sensitivity of high plasma ET-1 and D-dimer levels in predicting no-reflow was 0.766. Both plasma D-dimer and ET-1 were adverse prognosticators for STEAMI patients with a T2DM post PCI (P<0.001). Conclusions In conclusion, plasma D-dimer and ET-1 levels on admission independently predict no-reflow after PCI in STEAMI patients with T2DM. When combined, the D-dimer and ET-1 levels as predictive and prognostic values are clinically promising. The plasma D-dimer and ET-1 levels provided a novel marker for treatment selection for the STEAIM patients with a T2DM history.
Collapse
Affiliation(s)
- Ronghua Gao
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Jianjun Wang
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Shaohui Zhang
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Guoliang Yang
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Zhencai Gao
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Xueying Chen
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| |
Collapse
|
16
|
Zhou ZY, Huang B, Li S, Huang XH, Tang JY, Kwan YW, Hoi PM, Lee SMY. Sodium tanshinone IIA sulfonate promotes endothelial integrity via regulating VE-cadherin dynamics and RhoA/ROCK-mediated cellular contractility and prevents atorvastatin-induced intracerebral hemorrhage in zebrafish. Toxicol Appl Pharmacol 2018; 350:32-42. [PMID: 29730311 DOI: 10.1016/j.taap.2018.04.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/02/2023]
Abstract
Impaired vascular integrity leads to serious cerebral vascular diseases such as intracerebral hemorrhage (ICH). In addition, high-dose statin therapy is suggested to cause increased ICH risk due to unclear effects of general inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) on the vascular system. Here we evaluated the protective effects of sodium tanshinone IIA sulfonate (STS), which has high efficacy and safety in clinical studies of ischemic stroke, by using atorvastatin (Ator) induced ICH zebrafish embryos and human umbilical vein endothelial cells (HUVECs). By using double transgenic Tg(fli1a:EGFP)y1 & Tg(gata1a:dsRed)sd2 zebrafish, we demonstrated that STS effectively reduced the occurrence and area of hemorrhage induced by Ator in zebrafish and restored impairment in motor function. We further demonstrated that Ator-induced disruption in VE-cadherin (VEC)-containing cell-cell adherens junctions (AJs) in HUVECs by enhancing Src-induced VEC internalization and RhoA/ROCK-mediated cellular contraction. STS inhibited Ator-induced Src activation and subsequent VEC internalization and actin depolymerization near cell borders, reducing lesions between neighboring cells and increasing barrier functions. STS also inhibited the Ator-induced RhoA/ROCK-mediated cellular contraction by regulating downstream LIMK/cofilin and MYPT1/MLC phosphatase signaling. These results showed that STS significantly promoted the stability of cell junctions and vascular integrity. Moreover, we observed that regulations of both Src and RhoA/ROCK are required for the maintenance of vascular integrity, and Src inhibitor (PP2) or ROCK inhibitors (fasudil and H1152) alone could not reduce the occurrence Ator-induced ICH. Taken together, we investigated the underlying mechanisms of Ator-induced endothelial instability, and provided scientific evidences of STS as potential ICH therapeutics by promoting vascular integrity.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Bin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiao-Hui Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jing-Yi Tang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yiu Wa Kwan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
17
|
Li D, Wang J, Sun D, Gong X, Jiang H, Shu J, Wang Z, Long Z, Chen Y, Zhang Z, Yuan L, Guan R, Liang X, Li Z, Yao H, Zhong N, Lu W. Tanshinone IIA sulfonate protects against cigarette smoke-induced COPD and down-regulation of CFTR in mice. Sci Rep 2018; 8:376. [PMID: 29321495 PMCID: PMC5762644 DOI: 10.1038/s41598-017-18745-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/16/2017] [Indexed: 12/31/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterized by abnormal inflammation, persistent and progressive lung function decline. The anti-inflammatory actions of tanshinone IIA, which is the most important active component from Chinese herbal medicine Danshen, have been well studied. However, it remains unknown whether sodium tanshinone IIA sulfonate (STS) protects against the development of COPD. Here we found that STS inhalation (5 mg/kg, 30 min per session, twice a day) significantly attenuated lung function decline, airspace enlargement, mucus production, bronchial collagen deposition, inflammatory responses and oxidative stress caused by cigarette smoke (CS) and lipopolysaccharide (LPS) exposures in mice. Moreover, treatment with STS (10 μg/ml) reduced CS extract (CSE)-induced IL-6 and IL-8 secretion in human bronchial epithelial (16HBE) cells. The anti-inflammatory actions of STS were associated with inhibition of ERK1/2 and NF-κB activations. Interestingly, STS inhibited CS-induced reduction of cystic fibrosis transmembrane conductance regulator (CFTR) in mouse lungs and in 16HBE cells. Treatment with a specific CFTR inhibitor CFTR-Inh172 augmented CSE-induced ERK1/2 and NF-κB-dependent inflammatory responses, but abolished the inhibitory action of STS on IL-6 and IL-8 secretion in 16HBE cells. These results demonstrate that CS-induced COPD and down-regulation of CFTR are prevented by STS.
Collapse
Affiliation(s)
- Defu Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dejun Sun
- Department of Respiratory Medicine, The People's Hospital of Inner Mogolia, Hohhot, 010020, China
| | - Xuefang Gong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hua Jiang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaze Shu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziyi Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhen Long
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiguan Chen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester City, Britain, UK
| | - Zili Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liang Yuan
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruijuan Guan
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xue Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziying Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongwei Yao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China. .,Department of Laboratory Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China. .,Sino-French Hoffmann Immunology Institute, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Ouyang DS, Huang WH, Chen D, Zhang W, Tan ZR, Peng JB, Wang YC, Guo Y, Hu DL, Xiao J, Chen Y. Kinetics of cytochrome P450 enzymes for metabolism of sodium tanshinone IIA sulfonate in vitro. Chin Med 2016; 11:11. [PMID: 27006687 PMCID: PMC4802617 DOI: 10.1186/s13020-016-0083-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/14/2016] [Indexed: 12/11/2022] Open
Abstract
Background Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivative of tanshinone IIA for treating cardiovascular disorders. The roles of cytochrome P450 enzymes (CYPs) in the metabolism of STS have remained unclear. This study aims to screen the main CYPs for metabolism of STS and study their interactions in vitro. Methods Seven major CYPs were screened for metabolism of STS by human liver microsomes (HLMs) or recombinant CYP isoforms. Phenacetin (CYP1A2), coumarin (CYP2A6), tolbutamide (CYP2C9), metoprolol (CYP2D6), chlorzoxazone (CYP2E1), S-mephenytoin (CYP2C19), and midazolam (CYP3A4) were used as probe substrates to determine the potential of STS in affecting CYP-mediated phase I metabolism in humans. Enzyme kinetic studies were performed to investigate the modes of inhibition of the enzyme–substrate interactions by GraphPad Prism Enzyme Kinetic 5 Demo software. Results Sodium tanshinone IIA sulfonate inhibited the activity of CYP3A4 in a dose–dependent manner by the HLMs and CYP3A4 isoform. The Km and Vmax values of STS were 54.8 ± 14.6 µM and 0.9 ± 0.1 nmol/mg protein/min, respectively, for the HLMs and 7.5 ± 1.4 µM and 6.8 ± 0.3 nmol/nmol P450/min, respectively, for CYP3A4. CYP1A2, CYP2A6, CYP2C9, CYP2D6, CYP2E1, and CYP2C19 showed minimal or no effects on the metabolism of STS. Conclusion This in vitro study showed that STS mainly inhibited the activities of CYP3A4. Electronic supplementary material The online version of this article (doi:10.1186/s13020-016-0083-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong-Sheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China ; Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| | - Dan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| | - Zhi-Rong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| | - Jing-Bo Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| | - Yi-Cheng Wang
- Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| | - Ying Guo
- Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| | - Dong-Li Hu
- Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China ; Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| |
Collapse
|