1
|
Nicoletti L, Paoletti C, Tarricone G, Andreana I, Stella B, Arpicco S, Divieto C, Mattu C, Chiono V. Lipoplexes for effective in vitro delivery of microRNAs to adult human cardiac fibroblasts for perspective direct cardiac cell reprogramming. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 45:102589. [PMID: 35908737 DOI: 10.1016/j.nano.2022.102589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Design of nanocarriers for efficient miRNA delivery can significantly improve miRNA-based therapies. Lipoplexes based on helper lipid, dioleoyl phosphatidylethanolamine (DOPE) and cationic lipid [2-(2,3-didodecyloxypropyl)-hydroxyethyl] ammonium bromide (DE) were formulated to efficiently deliver miR-1 or a combination of four microRNAs (miRcombo) to adult human cardiac fibroblasts (AHCFs). Lipoplexes with amino-to-phosphate groups ratio of 3 (N/P 3) showed nanometric hydrodynamic size (372 nm), positive Z-potential (40 mV) and high stability under storage conditions. Compared to commercial DharmaFECT1 (DF), DE-DOPE/miRNA lipoplexes showed superior miRNA loading efficiency (99 % vs. 64 %), and faster miRNA release (99 % vs. 82 % at 48 h). DE-DOPE/miR-1 lipoplexes showed superior viability (80-100 % vs. 50 %) in AHCFs, a 2-fold higher miR-1 expression and Twinfilin-1 (TWF-1) mRNA downregulation. DE-DOPE/miRcombo lipoplexes significantly enhanced AHCFs reprogramming into induced cardiomyocytes (iCMs), as shown by increased expression of CM markers compared to DF/miRcombo.
Collapse
Affiliation(s)
- Letizia Nicoletti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Camilla Paoletti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Giulia Tarricone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Ilaria Andreana
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria, 11, 10125, Turin, Italy
| | - Barbara Stella
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria, 11, 10125, Turin, Italy
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria, 11, 10125, Turin, Italy
| | - Carla Divieto
- Istituto Nazionale di Ricerca Metrologica, Division of Advanced Materials and Life Sciences, Str. delle Cacce, 91, 10135 Turin, Italy
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
| |
Collapse
|
2
|
Pinnamaneni JP, Singh VP, Kim MB, Ryan CT, Pugazenthi A, Sanagasetti D, Mathison M, Yang J, Rosengart TK. p63 silencing induces epigenetic modulation to enhance human cardiac fibroblast to cardiomyocyte-like differentiation. Sci Rep 2022; 12:11416. [PMID: 35794145 PMCID: PMC9259667 DOI: 10.1038/s41598-022-15559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
Direct cell reprogramming represents a promising new myocardial regeneration strategy involving in situ transdifferentiation of cardiac fibroblasts into induced cardiomyocytes. Adult human cells are relatively resistant to reprogramming, however, likely because of epigenetic restraints on reprogramming gene activation. We hypothesized that modulation of the epigenetic regulator gene p63 could improve the efficiency of human cell cardio-differentiation. qRT-PCR analysis demonstrated significantly increased expression of a panel of cardiomyocyte marker genes in neonatal rat and adult rat and human cardiac fibroblasts treated with p63 shRNA (shp63) and the cardio-differentiation factors Hand2/Myocardin (H/M) versus treatment with Gata4, Mef2c and Tbx5 (GMT) with or without shp63 (p < 0.001). FACS analysis demonstrated that shp63+ H/M treatment of human cardiac fibroblasts significantly increased the percentage of cells expressing the cardiomyocyte marker cTnT compared to GMT treatment with or without shp63 (14.8% ± 1.4% versus 4.3% ± 1.1% and 3.1% ± 0.98%, respectively; p < 0.001). We further demonstrated that overexpression of the p63-transactivation inhibitory domain (TID) interferes with the physical interaction of p63 with the epigenetic regulator HDAC1 and that human cardiac fibroblasts treated with p63-TID+ H/M demonstrate increased cardiomyocyte marker gene expression compared to cells treated with shp63+ H/M (p < 0.05). Whereas human cardiac fibroblasts treated with GMT alone failed to contract in co-culture experiments, human cardiac fibroblasts treated with shp63+ HM or p63-TID+ H/M demonstrated calcium transients upon electrical stimulation and contractility synchronous with surrounding neonatal cardiomyocytes. These findings demonstrate that p63 silencing provides enhanced rat and human cardiac fibroblast transdifferentiation into induced cardiomyocytes compared to a standard reprogramming strategy. p63-TID overexpression may be a useful reprogramming strategy for overcoming epigenetic barriers to human fibroblast cardio-differentiation.
Collapse
Affiliation(s)
- Jaya Pratap Pinnamaneni
- grid.39382.330000 0001 2160 926XMichael E. De Bakey Department of Surgery, Baylor College of Medicine, 1 Moursund St, Houston, TX-77030 USA
| | - Vivek P. Singh
- grid.39382.330000 0001 2160 926XMichael E. De Bakey Department of Surgery, Baylor College of Medicine, 1 Moursund St, Houston, TX-77030 USA
| | - Mary B. Kim
- grid.416167.30000 0004 0442 1996Department of Surgery, Mount Sinai Hospital, New York, NY 10029 USA
| | - Christopher T. Ryan
- grid.39382.330000 0001 2160 926XMichael E. De Bakey Department of Surgery, Baylor College of Medicine, 1 Moursund St, Houston, TX-77030 USA
| | - Aarthi Pugazenthi
- grid.39382.330000 0001 2160 926XMichael E. De Bakey Department of Surgery, Baylor College of Medicine, 1 Moursund St, Houston, TX-77030 USA
| | - Deepthi Sanagasetti
- grid.39382.330000 0001 2160 926XMichael E. De Bakey Department of Surgery, Baylor College of Medicine, 1 Moursund St, Houston, TX-77030 USA
| | - Megumi Mathison
- grid.39382.330000 0001 2160 926XMichael E. De Bakey Department of Surgery, Baylor College of Medicine, 1 Moursund St, Houston, TX-77030 USA
| | - Jianchang Yang
- grid.39382.330000 0001 2160 926XMichael E. De Bakey Department of Surgery, Baylor College of Medicine, 1 Moursund St, Houston, TX-77030 USA
| | - Todd K. Rosengart
- grid.39382.330000 0001 2160 926XMichael E. De Bakey Department of Surgery, Baylor College of Medicine, 1 Moursund St, Houston, TX-77030 USA
| |
Collapse
|
3
|
Paoletti C, Marcello E, Melis ML, Divieto C, Nurzynska D, Chiono V. Cardiac Tissue-like 3D Microenvironment Enhances Route towards Human Fibroblast Direct Reprogramming into Induced Cardiomyocytes by microRNAs. Cells 2022; 11:cells11050800. [PMID: 35269422 PMCID: PMC8909733 DOI: 10.3390/cells11050800] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
The restoration of cardiac functionality after myocardial infarction represents a major clinical challenge. Recently, we found that transient transfection with microRNA combination (miRcombo: miR-1, miR-133, miR-208 and 499) is able to trigger direct reprogramming of adult human cardiac fibroblasts (AHCFs) into induced cardiomyocytes (iCMs) in vitro. However, achieving efficient direct reprogramming still remains a challenge. The aim of this study was to investigate the influence of cardiac tissue-like biochemical and biophysical stimuli on direct reprogramming efficiency. Biomatrix (BM), a cardiac-like extracellular matrix (ECM), was produced by in vitro culture of AHCFs for 21 days, followed by decellularization. In a set of experiments, AHCFs were transfected with miRcombo and then cultured for 2 weeks on the surface of uncoated and BM-coated polystyrene (PS) dishes and fibrin hydrogels (2D hydrogel) or embedded into 3D fibrin hydrogels (3D hydrogel). Cell culturing on BM-coated PS dishes and in 3D hydrogels significantly improved direct reprogramming outcomes. Biochemical and biophysical cues were then combined in 3D fibrin hydrogels containing BM (3D BM hydrogel), resulting in a synergistic effect, triggering increased CM gene and cardiac troponin T expression in miRcombo-transfected AHCFs. Hence, biomimetic 3D culture environments may improve direct reprogramming of miRcombo-transfected AHCFs into iCMs, deserving further study.
Collapse
Affiliation(s)
- Camilla Paoletti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (E.M.); (M.L.M.); (V.C.)
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research), Lucio Lazzarino 1, 56122 Pisa, Italy
- Correspondence:
| | - Elena Marcello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (E.M.); (M.L.M.); (V.C.)
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research), Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Maria Luna Melis
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (E.M.); (M.L.M.); (V.C.)
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research), Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Carla Divieto
- Istituto Nazionale di Ricerca Metrologica, Division of Advanced Materials and Life Sciences, 10135 Turin, Italy;
| | - Daria Nurzynska
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, 84084 Salerno, Italy;
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (E.M.); (M.L.M.); (V.C.)
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research), Lucio Lazzarino 1, 56122 Pisa, Italy
| |
Collapse
|
4
|
Wingo M, Rafii S. Endothelial reprogramming for vascular regeneration: Past milestones and future directions. Semin Cell Dev Biol 2021; 122:50-55. [PMID: 34548212 DOI: 10.1016/j.semcdb.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Endothelial cells are critical mediators of health and disease. Regenerative medicine techniques that target the endothelium hold vast promise for improving lifespan and quality of life worldwide. Regenerative therapies via induced pluripotent stem cells (IPSCs) have helped demonstrate disease mechanisms, but so far, concerns regarding their function, malignant potential, and expense have limited therapeutic potential. One alternative approach is direct reprogramming of somatic cells, which avoids the pluripotent state and allows for in vivo reprogramming. Transcription factors from endothelial development have yielded essential transcription factors and small molecules that induce endothelial cell fate. Most direct cell reprogramming strategies targeting endothelial cells use ETV2, a pioneer transcription factor to specify endothelial lineage via histone-modifying enzymes. Many different types of starting cells and strategies, including lentiviral transduction, inducing innate immunity, and small molecule signaling have been leveraged for reprogramming. However, so far therapeutic benefit of these strategies remains unproven. Future research will have to solve scalability, safety, and efficacy hurdles before being ready for the clinic. However, researchers have already discovered meaningful insights into disease mechanisms and development through direct reprogramming.
Collapse
Affiliation(s)
- Matthew Wingo
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Shahin Rafii
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
5
|
Yang D, Liu HQ, Yang Z, Fan D, Tang QZ. BMI1 in the heart: Novel functions beyond tumorigenesis. EBioMedicine 2021; 63:103193. [PMID: 33421944 PMCID: PMC7804972 DOI: 10.1016/j.ebiom.2020.103193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
The BMI1 protein, a member of the PRC1 family, is a well recognised transcriptional suppressor and has the capability of maintaining the self-renewal and proliferation of tissue-specific stem cells. Numerous studies have established that BMI1 is highly expressed in a variety of malignant cancers and serves as a key regulator in the tumorigenesis process. However, our understanding of BMI1 in terminally differentiated organs, such as the heart, is relatively nascent. Importantly, emerging data support that, beyond the tumor, BMI1 is also expressed in the heart tissue and indeed exerts profound effects in various cardiac pathological conditions. This review gives a summary of the novel functions of BMI1 in the heart, including BMI1-positive cardiac stem cells and BMI1-mediated signaling pathways, which are involved in the response to various cardiac pathological stimuli. Besides, we summarize the recent progress of BMI1 in some novel and rapidly developing cardiovascular therapies. Furtherly, we highlight the properties of BMI1, a therapeutic target proved effective in cancer treatment, as a promising target to alleviate cardiovascular diseases.
Collapse
Affiliation(s)
- Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Han-Qing Liu
- Department of Thyroid and Breast, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
6
|
Elevated EZH2 in ischemic heart disease epigenetically mediates suppression of Na V1.5 expression. J Mol Cell Cardiol 2020; 153:95-103. [PMID: 33370552 DOI: 10.1016/j.yjmcc.2020.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 12/19/2022]
Abstract
Suppression of the cardiac sodium channel NaV1.5 leads to fatal arrhythmias in ischemic heart disease (IHD). However, the transcriptional regulation of NaV1.5 in cardiac ischemia is still unclear. Our studies are aimed to investigate the expression of enhancer of zeste homolog 2 (EZH2) in IHD and regulation of cardiac NaV1.5 expression by EZH2. Human heart tissue was obtained from IHD and non-failing heart (NFH) patients; mouse heart tissue was obtained from the peri-infarct zone of hearts with myocardial infarction (MI) and hearts with a sham procedure. Protein and mRNA expression were measured by immunoblotting, immunostaining, and qRT-PCR. Protein-DNA binding and promoter activity were analyzed by ChIP-qPCR and luciferase assays, respectively. Na+ channel activity was assessed by whole-cell patch clamp recordings. EZH2 and H3K27me3 were increased while NaV1.5 expression was reduced in IHD hearts and in mouse MI hearts compared to the controls. Reduced NaV1.5 and increased EZH2 mRNA levels were observed in mouse MI hearts. A selective EZH2 inhibitor, GSK126 decreased H3K27me3 and elevated NaV1.5 in HL-1 cells. Silencing of EZH2 expression decreased H3K27me3 and increased NaV1.5 in these cells. EZH2 and H3K27me3 were enriched in the promoter regions of Scn5a and were decreased by treatment with EZH2 siRNA. GSK126 inhibited the enrichment of H3K27me3 in the Scn5a promoter and enhanced Scn5a transcriptional activity. GSK126 significantly increased Na+ channel activity. Taken together, EZH2 is increased in ischemic hearts and epigenetically suppresses Scn5a transcription by H3K27me3, leading to decreased NaV1.5 expression and Na+ channel activity underlying the pathogenesis of arrhythmias.
Collapse
|
7
|
Paoletti C, Divieto C, Tarricone G, Di Meglio F, Nurzynska D, Chiono V. MicroRNA-Mediated Direct Reprogramming of Human Adult Fibroblasts Toward Cardiac Phenotype. Front Bioeng Biotechnol 2020; 8:529. [PMID: 32582662 PMCID: PMC7297084 DOI: 10.3389/fbioe.2020.00529] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Modulation of microRNA expression holds the promise to achieve direct reprogramming of fibroblasts into cardiomyocyte-like cells as a new strategy for myocardial regeneration after ischemic heart disease. Previous reports have shown that murine fibroblasts can be directly reprogrammed into induced cardiomyocytes (iCMs) by transient transfection with four microRNA mimics (miR-1, 133, 208, and 499, termed "miRcombo"). Hence, study on the effect of miRcombo transfection on adult human cardiac fibroblasts (AHCFs) deserves attention in the perspective of a future clinical translation of the approach. In this brief report, we studied for the first time whether miRcombo transient transfection of AHCFs by non-viral vectors might trigger direct reprogramming of AHCFs into cardiomyocyte-like cells. Initially, efficient miRNA delivery to cells was demonstrated through the use of a commercially available transfection agent (DharmaFECT1). Transient transfection of AHCFs with miRcombo was found to upregulate early cardiac transcription factors after 7 days post-transfection and cardiomyocyte specific marker cTnT after 15 days post-transfection, and to downregulate the expression of fibroblast markers at 15 days post-transfection. The percentage of cTnT-positive cells after 15 days from miRcombo transfection was ∼11%, as evaluated by flow cytometry. Furthermore, a relevant percentage of miRcombo-transfected AHCFs (∼38%) displayed spontaneous calcium transients at 30 days post-transfection. Results evidenced the role of miRcombo transfection on triggering the trans differentiation of AHCFs into iCMs. Although further investigations are needed to achieve iCM maturation, early findings from this study pave the way toward new advanced therapies for human cardiac regeneration.
Collapse
Affiliation(s)
- C. Paoletti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - C. Divieto
- Istituto Nazionale di Ricerca Metrologica, Advanced Materials Metrology and Life Science, Turin, Italy
| | - G. Tarricone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - F. Di Meglio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - D. Nurzynska
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - V. Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
8
|
Talkhabi M. Partial reprogramming as a therapeutic approach for heart disease: A state-of-the-art review. J Cell Biochem 2019; 120:14247-14261. [PMID: 31081174 DOI: 10.1002/jcb.28900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/10/2019] [Accepted: 03/22/2019] [Indexed: 11/08/2022]
Abstract
Heart disease such as myocardial infarction is the first cause of mortality in all countries. Today, cardiac cell-based therapy using de novo produced cardiac cells is considered as a novel approach for cardiac regenerative medicine. Recently, an alchemy-like approach, known as direct reprogramming or direct conversion, has been developed to directly convert somatic cells to cardiac cells in vitro and in vivo. This cellular alchemy is a short-cut and safe strategy for generating autologous cardiac cells, and it can be accomplished through activating cardiogenesis- or pluripotency-related factors in noncardiac cells. Importantly, pluripotency factors-based direct cardiac conversion, known as partial reprogramming, is shorter and more efficient for cardiomyocyte generation in vitro. Today, this strategy is achievable for direct conversion of mouse and human somatic cells to cardiac lineage cells (cardiomyocytes and cardiac progenitor cells), using transgene free, chemical-based approaches. Although, heart-specific partial reprogramming seems to be challenging for in vivo conversion of cardiac fibroblasts to cardiac cells, but whole organism-based in vivo partial reprogramming ameliorates cellular and physiological hallmarks of aging and prolongs lifespan in mouse. Notably, cardiac cells produced using partial reprogramming strategy can be a useful platform for disease modeling, drug screening and cardiac cell-based therapy, once the safety issues are overcome. Herein, we discuss about all progresses in de novo production of cardiac cells using partial reprogramming-based direct conversion, as well as give an overview about the potential applications of this strategy in vivo and in vitro.
Collapse
Affiliation(s)
- Mahmood Talkhabi
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
9
|
Exosomes from Suxiao Jiuxin pill-treated cardiac mesenchymal stem cells decrease H3K27 demethylase UTX expression in mouse cardiomyocytes in vitro. Acta Pharmacol Sin 2018. [PMID: 29542684 DOI: 10.1038/aps.2018.18] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Suxiao Jiuxin pill (SJP) is a traditional Chinese medicine for the treatment of acute coronary syndrome in China, which contains two principal components, tetramethylpyrazine (TMP) and borneol (BOR). Thus far, however, the molecular mechanisms underlying the beneficial effects of SJP on the cardiac microenvironment are unknown. Cardiac mesenchymal stem cells (C-MSCs) communicate with cardiomyocytes (CMs) through the release of microvesicles (exosomes) to restore cardiac homeostasis and elicit repair, in part through epigenetic regulatory mechanisms. In this study, we examined whether SJP treatment altered C-MSC-derived exosomes (SJP-Exos) to cause epigenetic chromatic remodeling in recipient CMs. C-MSC isolated from mouse hearts were pretreated with SJP (SJP-Exos), TMP (TMP-Exos) or BOR (BOR-Exos). Then, HL-1 cells, a mouse cardiomyocyte line, were treated with exosomes from control C-MSCs (Ctrl-Exos), SJP-Exos, TMP-Exos or BOR-Exos. Treatment with SJP-Exos significantly increased the protein levels of histone 3 lysine 27 trimethylation (H3K27me3), a key epigenetic chromatin marker for cardiac transcriptional suppression, in the HL-1 cells. To further explore the mechanisms of SJP-Exo-mediated H3K27me3 upregulation, we assessed the mRNA expression levels of key histone methylases (EZH1, EZH2 and EED) and demethylases (JMJD3 and UTX) in the exosome-treated HL-1 cells. Treatment with SJP-Exo selectively suppressed UTX expression in the recipient HL-1 cells. Furthermore, PCNA, an endogenous marker of cell replication, was significantly higher in SJP-Exo-treated HL-1 cells than in Ctrl-Exo-treated HL-1 cells. These results show that SJP-Exos increase cardiomyocyte proliferation and demonstrate that SJP can modulate C-MSC-derived exosomes to cause epigenetic chromatin remodeling in recipient cardiomyocytes; consequently, SJP-Exos might be used to promote cardiomyocyte proliferation.
Collapse
|
10
|
Yao E, Lin C, Wu Q, Zhang K, Song H, Chuang PT. Notch Signaling Controls Transdifferentiation of Pulmonary Neuroendocrine Cells in Response to Lung Injury. Stem Cells 2017; 36:377-391. [PMID: 29148109 DOI: 10.1002/stem.2744] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/21/2017] [Accepted: 11/04/2017] [Indexed: 12/23/2022]
Abstract
Production of an appropriate number of distinct cell types in precise locations during embryonic development is critical for proper tissue function. Homeostatic renewal or repair of damaged tissues in adults also requires cell expansion and transdifferentiation to replenish lost cells. However, the responses of diverse cell types to tissue injury are not fully elucidated. Moreover, the molecular mechanisms underlying transdifferentiation remain poorly understood. This knowledge is essential for harnessing the regenerative potential of individual cell types. This study investigated the fate of pulmonary neuroendocrine cells (PNECs) following lung damage to understand their plasticity and potential. PNECs are proposed to carry out diverse physiological functions in the lung and can also be the cells of origin of human small cell lung cancer. We found that Notch signaling is activated in proliferating PNECs in response to epithelial injury. Forced induction of high levels of Notch signaling in PNECs in conjunction with lung injury results in extensive proliferation and transdifferentiation of PNECs toward the fate of club cells, ciliated cells and goblet cells. Conversely, inactivating Notch signaling in PNECs abolishes their ability to switch cell fate following lung insult. We also established a connection between PNEC transdifferentiation and epigenetic modification mediated by the polycomb repressive complex 2 and inflammatory responses that involve the IL6-STAT3 pathway. These studies not only reveal a major pathway that controls PNEC fate change following lung injury but also provide tools to uncover the molecular basis of cell proliferation and fate determination in response to lung injury. Stem Cells 2018;36:377-391.
Collapse
Affiliation(s)
- Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Chuwen Lin
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Qingzhe Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, People's Republic of China
| | - Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Hai Song
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, People's Republic of China.,Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| |
Collapse
|