1
|
Zheng J, Hao H. The importance of cancer-associated fibroblasts in targeted therapies and drug resistance in breast cancer. Front Oncol 2024; 13:1333839. [PMID: 38273859 PMCID: PMC10810416 DOI: 10.3389/fonc.2023.1333839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a substantial role in the tumor microenvironment, exhibiting a strong association with the advancement of various types of cancer, including breast, pancreatic, and prostate cancer. CAFs represent the most abundant mesenchymal cell population in breast cancer. Through diverse mechanisms, including the release of cytokines and exosomes, CAFs contribute to the progression of breast cancer by influencing tumor energy metabolism, promoting angiogenesis, impairing immune cell function, and remodeling the extracellular matrix. Moreover, CAFs considerably impact the response to treatment in breast cancer. Consequently, the development of interventions targeting CAFs has emerged as a promising therapeutic approach in the management of breast cancer. This article provides an analysis of the role of CAFs in breast cancer, specifically in relation to diagnosis, treatment, drug resistance, and prognosis. The paper succinctly outlines the diverse mechanisms through which CAFs contribute to the malignant behavior of breast cancer cells, including proliferation, invasion, metastasis, and drug resistance. Furthermore, the article emphasizes the potential of CAFs as valuable tools for early diagnosis, targeted therapy, treatment resistance, and prognosis assessment in breast cancer, thereby offering novel approaches for targeted therapy and overcoming treatment resistance in this disease.
Collapse
Affiliation(s)
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Imran H, Tang Y, Wang S, Yan X, Liu C, Guo L, Wang E, Xu C. Optimized DOX Drug Deliveries via Chitosan-Mediated Nanoparticles and Stimuli Responses in Cancer Chemotherapy: A Review. Molecules 2023; 29:31. [PMID: 38202616 PMCID: PMC10780101 DOI: 10.3390/molecules29010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Chitosan nanoparticles (NPs) serve as useful multidrug delivery carriers in cancer chemotherapy. Chitosan has considerable potential in drug delivery systems (DDSs) for targeting tumor cells. Doxorubicin (DOX) has limited application due to its resistance and lack of specificity. Chitosan NPs have been used for DOX delivery because of their biocompatibility, biodegradability, drug encapsulation efficiency, and target specificity. In this review, various types of chitosan derivatives are discussed in DDSs to enhance the effectiveness of cancer treatments. Modified chitosan-DOX NP drug deliveries with other compounds also increase the penetration and efficiency of DOX against tumor cells. We also highlight the endogenous stimuli (pH, redox, enzyme) and exogenous stimuli (light, magnetic, ultrasound), and their positive effect on DOX drug delivery via chitosan NPs. Our study sheds light on the importance of chitosan NPs for DOX drug delivery in cancer treatment and may inspire the development of more effective approaches for cancer chemotherapy.
Collapse
Affiliation(s)
- HafizMuhammad Imran
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Siyuan Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Xiuzhang Yan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Erlei Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| |
Collapse
|
3
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
4
|
Chen Y, Shi S, Dai Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed Pharmacother 2022; 156:113903. [DOI: 10.1016/j.biopha.2022.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/06/2022] Open
|
5
|
Doxorubicin-Based Hybrid Compounds as Potential Anticancer Agents: A Review. Molecules 2022; 27:molecules27144478. [PMID: 35889350 PMCID: PMC9318127 DOI: 10.3390/molecules27144478] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The scarcity of novel and effective therapeutics for the treatment of cancer is a pressing and alarming issue that needs to be prioritized. The number of cancer cases and deaths are increasing at a rapid rate worldwide. Doxorubicin, an anticancer agent, is currently used to treat several types of cancer. It disrupts myriad processes such as histone eviction, ceramide overproduction, DNA-adduct formation, reactive oxygen species generation, Ca2+, and iron hemostasis regulation. However, its use is limited by factors such as drug resistance, toxicity, and congestive heart failure reported in some patients. The combination of doxorubicin with other chemotherapeutic agents has been reported as an effective treatment option for cancer with few side effects. Thus, the hybridization of doxorubicin and other chemotherapeutic drugs is regarded as a promising approach that can lead to effective anticancer agents. This review gives an update on hybrid compounds containing the scaffolds of doxorubicin and its derivatives with potent chemotherapeutic effects.
Collapse
|
6
|
Overexpression of Programmed Cell Death 1 Prevents Doxorubicin-Induced Apoptosis Through Autophagy Induction in H9c2 Cardiomyocytes. Cardiovasc Toxicol 2022; 22:462-476. [PMID: 35190965 PMCID: PMC8993749 DOI: 10.1007/s12012-022-09726-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022]
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic agent; however, it causes severe heart injury via apoptosis induction in many patients. DOX-induced cardiotoxicity is attenuated by activated autophagy in the heart. We previously found that programmed cell death 1 (Pdcd1), an immune checkpoint receptor, inhibits DOX-induced cardiomyocyte apoptosis. In this study, we investigated whether autophagy contributes to the protective role of Pdcd1 against DOX-induced cardiomyocyte apoptosis. We also examined the role of Pdcd1 in DOX-induced apoptosis in cancer cells. Rat cardiomyocyte cell line H9c2 and human cancer cell lines K562 and MCF-7 were transfected with Pdcd1-encoding plasmid DNA to establish Pdcd1-overexpressing cells. Apoptosis and autophagy were determined using a luciferase assay. In H9c2 cells, DOX-induced apoptosis and viability reduction occurred through caspase activation. In particular, Pdcd1 overexpression activated the autophagy pathway through the inhibition of the mammalian target of rapamycin, a major negative regulator of autophagy. Moreover, it prevented DOX-induced cardiomyocyte apoptosis; a similar cardioprotection was observed when normal H9c2 cells (without Pdcd1 overexpression) were treated with rapamycin, an autophagy inducer, before the DOX treatment. Conversely, in cancer cells, Pdcd1 overexpression increased both basal and DOX-induced apoptosis. The role of Pdcd1 in DOX-induced apoptosis in cardiomyocytes and cancer cells was opposing. Pdcd1 signaling prevented DOX-induced apoptosis in cardiomyocytes, through autophagy induction; it enhanced DOX-induced apoptosis in cancer cells. Therefore, Pdcd1 could be a critical molecule for more effective and safer DOX chemotherapy.
Collapse
|
7
|
D'Angelo NA, Noronha MA, Câmara MCC, Kurnik IS, Feng C, Araujo VHS, Santos JHPM, Feitosa V, Molino JVD, Rangel-Yagui CO, Chorilli M, Ho EA, Lopes AM. Doxorubicin nanoformulations on therapy against cancer: An overview from the last 10 years. BIOMATERIALS ADVANCES 2022; 133:112623. [PMID: 35525766 DOI: 10.1016/j.msec.2021.112623] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Doxorubicin (DOX) is a natural antibiotic with antineoplastic activity. It has been used for over 40 years and remains one of the most used drugs in chemotherapy for a variety of cancers. However, cardiotoxicity limits its use for long periods. To overcome this limitation, encapsulation in smart drug delivery systems (DDS) brings advantages in comparison with free drug administration (i.e., conventional anticancer drug therapy). In this review, we present the most relevant nanostructures used for DOX encapsulation over the last 10 years, such as liposomes, micelles and polymeric vesicles (i.e., polymersomes), micro/nanoemulsions, different types of polymeric nanoparticles and hydrogel nanoparticles, as well as novel approaches for DOX encapsulation. The studies highlighted here show these nanoformulations achieved higher solubility, improved tumor cytotoxicity, prolonged DOX release, as well as reduced side effects, among other interesting advantages.
Collapse
Affiliation(s)
- Natália A D'Angelo
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariana A Noronha
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mayra C C Câmara
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabelle S Kurnik
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Chuying Feng
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, 10 Victoria St S, Kitchener, Ontario N2G1C5, Canada
| | - Victor H S Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - João H P M Santos
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo (USP), São Paulo, Brazil; Micromanufacturing Laboratory, Center for Bionanomanufacturing, Institute for Technological Research (IPT), São Paulo, Brazil
| | - Valker Feitosa
- Micromanufacturing Laboratory, Center for Bionanomanufacturing, Institute for Technological Research (IPT), São Paulo, Brazil
| | | | - Carlota O Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo (USP), São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Emmanuel A Ho
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, 10 Victoria St S, Kitchener, Ontario N2G1C5, Canada
| | - André M Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
8
|
Hou Y, Shang C, Meng T, Lou W. Anticancer potential of cardiac glycosides and steroid-azole hybrids. Steroids 2021; 171:108852. [PMID: 33887267 DOI: 10.1016/j.steroids.2021.108852] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023]
Abstract
Steriods are well-known scaffolds that have a widespread occurrence in different compounds characterized by extensive biological properties including anticancer activity. Structural modifications on steroids always generate potential lead compounds with superior bioactivity, and creation of steroid hybrids by combining steroid with other anticancer pharmacophores in one molecule, which can exert the anticancer activity through different mechanisms, is one of the most promising strategies to enhance efficiency, overcome drug resistance and reduce side effects. Sugars and azoles, can act on diverse receptors, proteins and enzymes in cancer cells, are pharmacologically significant scaffolds in the development of novel anticancer agents. Therefore, steroid-sugar hybrids cardiac glycosides and steroid-azole hybrids are privileged scaffolds for the discovery of novel anticancer candidates. This review emphasized on the development, the structure-activity relationship and the mechanism of action of cardiac glycosides and steroid-azole hybrids with potential application for fighting against various cancers including drug-resistant forms to facilitate further rational design of novel drug candidates covering articles published between 2015 and 2020.
Collapse
Affiliation(s)
- Yani Hou
- School of Medicine, Xi'an Peihua University, Xi'an 710125, Shannxi, China
| | - Congshan Shang
- School of Medicine, Xi'an Peihua University, Xi'an 710125, Shannxi, China
| | - Tingting Meng
- School of Medicine, Xi'an Peihua University, Xi'an 710125, Shannxi, China
| | - Wei Lou
- Department of Respiratory, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China.
| |
Collapse
|
9
|
|
10
|
Upadhyay S, Gupta KB, Mantha AK, Dhiman M. A short review: Doxorubicin and its effect on cardiac proteins. J Cell Biochem 2020; 122:153-165. [PMID: 32924182 DOI: 10.1002/jcb.29840] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
Doxorubicin (DOX) is a boon for cancer-suffering patients. However, the undesirable effect on health on vital organs, especially the heart, is a limiting factor, resulting in an increased number of patients with cardiac dysfunction. The present review focuses on the contractile machinery and associated factors, which get affected due to DOX toxicity in chemo-patients for which they are kept under life-long investigation for cardiac function. DOX-induced oxidative stress disrupts the integrity of cardiac contractile muscle proteins that alter the rhythmic mechanism and oxygen consumption rate of the heart. DOX is an oxidant and it is further discussed that oxidative stress prompts the damage of contractile components and associated factors, which include Ca2+ load through Ca2+ ATPase, SERCA, ryanodine receptor-2, phospholamban, and calsequestrin, which ultimately results in left ventricular ejection and dilation. Based on data and evidence, the associated proteins can be considered as clinical markers to develop medications for patients. Even with the advancement of various diagnosing tools and modified drugs to mitigate DOX-induced cardiotoxicity, the risk could not be surmounted with survivors of cancer.
Collapse
Affiliation(s)
- Shishir Upadhyay
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Kunj Bihari Gupta
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
11
|
Barthwal R, Raje S, Pandav K. Structural basis for stabilization of human telomeric G-quadruplex [d-(TTAGGGT)] 4 by anticancer drug epirubicin. Bioorg Med Chem 2020; 28:115761. [PMID: 32992248 DOI: 10.1016/j.bmc.2020.115761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/25/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
Anthracycline anticancer drugs show multiple strategies of action on gene functioning by regulation of telomerase enzyme by apoptotic factors, e.g. ceramide level, p53 activity, bcl-2 protein levels, besides inhibiting DNA/RNA synthesis and topoisomerase-II action. We report binding of epirubicin with G-quadruplex (G4) DNA, [d-(TTAGGGT)]4, comprising human telomeric DNA sequence TTAGGG, using 1H and 31P NMR spectroscopy. Diffusion ordered spectroscopy, sequence selective changes in chemical shift (~0.33 ppm) and line broadening in DNA signals suggest formation of a well-defined complex. Presence of sequential nuclear Overhauser enhancements at all base quartet steps and absence of large downfield shifts in 31P resonances preclude intercalative mode of interaction. Restrained molecular dynamics simulations using AMBER force field incorporating intermolecular drug to DNA interproton distances, involving ring D protons of epirubicin depict external binding close to T1-T2-A3 and G6pT7 sites. Binding induced thermal stabilization of G4 DNA (~36 °C), obtained from imino protons and differential scanning calorimetry, is likely to come in the way of telomerase association with telomeres. The findings pave the way for drug-designing with modifications at ring D and daunosamine sugar.
Collapse
Affiliation(s)
- Ritu Barthwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| | - Shailja Raje
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kumud Pandav
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
12
|
Martins-Teixeira MB, Carvalho I. Antitumour Anthracyclines: Progress and Perspectives. ChemMedChem 2020; 15:933-948. [PMID: 32314528 DOI: 10.1002/cmdc.202000131] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Indexed: 12/31/2022]
Abstract
Anthracyclines are ranked among the most effective chemotherapeutics against cancer. They are glycoside drugs comprising the amino sugar daunosamine linked to a hydroxy anthraquinone aglycone, and act by DNA intercalation, oxidative stress generation and topoisomerase II poisoning. Regardless of their therapeutic value, multidrug resistance and severe cardiotoxicity are important limitations of anthracycline treatment that have prompted the discovery of novel analogues. This review covers the most clinically relevant anthracyclines and their development over decades, since the first discovered natural prototypes to recent semisynthetic and synthetic derivatives. These include registered drugs, drug candidates undergoing clinical trials, and compounds under pre-clinical investigation. The impact of the structural modifications on antitumour activity, toxicity and resistance profile is addressed.
Collapse
Affiliation(s)
- Maristela B Martins-Teixeira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo Avenida do Café s/n Monte Alegre, Ribeirão Preto, 14040903, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo Avenida do Café s/n Monte Alegre, Ribeirão Preto, 14040903, Brazil
| |
Collapse
|
13
|
Raje S, Pandav K, Barthwal R. Binding of anticancer drug adriamycin to parallel G‐quadruplex DNA [d‐(TTAGGGT)]
4
comprising human telomeric DNA leads to thermal stabilization: A multiple spectroscopy study. J Mol Recognit 2019; 33:e2815. [DOI: 10.1002/jmr.2815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Shailja Raje
- Department of BiotechnologyIndian Institute of Technology Roorkee Roorkee India
| | - Kumud Pandav
- Department of BiotechnologyIndian Institute of Technology Roorkee Roorkee India
| | - Ritu Barthwal
- Department of BiotechnologyIndian Institute of Technology Roorkee Roorkee India
| |
Collapse
|
14
|
Serpeloni JM, Specian AFL, Ribeiro DL, Benício LM, Nunes HL, Franchi LP, Rocha CQ, Vilegas W, Varanda EA, Cólus IMS. Fridericia platyphylla (Cham.) L.G. Lohmann root extract exerts cytotoxic and antiproliferative effects on gastric tumor cells and downregulates BCL-XL, BIRC5, and MET genes. Hum Exp Toxicol 2019; 39:338-354. [DOI: 10.1177/0960327119888261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fridericia platyphylla (Cham.) L.G. Lohmann (FP) has cytotoxic, anti-inflammatory, and analgesic properties. We aimed to characterize the cytotoxic and antiproliferative effects of FP extract on normal (GAS) and tumor-derived (ACP02 and HepG2) cell lines. The effective concentrations (EC50s) by tetrazolium bromide assay (MTT) were 56.16, 43.68, and 42.57 µg mL−1 and 69.38, 41.73, and 52.39 µg mL−1 by neutral red assay for GAS, ACP02, and HepG2 cells, respectively. The extract decreased nuclear division indices, which was not reflected in cell proliferation curves. Flow cytometric analyses showed that even 30 µg mL−1 extract (shown to be noncytotoxic by MTT assay) increased the sub-G1 population, indicating cell death due to apoptosis and necrosis. A cytokinesis-block micronucleus cytome assay showed that 30 µg mL−1 of the extract increased the frequency of nuclear buds in tumor cells. Real-time quantitative polymerase chain reaction showed CCND1 upregulation in doxorubicin-treated GAS cells and BCL-XL, BIRC5, and MET downregulation in 5 or 30 µg mL−1 in FP extract-treated ACP02 cells. In conclusion, FP extract modulated apoptosis- and cell cycle-related genes and presented selective cytotoxicity toward tumor cells that deserves further investigation by testing other cell types. Our results demonstrated that even medicinal plants exert adverse effects depending on the extract concentrations used and tissues investigated.
Collapse
Affiliation(s)
- JM Serpeloni
- Laboratory of Mutagenesis, Department of Biological Sciences, Faculty of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
- Laboratory of Mutagenesis and Oncogenetics, Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Brazil
| | - AFL Specian
- Laboratory of Mutagenesis and Oncogenetics, Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Brazil
| | - DL Ribeiro
- Laboratory of Mutagenesis and Oncogenetics, Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Brazil
| | - LM Benício
- Laboratory of Mutagenesis and Oncogenetics, Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Brazil
| | - HL Nunes
- Laboratory of Mutagenesis and Oncogenetics, Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Brazil
| | - LP Franchi
- Laboratory of Cytogenetics and Mutagenesis, Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP), Ribeirão Preto, Brazil
| | - CQ Rocha
- Laboratory of Advanced Studies in Phytomedicines, Department of Chemistry, Federal University of Maranhão (UFMA), São Luís, Brazil
| | - W Vilegas
- Campus Litoral Paulista, São Paulo State University (UNESP), São Vicente, Brazil
| | - EA Varanda
- Laboratory of Mutagenesis, Department of Biological Sciences, Faculty of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - IMS Cólus
- Laboratory of Mutagenesis, Department of Biological Sciences, Faculty of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
15
|
Raje S, Pandav K, Barthwal R. Dual mode of binding of anti cancer drug epirubicin to G-quadruplex [d-(TTAGGGT)] 4 containing human telomeric DNA sequence induces thermal stabilization. Bioorg Med Chem 2019; 27:115131. [PMID: 31685331 DOI: 10.1016/j.bmc.2019.115131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/08/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022]
Abstract
Epirubicin exerts its anti cancer action by blocking DNA/RNA synthesis and inhibition of topoisomerase-II enzyme. Recent reports on its influence on telomere maintenance, suggest interaction with G-quadruplex DNA leading to multiple strategies of action. The binding of epirubicin with parallel stranded inter molecular G-quadruplex DNA [d-(TTAGGGT)]4 comprising human telomeric DNA sequence TTAGGG was investigated by absorption, fluorescence, circular dichroism and nuclear magnetic resonance spectroscopy. The epirubicin binds as monomer to G-quadruplex DNA with affinity, Kb1 = 3.8 × 106 M-1 and Kb2 = 2.7 × 106 M-1, at two independent sites externally. The specific interactions induce thermal stabilization of DNA by 13.2-26.3 °C, which is likely to come in the way of telomere association with telomerase enzyme and contribute to epirubicin-induced apoptosis in cancer cell lines. The findings pave the way for drug designing in view of the possibility of altering substituent groups on anthracyclines to enhance efficacy using alternate mechanism of its interaction with G4 DNA, causing interference in telomere maintenance pathway by inducing telomere dysfunction.
Collapse
Affiliation(s)
- Shailja Raje
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kumud Pandav
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ritu Barthwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
16
|
Raje S, Barthwal R. Molecular recognition of 3+1 hybrid human telomeric G-quadruplex DNA d-[AGGG(TTAGGG) 3] by anticancer drugs epirubicin and adriamycin leads to thermal stabilization. Int J Biol Macromol 2019; 139:1272-1287. [PMID: 31421170 DOI: 10.1016/j.ijbiomac.2019.08.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 11/30/2022]
Abstract
Recent reports suggest influence of anti-cancer anthracyclines on telomere dysfunction and their possible interaction with G-quadruplex (G4) DNA as an alternate pathway to apoptosis. We have investigated interaction of epirubicin and adriamycin with G4 DNA [d-AGGG(TTAGGG)3] comprising human telomeric DNA sequence by surface plasmon resonance, absorption, fluorescence, circular dichroism and thermal denaturation. Epirubicin and adriamycin bind with affinity, Kb, = 2.5×105 and 5.2×105M-1, respectively in monomeric form leading to decrease in absorbance, fluorescence quenching and ellipticity changes without any significant shift in absorption emission maxima with corresponding induced thermal stabilization by 13.0 and 11.6°C in K+ rich solution. Na+ ions did not induce any thermal stabilization. Molecular docking confirmed external binding at grooves and loops of G4 DNA involving 4OCH3 of ring D, 9COCH2OH of ring A, 4'OH/H and 3'NH3+ of daunosamine sugar. Thermal stabilization induced by specific interactions is likely to hamper telomere association with telomerase enzyme and contribute to drug-induced apoptosis in cancer cell lines besides causing damage to duplex DNA. The findings pave the way for drug designing in view of immense possibilities of altering substituent groups on anthracyclines for enhancement of efficacy, reduced cell toxicity as well as specificity towards G-quadruplex DNA.
Collapse
Affiliation(s)
- Shailja Raje
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ritu Barthwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
17
|
Chen X, Peng X, Luo Y, You J, Yin D, Xu Q, He H, He M. Quercetin protects cardiomyocytes against doxorubicin-induced toxicity by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ. Toxicol Mech Methods 2019; 29:344-354. [PMID: 30636491 DOI: 10.1080/15376516.2018.1564948] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiotoxicity limits the clinical applications of doxorubicin (Dox), which mechanism might be excess generation of intracellular ROS. Quercetin (Que) is a flavonoid that possesses anti-oxidative activities, exerts myocardial protection. We hypothesized that the cardioprotection against Dox injury of Que involved 14-3-3γ, and mitochondria. To investigate the hypothesis, we treated primary cardiomyocytes with Dox and determined the effects of Que pretreatment with or without 14-3-3γ knockdown. We analyzed various cellular and molecular indexes. Our data showed that Que attenuated Dox-induced toxicity in cardiomyocytes by upregulating 14-3-3γ expression. Que pretreatment increased cell viability, SOD, catalase, and GPx activities, GSH levels, MMP and the GSH/GSSG ratio; decreased LDH and caspase-3 activities, MDA and ROS levels, mPTP opening and the percentage of apoptotic cells. However, Que's cardioprotection were attenuated by knocking down 14-3-3γ expression using pAD/14-3-3γ-shRNA. In conclusion, Que protects cardiomyocytes against Dox injury by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ.
Collapse
Affiliation(s)
- Xuanying Chen
- a Department of Pharmacy, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaoping Peng
- b Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital, Nanchang University , Nanchang , China
| | - Yong Luo
- c Jiangxi Provincial Key Laboratory of Women's Reproductive Health , Jiangxi Provincial Maternal and Child Health Hospital , Nanchang , China
| | - Jiegen You
- d Jiangxi Academy of Medical Science, Nanchang University , Nanchang , China
| | - Dong Yin
- e Jiangxi Provincial Key Laboratory of Molecular Medicine , The Second Affiliated Hospital, Nanchang University , Nanchang , China
| | - Qiang Xu
- f Drug Clinical Trial Institution, Jiangxi Province Tumor Hospital , Nanchang , China
| | - Huan He
- g Jiangxi Provincial Key Laboratory of Basic Pharmacology , Nanchang University School of Pharmaceutical Science , Nanchang , China
| | - Ming He
- b Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital, Nanchang University , Nanchang , China
| |
Collapse
|
18
|
Padalino G, Ferla S, Brancale A, Chalmers IW, Hoffmann KF. Combining bioinformatics, cheminformatics, functional genomics and whole organism approaches for identifying epigenetic drug targets in Schistosoma mansoni. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:559-570. [PMID: 30455056 PMCID: PMC6288008 DOI: 10.1016/j.ijpddr.2018.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
Schistosomiasis endangers the lives of greater than 200 million people every year and is predominantly controlled by a single class chemotherapy, praziquantel (PZQ). Development of PZQ replacement (to combat the threat of PZQ insensitivity/resistance arising) or combinatorial (to facilitate the killing of PZQ-insensitive juvenile schistosomes) chemotherapies would help sustain this control strategy into the future. Here, we re-categorise two families of druggable epigenetic targets in Schistosoma mansoni, the histone methyltransferases (HMTs) and the histone demethylases (HDMs). Amongst these, a S. mansoni Lysine Specific Demethylase 1 (SmLSD1, Smp_150560) homolog was selected for further analyses. Homology modelling of SmLSD1 and in silico docking of greater than four thousand putative inhibitors identified seven (L1 – L7) showing more favourable binding to the target pocket of SmLSD1 vs Homo sapiens HsLSD1; six of these seven (L1 – L6) plus three structural analogues of L7 (L8 – L10) were subsequently screened against schistosomula using the Roboworm anthelmintic discovery platform. The most active compounds (L10 - pirarubicin > L8 – danunorubicin hydrochloride) were subsequently tested against juvenile (3 wk old) and mature (7 wk old) schistosome stages and found to impede motility, suppress egg production and affect tegumental surfaces. When compared to a surrogate human cell line (HepG2), a moderate window of selectivity was observed for the most active compound L10 (selectivity indices - 11 for schistosomula, 9 for juveniles, 1.5 for adults). Finally, RNA interference of SmLSD1 recapitulated the egg-laying defect of schistosomes co-cultivated in the presence of L10 and L8. These preliminary results suggest that SmLSD1 represents an attractive new target for schistosomiasis; identification of more potent and selective SmLSD1 compounds, however, is essential. Nevertheless, the approaches described herein highlight an interdisciplinary strategy for selecting and screening novel/repositioned anti-schistosomals, which can be applied to any druggable (epigenetic) target encoded by the parasite's genome. Schistosoma mansoni contains 27 histone methyltransferases (HMTs) and 14 histone demethylases (HDMs). S. mansoni lysine specific demethylase 1 (SmLSD1) is a druggable target. Schistosomes treated with the putative SmLSD1 inhibitor pirarubicin or siRNAs targeting SmLSD1 are less fecund.
Collapse
Affiliation(s)
- Gilda Padalino
- The Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, SY23 3DA, Wales, UK.
| | - Salvatore Ferla
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, United Kingdom.
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, United Kingdom.
| | - Iain W Chalmers
- The Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, SY23 3DA, Wales, UK.
| | - Karl F Hoffmann
- The Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, SY23 3DA, Wales, UK.
| |
Collapse
|
19
|
Rogalska A, Gajek A, Łukawska M, Oszczapowicz I, Marczak A. Novel oxazolinoanthracyclines as tumor cell growth inhibitors-Contribution of autophagy and apoptosis in solid tumor cells death. PLoS One 2018; 13:e0201296. [PMID: 30040861 PMCID: PMC6057680 DOI: 10.1371/journal.pone.0201296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Chemical modification of known, effective drugs are one method to improve the chemotherapy of tumors. We reported ability of oxazoline analogs of doxorubicin (O-DOX) and daunorubicin (O-DAU) to induce apoptosis and autophagy in ovarian and liver cancer cells. Reactive oxygen and nitrogen species (ROS and RNS, respectively), together with intracellular calcium-mediated downstream signaling, are essential for the anticancer effect of these new anthracycline analogs. The changes of mitochondrial membrane potential and induction of the ceramide pathway suggests that these compounds induce cell death by apoptosis. In addition, a significant increase of autophagosome formation was observed by fluorescence assay and acridine orange staining, indicating that the new analogs also induce autophagic cell death. Compared to free DOX- and DAU-treated cells, we observed inhibition of colony formation and migration, a time-dependency between ROS/RNS levels and a greater fall in mitochondrial membrane potential. Altogether, our research broadens the base of molecular oxazolinoanthracyclines targets and reveals that derivatives mediated oxidative stress, ceramide production and increase in intracellular calcium level by mitochondria. Furthermore, our data highlight the importance of mitochondria that simultaneously assume the role of activator of autophagy and apoptosis signals.
Collapse
Affiliation(s)
- Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Małgorzata Łukawska
- Department of Modified Antibiotics, Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | - Irena Oszczapowicz
- Department of Modified Antibiotics, Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
20
|
Mathivathanan L, Yang G, Leng F, Raptis RG. Crystal structure and conformational analysis of doxorubicin nitrate. Acta Crystallogr E Crystallogr Commun 2018; 74:400-405. [PMID: 29765732 PMCID: PMC5947812 DOI: 10.1107/s2056989018002955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/19/2018] [Indexed: 11/13/2023]
Abstract
Crystal structure determination of doxorubicin nitrate, (DoxH)NO3, systematic name (7S,9S)-7-{[(2R,4S,5S,6S)-4-azaniumyl-5-hy-droxy-6-methyl-oxan-2-yl]-oxy}-6,9,11-trihy-droxy-9-(2-hy-droxy-acet-yl)-4-meth-oxy-8,10-di-hydro-7H-tetra-cen-5,12-dione nitrate, shows two formula units present in the asymmetric unit. In the crystal lattice, hydrogen-bonded pairs of (DoxH+) cations and segregation of the aglycone and sugar moieties are observed. Inspection of mol-ecular overlays reveals that the conformation of (DoxH)NO3 resembles that of DNA-inter-calated, but not of protein-docked (DoxH)+. The structure was refined as a two-component twin.
Collapse
Affiliation(s)
- Logesh Mathivathanan
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Guang Yang
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People’s Republic of China
| | - Fenfei Leng
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Raphael G. Raptis
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| |
Collapse
|
21
|
(18-Crown-6)potassium(I) Trichlorido[28-acetyl-3-(tris-(hydroxylmethyl)amino-ethane)betulinic ester-κN]platinum(II): Synthesis and In Vitro Antitumor Activity. INORGANICS 2017. [DOI: 10.3390/inorganics5030056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|