1
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Brzozowa-Zasada M, Piecuch A, Michalski M, Matysiak N, Kucharzewski M, Łos MJ. The Clinical Application of Immunohistochemical Expression of Notch4 Protein in Patients with Colon Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24087502. [PMID: 37108670 PMCID: PMC10138794 DOI: 10.3390/ijms24087502] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The Notch signalling pathway is one of the most conserved and well-characterised pathways involved in cell fate decisions and the development of many diseases, including cancer. Among them, it is worth noting the Notch4 receptor and its clinical application, which may have prognostic value in patients with colon adenocarcinoma. The study was performed on 129 colon adenocarcinomas. Immunohistochemical and fluorescence expression of Notch4 was performed using the Notch4 antibody. The associations between the IHC expression of Notch4 and clinical parameters were analysed using the Chi2 test or Chi2Yatesa test. The Kaplan-Meier analysis and the log-rank test were used to verify the relationship between the intensity of Notch4 expression and the 5-year survival rate of patients. Intracellular localisation of Notch4 was detected by the use of the immunogold labelling method and TEM. 101 (78.29%) samples had strong Notch4 protein expression, and 28 (21.71%) samples were characterised by low expression. The high expression of Notch4 was clearly correlated with the histological grade of the tumour (p < 0.001), PCNA immunohistochemical expression (p < 0.001), depth of invasion (p < 0.001) and angioinvasion (p < 0.001). We can conclude that high expression of Notch4 is correlated with poor prognosis of colon adenocarcinoma patients (log-rank, p < 0.001).
Collapse
Affiliation(s)
- Marlena Brzozowa-Zasada
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Adam Piecuch
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Marek Michalski
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed- Research and Implementation Centre, Medical University of Silesia, 40-055 Katowice, Poland
| | - Natalia Matysiak
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Marek Kucharzewski
- Faculty of Health Sciences, Jan Dlugosz University of Czestochowa, 42-200 Czestochowa, Poland
| | - Marek J Łos
- Department of Pathology, Pomeranian Medical University, 71-344 Szczecin, Poland
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| |
Collapse
|
3
|
The paradigm of miRNA and siRNA influence in Oral-biome. Biomed Pharmacother 2023; 159:114269. [PMID: 36682246 DOI: 10.1016/j.biopha.2023.114269] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Short nucleotide sequences like miRNA and siRNA have attracted a lot of interest in Oral-biome investigations. miRNA is a small class of non-coding RNA that regulates gene expression to provide effective regulation of post-transcription. On contrary, siRNA is 21-25 nucleotide dsRNA impairing gene function post-transcriptionally through inhibition of mRNA for homologous dependent gene silencing. This review highlights the application of miRNA in oral biome including oral cancer, dental implants, periodontal diseases, gingival fibroblasts, oral submucous fibrosis, radiation-induced oral mucositis, dental Pulp, and oral lichenoid disease. Moreover, we have also discussed the application of siRNA against the aforementioned disease along with the impact of miRNA and siRNA to the various pathways and molecular effectors pertaining to the dental diseases. The influence of upregulation and downregulation of molecular effector post-treatment with miRNA and siRNA and their impact on the clinical setting has been elucidated. Thus, the mentioned details on application of miRNA and siRNA will provide a novel gateway to the scholars to not only mitigate the long-lasting issue in dentistry but also develop new theragnostic approaches.
Collapse
|
4
|
Ahmadi N, Kelly G, Low TH(H, Clark J, Gupta R. Molecular factors governing perineural invasion in malignancy. Surg Oncol 2022; 42:101770. [DOI: 10.1016/j.suronc.2022.101770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/27/2022] [Accepted: 04/10/2022] [Indexed: 12/30/2022]
|
5
|
Ghantous Y, Omar M, Broner EC, Agrawal N, Pearson AT, Rosenberg AJ, Mishra V, Singh A, Abu El-naaj I, Savage PA, Sidransky D, Marchionni L, Izumchenko E. A robust and interpretable gene signature for predicting the lymph node status of primary T1/T2 oral cavity squamous cell carcinoma. Int J Cancer 2022; 150:450-460. [PMID: 34569064 PMCID: PMC8760163 DOI: 10.1002/ijc.33828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/31/2021] [Accepted: 09/21/2021] [Indexed: 02/03/2023]
Abstract
Oral cavity squamous cell carcinoma (OSCC) affects more than 30 000 individuals in the United States annually, with smoking and alcohol consumption being the main risk factors. Management of early-stage tumors usually includes surgical resection followed by postoperative radiotherapy in certain cases. The cervical lymph nodes (LNs) are the most common site for local metastasis, and elective neck dissection is usually performed if the primary tumor thickness is greater than 3.5 mm. However, postoperative histological examination often reveals that many patients with early-stage disease are negative for neck nodal metastasis, posing a pressing need for improved risk stratification to either avoid overtreatment or prevent the disease progression. To this end, we aimed to identify a primary tumor gene signature that can accurately predict cervical LN metastasis in patients with early-stage OSCC. Using gene expression profiles from 189 samples, we trained K-top scoring pairs models and identified six gene pairs that can distinguish primary tumors with nodal metastasis from those without metastasis. The signature was further validated on an independent cohort of 35 patients using real-time polymerase chain reaction (PCR) in which it achieved an area under the receiver operating characteristic (ROC) curve and accuracy of 90% and 91%, respectively. These results indicate that such signature holds promise as a quick and cost effective method for detecting patients at high risk of developing cervical LN metastasis, and may be potentially used to guide the neck treatment regimen in early-stage OSCC.
Collapse
Affiliation(s)
- Yasmin Ghantous
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.4 Department of Medicine, University of Chicago, Chicago, IL, USA.,Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center, Faculty of Medicine, Bar Ilan University, Israel
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Esther Channah Broner
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.4 Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Nishant Agrawal
- Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, IL, USA
| | - Alexander T. Pearson
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Ari J. Rosenberg
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Vasudha Mishra
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Alka Singh
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Imad Abu El-naaj
- Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center, Faculty of Medicine, Bar Ilan University, Israel
| | - Peter A. Savage
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - David Sidransky
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.4 Department of Medicine, University of Chicago, Chicago, IL, USA.,Corresponding Authors: Evgeny Izumchenko, Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA. , Luigi Marchionni, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA. , and David Sidransky, Departments of Otolaryngology and Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.,Corresponding Authors: Evgeny Izumchenko, Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA. , Luigi Marchionni, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA. , and David Sidransky, Departments of Otolaryngology and Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA.,Corresponding Authors: Evgeny Izumchenko, Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA. , Luigi Marchionni, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA. , and David Sidransky, Departments of Otolaryngology and Oncology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Kałafut J, Czerwonka A, Anameriç A, Przybyszewska-Podstawka A, Misiorek JO, Rivero-Müller A, Nees M. Shooting at Moving and Hidden Targets-Tumour Cell Plasticity and the Notch Signalling Pathway in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:6219. [PMID: 34944837 PMCID: PMC8699303 DOI: 10.3390/cancers13246219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is often aggressive, with poor response to current therapies in approximately 40-50% of the patients. Current therapies are restricted to operation and irradiation, often combined with a small number of standard-of-care chemotherapeutic drugs, preferentially for advanced tumour patients. Only very recently, newer targeted therapies have entered the clinics, including Cetuximab, which targets the EGF receptor (EGFR), and several immune checkpoint inhibitors targeting the immune receptor PD-1 and its ligand PD-L1. HNSCC tumour tissues are characterized by a high degree of intra-tumour heterogeneity (ITH), and non-genetic alterations that may affect both non-transformed cells, such as cancer-associated fibroblasts (CAFs), and transformed carcinoma cells. This very high degree of heterogeneity likely contributes to acquired drug resistance, tumour dormancy, relapse, and distant or lymph node metastasis. ITH, in turn, is likely promoted by pronounced tumour cell plasticity, which manifests in highly dynamic and reversible phenomena such as of partial or hybrid forms of epithelial-to-mesenchymal transition (EMT), and enhanced tumour stemness. Stemness and tumour cell plasticity are strongly promoted by Notch signalling, which remains poorly understood especially in HNSCC. Here, we aim to elucidate how Notch signal may act both as a tumour suppressor and proto-oncogenic, probably during different stages of tumour cell initiation and progression. Notch signalling also interacts with numerous other signalling pathways, that may also have a decisive impact on tumour cell plasticity, acquired radio/chemoresistance, and metastatic progression of HNSCC. We outline the current stage of research related to Notch signalling, and how this pathway may be intricately interconnected with other, druggable targets and signalling mechanisms in HNSCC.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alinda Anameriç
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Julia O. Misiorek
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
- Western Finland Cancer Centre (FICAN West), Institute of Biomedicine, University of Turku, 20101 Turku, Finland
| |
Collapse
|
7
|
Morgan D, Berggren KL, Spiess CD, Smith HM, Tejwani A, Weir SJ, Lominska CE, Thomas SM, Gan GN. Mitogen-activated protein kinase-activated protein kinase-2 (MK2) and its role in cell survival, inflammatory signaling, and migration in promoting cancer. Mol Carcinog 2021; 61:173-199. [PMID: 34559922 DOI: 10.1002/mc.23348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
Cancer and the immune system share an intimate relationship. Chronic inflammation increases the risk of cancer occurrence and can also drive inflammatory mediators into the tumor microenvironment enhancing tumor growth and survival. The p38 MAPK pathway is activated both acutely and chronically by stress, inflammatory chemokines, chronic inflammatory conditions, and cancer. These properties have led to extensive efforts to find effective drugs targeting p38, which have been unsuccessful. The immediate downstream serine/threonine kinase and substrate of p38 MAPK, mitogen-activated-protein-kinase-activated-protein-kinase-2 (MK2) protects cells against stressors by regulating the DNA damage response, transcription, protein and messenger RNA stability, and motility. The phosphorylation of downstream substrates by MK2 increases inflammatory cytokine production, drives an immune response, and contributes to wound healing. By binding directly to p38 MAPK, MK2 is responsible for the export of p38 MAPK from the nucleus which gives MK2 properties that make it unique among the large number of p38 MAPK substrates. Many of the substrates of both p38 MAPK and MK2 are separated between the cytosol and nucleus and interfering with MK2 and altering this intracellular translocation has implications for the actions of both p38 MAPK and MK2. The inhibition of MK2 has shown promise in combination with both chemotherapy and radiotherapy as a method for controlling cancer growth and metastasis in a variety of cancers. Whereas the current data are encouraging the field requires the development of selective and well tolerated drugs to target MK2 and a better understanding of its effects for effective clinical use.
Collapse
Affiliation(s)
- Deri Morgan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kiersten L Berggren
- Department of Internal Medicine, Division of Medical Oncology, Section of Radiation Oncology, UNM School of Medicine, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Colby D Spiess
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hannah M Smith
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ajay Tejwani
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Scott J Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Christopher E Lominska
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sufi M Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gregory N Gan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
8
|
Xiu M, Zeng X, Shan R, Wen W, Li J, Wan R. Targeting Notch4 in Cancer: Molecular Mechanisms and Therapeutic Perspectives. Cancer Manag Res 2021; 13:7033-7045. [PMID: 34526819 PMCID: PMC8436177 DOI: 10.2147/cmar.s315511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
The dysregulation of Notch signaling is found in many cancers and is closely related to cancer progression. As an important Notch receptor, abnormal Notch4 expression affects several tumor-cell behaviors, including stemness, the epithelial-mesenchymal transition, radio/chemoresistance and angiogenesis. In order to inhibit the oncogenic effects of Notch4 activation, several methods for targeting Notch4 signaling have been proposed. In this review, we summarize the known molecular mechanisms through which Notch4 affects cancer progression. Finally, we discuss potential Notch4-targeting therapeutic strategies as a reference for future research.
Collapse
Affiliation(s)
- Mengxi Xiu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China.,Second Clinical Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Xiaohong Zeng
- Imaging Department, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Wu Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Renhua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
9
|
Patni AP, Harishankar MK, Joseph JP, Sreeshma B, Jayaraj R, Devi A. Comprehending the crosstalk between Notch, Wnt and Hedgehog signaling pathways in oral squamous cell carcinoma - clinical implications. Cell Oncol (Dordr) 2021; 44:473-494. [PMID: 33704672 DOI: 10.1007/s13402-021-00591-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a malignant oral cavity neoplasm that affects many people, especially in developing countries. Despite several advances that have been made in diagnosis and treatment, the morbidity and mortality rates due to OSCC remain high. Accumulating evidence indicates that aberrant activation of cellular signaling pathways, such as the Notch, Wnt and Hedgehog pathways, occurs during the development and metastasis of OSCC. In this review, we have articulated the roles of the Notch, Wnt and Hedgehog signaling pathways in OSCC and their crosstalk during tumor development and progression. We have also examined possible interactions and associations between these pathways and treatment regimens that could be employed to effectively tackle OSCC and/or prevent its recurrence. CONCLUSIONS Activation of the Notch signaling pathway upregulates the expression of several genes, including c-Myc, β-catenin, NF-κB and Shh. Associations between the Notch signaling pathway and other pathways have been shown to enhance OSCC tumor aggressiveness. Crosstalk between these pathways supports the maintenance of cancer stem cells (CSCs) and regulates OSCC cell motility. Thus, application of compounds that block these pathways may be a valid strategy to treat OSCC. Such compounds have already been employed in other types of cancer and could be repurposed for OSCC.
Collapse
Affiliation(s)
- Anjali P Patni
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - M K Harishankar
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Joel P Joseph
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Bhuvanadas Sreeshma
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Rama Jayaraj
- College of Human and Human Sciences, Charles Darwin University, Ellangowan Drive, Darwin, Northern Territory, 0909, Australia
| | - Arikketh Devi
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
10
|
Tang G, Tang Q, Jia L, Chen Y, Lin L, Kuai X, Gong A, Feng Z. TROP2 increases growth and metastasis of human oral squamous cell carcinoma through activation of the PI3K/Akt signaling pathway. Int J Mol Med 2019; 44:2161-2170. [PMID: 31638186 PMCID: PMC6844621 DOI: 10.3892/ijmm.2019.4378] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022] Open
Abstract
Most malignant neoplasms of the oral cavity are oral squamous cell carcinoma (OSCC), which is a type of highly malignant tumor with a propensity for forming distant metastases. Trophoblast cell surface antigen 2 (TROP2) is a transmembrane protein that is overexpressed in several types of tumor cells, although its role and regulatory mechanism in OSCC have not been determined. The aim of the present study was to examine the effects of TROP2 in human OSCC cell lines. The present study demonstrated that TROP2 protein expression was upregulated in OSCC cell lines. Transfection of short hairpin RNA (shRNA) targeting TROP2 (sh‑TROP2) reduced cell proliferation, migration and invasion of OSCC cell lines, whereas overexpression of TROP2 increased proliferation, migration and invasion. sh‑TROP2 transfection in OSCC cell lines inhibited tumor growth in OSCC mouse models. Furthermore, TROP2 expression activated the phosphoinositide 3‑kinase (PI3K)/Akt signaling pathway in human OSCC cells. These results suggest that TROP2 induces cell growth, migration and invasion through activation of the PI3K/Akt signaling pathway in OSCC cells.
Collapse
Affiliation(s)
- Genxiong Tang
- Department of Stomatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Qi Tang
- National Health Commission Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Lizhou Jia
- National Health Commission Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yuan Chen
- Department of Otolaryngology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Liangyuan Lin
- Department of Stomatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xingwang Kuai
- Department of Basic Medicine, Jiangsu College of Nursing, Huai'an, Jiangsu 223001, P.R. China
| | - Aixiu Gong
- Department of Stomatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Zhengqing Feng
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
11
|
Harishankar MK, Mohan AM, Krishnan AV, Devi A. Downregulation of Notch4 - a prognostic marker in distinguishing oral verrucous carcinoma from oral squamous cell carcinoma. Braz J Otorhinolaryngol 2019; 85:11-16. [PMID: 29162408 PMCID: PMC9442864 DOI: 10.1016/j.bjorl.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Oral verrucous carcinoma is a special form of well-differentiated squamous cell carcinoma which possesses specific clinical, morphologic and cytokinetic features that differ from other types of oral cancers and hence diagnosis requires immense experience in histopathology. Hence it is certainly important to distinguish such a lesion from other oral tumors as treatment strategies vary widely between them. OBJECTIVE In search of a critical diagnostic marker in distinguishing oral verrucous carcinoma from oral squamous cell carcinoma, Notch4 receptor, one of the key regulatory molecules of the Notch signaling family has been aberrantly activated in the progression of several types of tumors. However its function in oral verrucous carcinoma remains unexplored. Thus the present study aims in determining the differential expression pattern of Notch4 in oral verrucous carcinoma and oral squamous cell carcinoma. METHODS Ten patients reported positive for oral cancer (5 patients with oral verrucous carcinoma and 5 patients with oral squamous cell carcinoma). Five normal tissue samples were also obtained and evaluated for clinicopathological parameters and immunohistochemistry, western blotting and real time polymerase chain reaction for Notch4 expression. RESULTS Our results reveal that the expression of Notch4 was considerably high in oral squamous cell carcinoma lesions compared to normal tissue, whereas in oral verrucous carcinoma, irrespective of the clinicopathological features, complete regulação descendente of Notch4 was observed. CONCLUSIONS These preliminary findings strongly support the fact that Notch4 is downregulated in oral verrucous carcinoma and could be considered as a suitable prognostic marker in distinguishing oral verrucous carcinoma from oral squamous cell carcinoma. This distinguishing marker can help in improving therapeutic options in patients diagnosed with oral verrucous carcinoma.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/analysis
- Blotting, Western
- Carcinoma, Squamous Cell/chemistry
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Verrucous/chemistry
- Carcinoma, Verrucous/diagnosis
- Carcinoma, Verrucous/pathology
- Diagnosis, Differential
- Down-Regulation
- Female
- Humans
- Immunohistochemistry
- Male
- Middle Aged
- Mouth Mucosa/pathology
- Mouth Neoplasms/chemistry
- Mouth Neoplasms/diagnosis
- Mouth Neoplasms/pathology
- Prognosis
- Receptor, Notch4/analysis
- Reference Values
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- M K Harishankar
- SRM University, School of Bioengineering, Department of Genetic Engineering, Kattankulathur, India
| | - A Mathan Mohan
- Karpaga Vinayaga Institute of Medical and Dental Sciences, Department of Oral and Maxillofacial Surgery, Oral Cancer Foundation, Kancheepuram, India
| | - A Vinod Krishnan
- Karpaga Vinayaga Institute of Medical and Dental Sciences, Department of Oral and Maxillofacial Surgery, Oral Cancer Foundation, Kancheepuram, India
| | - Arikketh Devi
- SRM University, School of Bioengineering, Department of Genetic Engineering, Kattankulathur, India.
| |
Collapse
|
12
|
Buduru S, Zimta AA, Ciocan C, Braicu C, Dudea D, Irimie AI, Berindan-Neagoe I. RNA interference: new mechanistic and biochemical insights with application in oral cancer therapy. Int J Nanomedicine 2018; 13:3397-3409. [PMID: 29922059 PMCID: PMC5997132 DOI: 10.2147/ijn.s167383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Over the last few decades, the incidence of oral cancer has gradually increased, due to the negative influence of environmental factors and also abnormalities within the genome. The main issues in oral cancer treatment consist in surpassing resistance and recurrence. However, continuous discovery of altered signaling pathways in these tumors provides valuable information for the identification of novel gene candidates targeted in personalized therapy. RNA interference (RNAi) is a natural mechanism that involves small interfering RNA (siRNA); this can be exploited in biomedical research by using natural or synthetic constructs for activation of the mechanism. Synthetic siRNA transcripts were developed as a versatile class of molecular tools that have a diverse range of programmable roles, being involved in the regulation of several biological processes, thereby providing the perspective of an alternative option to classical treatment. In this review, we summarize the latest information related to the application of siRNA in oral malignancy together with molecular aspects of the technology and also the perspective upon the delivery system. Also, the emergence of newer technologies such as clustered regularly interspaced short palindromic repeats/Cas9 or transcription activator-like effector nucleases in comparison with the RNAi approach is discussed in this paper.
Collapse
Affiliation(s)
- Smaranda Buduru
- Department of Prosthetics and Dental Materials, Faculty of Dental Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- MEDFUTURE – Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Ciocan
- MEDFUTURE – Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Dudea
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutic, Aesthetic, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Iulia Irimie
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutic, Aesthetic, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MEDFUTURE – Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Research Center for Functional Genomics and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof Dr Ion Chiricuta”, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Joseph JP, Harishankar MK, Pillai AA, Devi A. Hypoxia induced EMT: A review on the mechanism of tumor progression and metastasis in OSCC. Oral Oncol 2018; 80:23-32. [PMID: 29706185 DOI: 10.1016/j.oraloncology.2018.03.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/19/2018] [Accepted: 03/07/2018] [Indexed: 12/22/2022]
Abstract
Hypoxia, a condition of low oxygen tension in tissues, has emerged as a crucial factor in tumor pathophysiology. Hypoxic microenvironment gives rise to altered cellular metabolism and triggers varied molecular responses. These responses promote tumor progression and confer radiation resistance and chemo resistance to tumors. The predominant molecules that are associated with hypoxia research are the hypoxia inducible factors (HIFs). HIFs are known to regulate a large group of genes that are involved in cell survival, proliferation, motility, metabolism, pH regulation, extracellular matrix function, inflammatory cell recruitment and angiogenesis by inducing the expression of their downstream target genes. The process of epithelial to mesenchymal transition (EMT) has been associated with metastasis in cancer. Reports also suggest that hypoxia triggers EMT in several types of cancer including breast cancer, prostate cancer and oral cancer. Oral cancer is a predominant cancer in Central and South East Asia. However, in the recent times, the incidence rates of oral cancer have been increasing in Northern and Eastern Europe as well. This review articulates the role of hypoxia and the associated factors like HIFs in inducing EMT in oral cancer (OSCC).
Collapse
Affiliation(s)
- Joel P Joseph
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India; School of Regenerative Medicine, Manipal Academy of Higher Education, Yelahanka, Bengaluru 560065, India
| | - M K Harishankar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Aruthra Arumugam Pillai
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Arikketh Devi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India.
| |
Collapse
|
14
|
Abstract
Comprehensive genomic analyses have been performed for head and neck squamous cell carcinoma (HNSCC), revealing a significant rate of NOTCH1 mutations and identifying NOTCH1 as the second most frequently mutated gene after TP53. Most NOTCH1 mutations are considered inactivating, indicating that NOTCH1 is a tumor suppressor gene. On the other hand, cohorts from Asian populations with HNSCC have shown activating NOTCH1 mutations. HNSCC with NOTCH1 mutations have a worse prognosis than the NOTCH1 wild-type tumors. Additional data on other NOTCH family members have shown that NOTCH promotes HNSCC progression. NOTCH family members, including NOTCH pathway genes, are upregulated in HNSCC compared with normal tissues, and inhibition of the NOTCH pathway decreases cell proliferation and invasion. NOTCH activity in HNSCC is therefore contextual, and NOTCH in HNSCC is considered to have a bimodal role as a tumor suppressor and an oncogene. In this review, recent understandings of NOTCH pathway genes, including NOTCH genes, in HNSCC are described. In addition, the implications of NOTCH pathway alteration for HNSCC-specific NOTCH-targeted cancer therapy are explored.
Collapse
Affiliation(s)
- T Fukusumi
- 1 Moores Cancer Center, University of California, La Jolla, CA, USA
| | - J A Califano
- 1 Moores Cancer Center, University of California, La Jolla, CA, USA
| |
Collapse
|