1
|
Okamoto K, Saito Y, Yamaguchi A, Narumi K, Kobayashi M. Relationship between magnesium dosage and the preventive effect on cisplatin-induced nephrotoxicity: meta-analysis and meta-regression analysis. Int J Clin Oncol 2024:10.1007/s10147-024-02629-6. [PMID: 39317811 DOI: 10.1007/s10147-024-02629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Cisplatin (CDDP) is an anticancer drug used to treat several types of cancer. CDDP-induced nephrotoxicity (CIN) is a serious adverse effect of CDDP treatment. Although magnesium sulfate (Mg) premedication has been proven to prevent CIN, the relationship between Mg dosage and its preventive effects on CIN are unknown. Therefore, we have evaluated this relationship using meta-analysis and meta-regression analysis to optimize cancer chemotherapies, including CDDP. METHODS We selected candidate studies, generated a forest plot to evaluate the preventive effects of Mg on CIN, and performed subgroup analyses. Moreover, a meta-regression analysis was conducted to reveal the relationship between Mg dosage and its preventive effects on CIN. RESULTS We identified 17 related studies and the total odds ratio (OR) of Mg premedication on CIN was 0.26 and the 95% confidence interval (95% CI) was 0.17-0.41 (p < 0.00001) although funnel plot suggested asymmetry. In subgroup analysis by forest plot, total OR with 95% CI of low Mg dosage administration (less than 10 mEq) and high Mg dosage administration (10 mEq or higher) was 0.35 (0.16-0.77, p = 0.0169) and 0.12 (0.07-0.21, p < 0.0001), respectively. In addition, meta-regression analysis was performed on Mg dosage and the OR of related studies, indicating a relationship between Mg dosage and OR (p = 0.0349). CONCLUSION This study has revealed that premedication with Mg prevented CIN in a dose-dependent manner.
Collapse
Affiliation(s)
- Keisuke Okamoto
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-Chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Yoshitaka Saito
- Department of Clinical Pharmaceutics & Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 4-1, Maeda 7-jo 15-Chome, Teine-ku, Sapporo, 006-8585, Japan
| | - Atsushi Yamaguchi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-Chome, Kita-ku, Sapporo, 060-0812, Japan
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-Chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-Chome, Kita-ku, Sapporo, 060-0812, Japan
- Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-Chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-Chome, Kita-ku, Sapporo, 060-0812, Japan.
- Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-Chome, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
2
|
Cisplatin nephrotoxicity: new insights and therapeutic implications. Nat Rev Nephrol 2023; 19:53-72. [PMID: 36229672 DOI: 10.1038/s41581-022-00631-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
Cisplatin is an effective chemotherapeutic agent for various solid tumours, but its use is limited by adverse effects in normal tissues. In particular, cisplatin is nephrotoxic and can cause acute kidney injury and chronic kidney disease. Preclinical studies have provided insights into the cellular and molecular mechanisms of cisplatin nephrotoxicity, which involve intracellular stresses including DNA damage, mitochondrial pathology, oxidative stress and endoplasmic reticulum stress. Stress responses, including autophagy, cell-cycle arrest, senescence, apoptosis, programmed necrosis and inflammation have key roles in the pathogenesis of cisplatin nephrotoxicity. In addition, emerging evidence suggests a contribution of epigenetic changes to cisplatin-induced acute kidney injury and chronic kidney disease. Further research is needed to determine how these pathways are integrated and to identify the cell type-specific roles of critical molecules involved in regulated necrosis, inflammation and epigenetic modifications in cisplatin nephrotoxicity. A number of potential therapeutic targets for cisplatin nephrotoxicity have been identified. However, the effects of renoprotective strategies on the efficacy of cisplatin chemotherapy needs to be thoroughly evaluated. Further research using tumour-bearing animals, multi-omics and genome-wide association studies will enable a comprehensive understanding of the complex cellular and molecular mechanisms of cisplatin nephrotoxicity and potentially lead to the identification of specific targets to protect the kidney without compromising the chemotherapeutic efficacy of cisplatin.
Collapse
|
3
|
Saito Y, Sakamoto T, Takekuma Y, Kobayashi M, Okamoto K, Shinagawa N, Shimizu Y, Kinoshita I, Sugawara M. Diabetes mellitus degenerates cisplatin-induced nephrotoxicity in short hydration method: a propensity score-matching analysis. Sci Rep 2022; 12:21819. [PMID: 36528725 PMCID: PMC9759552 DOI: 10.1038/s41598-022-26454-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Cisplatin (CDDP)-induced nephrotoxicity (CIN) is dose-limiting. We revealed that co-administration of non-steroid anti-inflammatory drugs and baseline comorbidity of diabetes mellitus (DM) are associated with CIN development in the short hydration method; however, the results were accessorily obtained without appropriate power calculation. This study aimed to demonstrate the influence of DM complications on CIN incidence in a real-world setting. Lung cancer patients receiving CDDP (≥ 75 mg/m2)-containing regimens with a short hydration method (n = 227) were retrospectively evaluated. The patients were divided into control and baseline DM complication groups. The primary endpoint was the evaluation of CIN incidence between the groups. Propensity score-matching was performed to confirm the robustness of the primary analysis results. CIN occurred in 6.8% of control and 27.0% of DM patients, respectively, with a significant difference in all-patient populations (P = 0.001). In addition, variation of serum creatinine and creatinine clearance significantly worsened in DM patients. Similar results were obtained in a propensity-matched population. Multivariate logistic regression analysis found that DM complication is a singular risk factor for CIN development (adjusted odds ratio; 4.31, 95% confidence interval; 1.62-11.50, P = 0.003). In conclusion, our study revealed that baseline DM complications significantly worsen CIN.
Collapse
Affiliation(s)
- Yoshitaka Saito
- grid.412167.70000 0004 0378 6088Department of Pharmacy, Hokkaido University Hospital, Kita 14-Jo, Nishi 5-Chome, Kita-Ku, Sapporo, 060-8648 Japan
| | - Tatsuhiko Sakamoto
- grid.412167.70000 0004 0378 6088Department of Pharmacy, Hokkaido University Hospital, Kita 14-Jo, Nishi 5-Chome, Kita-Ku, Sapporo, 060-8648 Japan
| | - Yoh Takekuma
- grid.412167.70000 0004 0378 6088Department of Pharmacy, Hokkaido University Hospital, Kita 14-Jo, Nishi 5-Chome, Kita-Ku, Sapporo, 060-8648 Japan
| | - Masaki Kobayashi
- grid.39158.360000 0001 2173 7691Laboratory of Clinical Pharmaceutics & Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-Jo, Nishi 6-Chome, Kita-Ku, Sapporo, 060-0812 Japan
| | - Keisuke Okamoto
- grid.412167.70000 0004 0378 6088Department of Pharmacy, Hokkaido University Hospital, Kita 14-Jo, Nishi 5-Chome, Kita-Ku, Sapporo, 060-8648 Japan
| | - Naofumi Shinagawa
- grid.39158.360000 0001 2173 7691Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Kita 15-Jo, Nishi 7-Chome, Kita-Ku, Sapporo, 060-8638 Japan
| | - Yasushi Shimizu
- grid.39158.360000 0001 2173 7691Department of Medical Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15-Jo, Nishi 7-Chome, Kita-Ku, Sapporo, 060-8638 Japan
| | - Ichiro Kinoshita
- grid.39158.360000 0001 2173 7691Department of Medical Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15-Jo, Nishi 7-Chome, Kita-Ku, Sapporo, 060-8638 Japan
| | - Mitsuru Sugawara
- grid.412167.70000 0004 0378 6088Department of Pharmacy, Hokkaido University Hospital, Kita 14-Jo, Nishi 5-Chome, Kita-Ku, Sapporo, 060-8648 Japan ,grid.39158.360000 0001 2173 7691Laboratory of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-Jo, Nishi 6-Chome, Kita-Ku, Sapporo, 060-0812 Japan
| |
Collapse
|
4
|
Ranasinghe R, Mathai ML, Zulli A. Cisplatin for cancer therapy and overcoming chemoresistance. Heliyon 2022; 8:e10608. [PMID: 36158077 PMCID: PMC9489975 DOI: 10.1016/j.heliyon.2022.e10608] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Cisplatin spearheads the anticancer chemotherapeutics in present-day use although acute toxicity is its primary impediment factor. Among a plethora of experimental medications, a drug as effective or surpassing the benefits of cisplatin has not been discovered yet. Although Oxaliplatin is considered more superior to cisplatin, the former has been better for colorectal cancer while cisplatin is widely used for treating gynaecological cancers. Carcinoma imposes a heavy toll on mortality rates worldwide despite the novel treatment strategies and detection methods that have been introduced; nanomedicine combined with precision medicine, immunotherapy, volume-regulated anion channels, and fluorodeoxyglucose-positron emission tomography. Millions of deaths occur annually from metastatic cancers which escape early detection and the concomitant diseases caused by highly toxic chemotherapy that causes organ damage. It continues due to insufficient knowledge of the debilitative mechanisms induced by cancer biology. To overcome chemoresistance and to attenuate the adverse effects of cisplatin therapy, both in vitro and in vivo models of cisplatin-treated cancers and a few multi-centred, multi-phasic, randomized clinical trials in pursuant with recent novel strategies have been tested. They include plant-based phytochemical compounds, de novo drug delivery systems, biochemical/immune pathways, 2D and 3D cell culture models using small molecule inhibitors and genetic/epigenetic mechanisms, that have contributed to further the understanding of cisplatin's role in modulating the tumour microenvironment. Cisplatin was beneficial in cancer therapy for modulating the putative cellular mechanisms; apoptosis, autophagy, cell cycle arrest and gene therapy of micro RNAs. Specific importance of drug influx, efflux, systemic circulatory toxicity, half-maximal inhibition, and the augmentation of host immunometabolism have been identified. This review offers a discourse on the recent anti-neoplastic treatment strategies to enhance cisplatin efficacy and to overcome chemoresistance, given its superiority among other tolerable chemotherapies.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Australia
| | - Michael L. Mathai
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Australia
| | - Anthony Zulli
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Australia
| |
Collapse
|
5
|
Ashrafi F, Mortazavi M, Nematbakhsh M. The Prevention of Cisplatin-Induced Nephrotoxicity: A General Consensus Statement of a Group of Oncologist-Hematologists, Adult and Pediatric Nephrologists, Radiation Oncologists, Clinical Pathologists, Clinical Pharmacologists, and Renal Physiologists on Cisplatin Therapy in Cancer Patients. Int J Prev Med 2022; 13:21. [PMID: 35392316 PMCID: PMC8980816 DOI: 10.4103/ijpvm.ijpvm_445_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 11/27/2020] [Indexed: 11/04/2022] Open
Abstract
Backgrounds Most of the cancer patients with solid tumor are subjected to chemotherapy with cisplatin (CP) in clinic. However, the most side effect of CP is nephrotoxicity, which limits the treatment. The aim of study was to develop a general consensus statement for CP therapy in clinic to limit the drug-induced nephrotoxicity. Methods A total of 30 oncologist-hematologists, adult and pediatric nephrologists, radiation oncologists, clinical pathologist clinical pharmacologist, and renal physiologist participated in a workshop, and in order to reduce the incidence of CP-induced nephrotoxicity, a general consensus was developed. Results The developed general consensus was focused on some items such as age, sex, female hormone, nonsteroidal anti-inflammatory drugs (NSAID), renin-angiotensin system inhibitor drugs, glomerular filtration rate, hydration methods, contrasts, antioxidants, dextrose, and magnesium. Conclusion The agreement between participants for CP therapy in clinic was achieved, and this general consensus was announced to be implemented in the hospitals.
Collapse
Affiliation(s)
- Farzaneh Ashrafi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Internal Medicine, Oncology- Hematology Section, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojgan Mortazavi
- Isfahan Kidney Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Internal Medicine, Nephrology Section, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran.,IsfahanMN Institute of Basic and Applied Sciences Research, Isfahan, Iran
| |
Collapse
|
6
|
Suppadungsuk S, Phitakwatchara W, Reungwetwattana T, Pathumarak A, Phakdeekitcharoen B, Kitiyakara C, Srisuwarn P, Davenport A, Nongnuch A. Preloading magnesium attenuates cisplatin-associated nephrotoxicity: pilot randomized controlled trial (PRAGMATIC study). ESMO Open 2021; 7:100351. [PMID: 34953401 PMCID: PMC8717436 DOI: 10.1016/j.esmoop.2021.100351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 11/28/2022] Open
Abstract
Background Cisplatin is one of the most potent chemotherapeutic drugs used in head and neck cancer treatment; however, nephrotoxicity is the major side-effect limiting usage. Magnesium supplementation has been reported to reduce risk in non-controlled studies. We investigated whether preloading with magnesium prevents nephrotoxicity with a low-dose weekly cisplatin regimen. Methods We carried out a prospective pilot, single-blinded, randomized controlled trial to compare cisplatin-associated acute kidney injury (cis-AKI) and acute kidney disease (cis-AKD) between two groups: intravenous 0.9% NaCl 500 ml + KCL 20 mEq over 4 h pre-cisplatin 40 mg/m2 weekly for 7-8 weeks (control group) compared with additional 16 mEq magnesium added to the saline infusion (Mg group) in 30 head and neck cancer patients. Cis-AKI was defined as an increased serum creatinine (SCr) ≥ 0.3 mg/dl within 7 days and cis-AKD is an increased SCr ≥ 0.3 mg/dl between last SCr and baseline pre-chemotherapy SCr. Results The overall cisplatin tumor response rate and survival were comparable between groups. The baseline characteristics were comparable between groups, although SCr was lower in the controls (0.70 ± 0.17 versus 0.87 ± 0.17 mg/dl, P = 0.01). The incidence of cis-AKI was similar (4.6% versus 1.3%); however, the incidence of cis-AKD was higher for the control group (46.7% versus 6.7%, hazard ratio = 0.082, 95% confidence interval 0.008-0.79, P = 0.03). The time to develop cis-AKD was significantly shorter in the control group (P = 0.007). Conclusions The magnesium-preloading regimen was safe and significantly showed a decreased incidence of cis-AKD. The encouraging results of our pilot study need to be confirmed in a large-scale randomized controlled trial. The magnesium preloading regimen tend to lower incidence of cisplatin-associated acute kidney injury (cis-AKI). The effects of cisplatin on kidney function were mainly subacute, thus clinicians should carefully monitor not only for cis-AKI but also cis-AKD.
Collapse
Affiliation(s)
- S Suppadungsuk
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - W Phitakwatchara
- The 50(th) Anniversary Mahavajiralongkorn Hospital, Ubon Ratchathani, Thailand
| | - T Reungwetwattana
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - A Pathumarak
- Division of Nephrology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - B Phakdeekitcharoen
- Division of Nephrology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - C Kitiyakara
- Division of Nephrology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - P Srisuwarn
- Division of Internal Medicine, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - A Davenport
- UCL Centre for Nephrology, Royal Free Hospital, University College London, London, UK
| | - A Nongnuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
7
|
Yavuz YC, Cetin N, Menevşe E, Cizmecioglu A, Celik E, Biyik Z, Sevinc C, Yavuz S, Korez MK, Altintepe L. Can magnesium sulfate prophylaxis reduce colistin nephrotoxicity? Nefrologia 2021; 41:661-669. [PMID: 36165156 DOI: 10.1016/j.nefroe.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/19/2020] [Indexed: 06/16/2023] Open
Abstract
The study aimed to investigate the role of magnesium sulfate prophylaxis in nephrotoxicity caused by colistin. Thirty Wistar Albino rats were divided into four groups: control, colistin, magnesium (Mg), and Mg+colistin. The drugs were administered to the groups for seven days. Urea-creatinine values were measured at the beginning (T0) and end (T1) of the study. Malondialdehyde (MDA) levels were measured in plasma and kidney tissue, glutathione (GSH) levels were analyzed in the erythrocyte and kidney tissues. At the end of the study, the semiquantitative score (SQS) was calculated by the histopathological examination of the kidneys. Urea values significantly decreased in Mg and Mg+colistin groups compared to the baseline (p=0.013 and p=0.001). At the time of T1, these groups had significantly lower urea values than the colistin and control groups. Creatinine value was significantly increased in the colistin group compared to baseline (p=0.005), the creatinine value in the colistin group was significantly higher than the Mg+colistin group (p=0.011). Plasma MDA levels were significantly higher in the colistin group compared to the other groups at the time of T1 (p<0.001). The Mg+colistin group had lower renal MDA levels than the colistin group. The colistin group had significantly higher renal tubular grade (p=0.035), renal affected area (p<0.001), and SQS (p=0.001) than the Mg+colistin group. The results of the study suggested that Mg sulfate may have a nephrotoxicity-reducing effect on colistin.
Collapse
Affiliation(s)
| | - Nihal Cetin
- Selcuk University Faculty of Medicine, Pharmacology Department, Konya, Turkey
| | - Esma Menevşe
- Selcuk University Faculty of Medicine, Biochemistry Department, Konya, Turkey
| | - Ahmet Cizmecioglu
- Selcuk University Faculty of Medicine, Internal Medicine Department, Konya, Turkey
| | - Esin Celik
- Selcuk University Faculty of Medicine, Pathology Department, Konya, Turkey
| | - Zeynep Biyik
- Selcuk University Faculty of Medicine, Nephrology Department, Konya, Turkey
| | - Can Sevinc
- Ataturk University Faculty of Medicine, Nephrology Department, Erzurum, Turkey
| | - Serkan Yavuz
- University of Healthy Sciences, Konya Training and Research Hospital, Department of Chest Disease, Konya, Turkey
| | - Muslu Kazim Korez
- Selcuk University Faculty of Medicine, Biostatistics Department, Konya, Turkey
| | | |
Collapse
|
8
|
Okamoto K, Ueda H, Saito Y, Narumi K, Furugen A, Kobayashi M. Diclofenac potentiates the antitumor effect of cisplatin in a xenograft mouse model transplanted with cisplatin-resistant cells without enhancing cisplatin-induced nephrotoxicity. Drug Metab Pharmacokinet 2021; 41:100417. [PMID: 34619549 DOI: 10.1016/j.dmpk.2021.100417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022]
Abstract
Cisplatin (CDDP) is a well-known anticancer agent, and CDDP-induced nephrotoxicity (CIN) is one of the most serious adverse effects. Previously, we revealed that while celecoxib reduces CIN, diclofenac does not appear to enhance it. Furthermore, we reported that diclofenac additively enhances the cytotoxic effect of CDDP on CDDP-resistant A549 cells (A549/DDP cells) and their spheroids. In addition, celecoxib reduces the cytotoxic effect of CDDP on A549/DDP cells while demonstrating an anticancer effect; however, it enhanced the effect of CDDP cytotoxicity on spheroids. Therefore, we evaluated the effects of diclofenac or celecoxib on CIN and the antitumor effect of CDDP in a xenograft mouse model transplanted with A549/DDP cells. Although CDDP did not decrease tumor size and tumor weight, these parameters were significantly reduced following co-administration with diclofenac when compared with the control group. Conversely, celecoxib marginally suppressed the antitumor effect of CDDP. Moreover, CDDP increased the mRNA levels of kidney injury molecule 1 (Kim-1), a renal disorder marker, in the kidneys of xenograft mice; treatment with celecoxib and diclofenac did not impact Kim-1 mRNA levels increased by CDDP. In conclusion, diclofenac potentiated the antitumor effect of CDDP without enhancing CIN.
Collapse
Affiliation(s)
- Keisuke Okamoto
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Hinata Ueda
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Yoshitaka Saito
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
9
|
Okamoto K, Kitaichi F, Saito Y, Ueda H, Narumi K, Furugen A, Kobayashi M. Antioxidant effect of ascorbic acid against cisplatin-induced nephrotoxicity and P-glycoprotein expression in rats. Eur J Pharmacol 2021; 909:174395. [PMID: 34332922 DOI: 10.1016/j.ejphar.2021.174395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/04/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Cisplatin (CDDP) is a highly potent anticancer drug that is widely used in the treatment of several cancers. CDDP-induced nephrotoxicity (CIN) is one of the most significant adverse effects, and oxidative stress is thought to be one of the mechanisms underlying CIN. Although there are some studies available on the variability in transporter expression in the kidney after a single CDDP dose, none have reported the change in renal transporter expression after multiple CDDP dose administrations. P-glycoprotein (P-gp), a transporter, is reported to be induced by oxidative stress. Ascorbic acid is a vitamin with antioxidant potential and therefore, may regulate the expression of P-gp transporter and affect CIN. In the present study, our aim was to assess the variability in expression of several renal transporters after multiple CDDP dose administrations and the antioxidant effect of ascorbic acid against transporter expression and CIN. Multiple doses of CDDP affected markers of kidney injury and antioxidants in the kidneys. Also, the expression of P-gp, breast cancer resistance protein, and multidrug resistance-associated protein 4 was upregulated by CDDP. Using a normal kidney cell line, we demonstrated that ascorbic acid attenuated CDDP-induced cytotoxicity due to its high superoxide scavenging ability. CDDP and ascorbic acid were injected into rats once a week for three weeks, and it was observed that co-administration of ascorbic acid attenuated CIN and regulated antioxidant marker. In addition, ascorbic acid reduced P-gp expression, which was upregulated by CDDP. In conclusion, ascorbic acid may attenuate CIN and reverse P-gp-mediated changes in drug pharmacokinetics.
Collapse
Affiliation(s)
- Keisuke Okamoto
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Fumi Kitaichi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Yoshitaka Saito
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan.
| | - Hinata Ueda
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan; Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
10
|
The Mechanism of Drug Nephrotoxicity and the Methods for Preventing Kidney Damage. Int J Mol Sci 2021; 22:ijms22116109. [PMID: 34204029 PMCID: PMC8201165 DOI: 10.3390/ijms22116109] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 12/11/2022] Open
Abstract
Acute kidney injury (AKI) is a global health challenge of vast proportions, as approx. 13.3% of people worldwide are affected annually. The pathophysiology of AKI is very complex, but its main causes are sepsis, ischemia, and nephrotoxicity. Nephrotoxicity is mainly associated with the use of drugs. Drug-induced AKI accounts for 19-26% of all hospitalized cases. Drug-induced nephrotoxicity develops according to one of the three mechanisms: (1) proximal tubular injury and acute tubular necrosis (ATN) (a dose-dependent mechanism), where the cause is related to apical contact with drugs or their metabolites, the transport of drugs and their metabolites from the apical surface, and the secretion of drugs from the basolateral surface into the tubular lumen; (2) tubular obstruction by crystals or casts containing drugs and their metabolites (a dose-dependent mechanism); (3) interstitial nephritis induced by drugs and their metabolites (a dose-independent mechanism). In this article, the mechanisms of the individual types of injury will be described. Specific groups of drugs will be linked to specific injuries. Additionally, the risk factors for the development of AKI and the methods for preventing and/or treating the condition will be discussed.
Collapse
|
11
|
Yavuz YC, Cetin N, Menevşe E, Cizmecioglu A, Celik E, Biyik Z, Sevinc C, Yavuz S, Korez MK, Altintepe L. Can magnesium sulfate prophylaxis reduce colistin nephrotoxicity? Nefrologia 2021; 41:S0211-6995(21)00057-6. [PMID: 33892977 DOI: 10.1016/j.nefro.2020.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 10/21/2022] Open
Abstract
The study aimed to investigate the role of magnesium sulfate prophylaxis in nephrotoxicity caused by colistin. Thirty Wistar Albino rats were divided into four groups: control, colistin, magnesium (Mg), and Mg+colistin. The drugs were administered to the groups for seven days. Urea-creatinine values were measured at the beginning (T0) and end (T1) of the study. Malondialdehyde (MDA) levels were measured in plasma and kidney tissue, glutathione (GSH) levels were analyzed in the erythrocyte and kidney tissues. At the end of the study, the semiquantitative score (SQS) was calculated by the histopathological examination of the kidneys. Urea values significantly decreased in Mg and Mg+colistin groups compared to the baseline (p=0.013 and p=0.001). At the time of T1, these groups had significantly lower urea values than the colistin and control groups. Creatinine value was significantly increased in the colistin group compared to baseline (p=0.005), the creatinine value in the colistin group was significantly higher than the Mg+colistin group (p=0.011). Plasma MDA levels were significantly higher in the colistin group compared to the other groups at the time of T1 (p<0.001). The Mg+colistin group had lower renal MDA levels than the colistin group. The colistin group had significantly higher renal tubular grade (p=0.035), renal affected area (p<0.001), and SQS (p=0.001) than the Mg+colistin group. The results of the study suggested that Mg sulfate may have a nephrotoxicity-reducing effect on colistin.
Collapse
Affiliation(s)
| | - Nihal Cetin
- Selcuk University Faculty of Medicine, Pharmacology Department, Konya, Turkey
| | - Esma Menevşe
- Selcuk University Faculty of Medicine, Biochemistry Department, Konya, Turkey
| | - Ahmet Cizmecioglu
- Selcuk University Faculty of Medicine, Internal Medicine Department, Konya, Turkey
| | - Esin Celik
- Selcuk University Faculty of Medicine, Pathology Department, Konya, Turkey
| | - Zeynep Biyik
- Selcuk University Faculty of Medicine, Nephrology Department, Konya, Turkey
| | - Can Sevinc
- Ataturk University Faculty of Medicine, Nephrology Department, Erzurum, Turkey
| | - Serkan Yavuz
- University of Healthy Sciences, Konya Training and Research Hospital, Department of Chest Disease, Konya, Turkey
| | - Muslu Kazim Korez
- Selcuk University Faculty of Medicine, Biostatistics Department, Konya, Turkey
| | | |
Collapse
|
12
|
Lee J, Nguyen QN, Park JY, Lee S, Hwang GS, Yamabe N, Choi S, Kang KS. Protective Effect of Shikimic Acid against Cisplatin-Induced Renal Injury: In Vitro and In Vivo Studies. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1681. [PMID: 33271750 PMCID: PMC7759863 DOI: 10.3390/plants9121681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
Nephrotoxicity is a serious side effect of cisplatin, which is one of the most frequently used drugs for cancer treatment. This study aimed to assess the renoprotective effect of Artemisia absinthium extract and its bioactive compound (shikimic acid) against cisplatin-induced renal injury. An in vitro assay was performed in kidney tubular epithelial cells (LLC-PK1) with 50, 100, and 200 µg/mL A. absinthium extract and 25 and 50 µM shikimic acid, and cytotoxicity was induced by 25 µM cisplatin. BALB/c mice (6 weeks old) were injected with 16 mg/kg cisplatin once and orally administered 25 and 50 mg/kg shikimic acid daily for 4 days. The results showed that the A. absinthium extract reversed the decrease in renal cell viability induced by cisplatin, whereas it decreased the reactive oxidative stress accumulation and apoptosis in LLC-PK1 cells. Shikimic acid also reversed the effect on cell viability but decreased oxidative stress and apoptosis in renal cells compared with the levels in the cisplatin-treated group. Furthermore, shikimic acid protected against kidney injury in cisplatin-treated mice by reducing serum creatinine levels. The protective effect of shikimic acid against cisplatin-mediated kidney injury was confirmed by the recovery of histological kidney injury in cisplatin-treated mice. To the best of our knowledge, this study is the first report on the nephroprotective effect of A. absinthium extract and its mechanism of action against cisplatin-induced renal injury.
Collapse
Affiliation(s)
- Jinkyung Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.L.), (Q.N.N.); (G.S.H.); (N.Y.)
| | - Quynh Nhu Nguyen
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.L.), (Q.N.N.); (G.S.H.); (N.Y.)
| | - Jun Yeon Park
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Korea;
| | - Sullim Lee
- College of Bio-Nano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Korea;
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.L.), (Q.N.N.); (G.S.H.); (N.Y.)
| | - Noriko Yamabe
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.L.), (Q.N.N.); (G.S.H.); (N.Y.)
| | - Sungyoul Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.L.), (Q.N.N.); (G.S.H.); (N.Y.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.L.), (Q.N.N.); (G.S.H.); (N.Y.)
| |
Collapse
|
13
|
Saito Y. Clinical and Fundamental Approach for Chemotherapy-induced Adverse Effect Attenuation by Oncology Pharmacy Specialists. YAKUGAKU ZASSHI 2020; 140:1415-1419. [DOI: 10.1248/yakushi.20-00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Casanova AG, Hernández-Sánchez MT, Martínez-Salgado C, Morales AI, Vicente-Vicente L, López-Hernández FJ. A meta-analysis of preclinical studies using antioxidants for the prevention of cisplatin nephrotoxicity: implications for clinical application. Crit Rev Toxicol 2020; 50:780-800. [PMID: 33170047 DOI: 10.1080/10408444.2020.1837070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cisplatin is an effective chemotherapeutic drug whose clinical use and efficacy are limited by its nephrotoxicity, which affects mainly the renal tubules and vasculature. It accumulates in proximal and distal epithelial tubule cells and causes oxidative stress-mediated cell death and malfunction. Consequently, many antioxidants have been tested for their capacity to prevent cisplatin nephrotoxicity. In this study, we made a systematic review of the literature and meta-analyzed 152 articles, which tested the nephroprotective effect of isolated compounds or mixtures of natural origin on cisplatin nephrotoxicity in preclinical models. This meta-analysis identified the most effective candidates and examined the efficacy obtained by antioxidants administered by the oral and intraperitoneal routes. By comparing with a recent, similar meta-analysis performed on clinical studies, this article identifies a disconnection between preclinical and clinical research, and contextualizes, discusses, and integrates the existing preclinical information toward the optimized selection of candidates to be further explored (clinical level). Despite proved efficacy, this article discusses the barriers limiting the clinical development of natural mixtures, such as those in extracts from Calendula officinalis flowers and Heliotropium eichwaldii roots. On the contrary, isolated compounds are more straightforward candidates, among which arjunolic acid and quercetin stand out in this meta-analysis.
Collapse
Affiliation(s)
- Alfredo G Casanova
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - M Teresa Hernández-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martínez-Salgado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana I Morales
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain
| | - Laura Vicente-Vicente
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J López-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain
| |
Collapse
|
15
|
Okamoto K, Saito Y, Narumi K, Furugen A, Iseki K, Kobayashi M. Comparison of the nephroprotective effects of non-steroidal anti-inflammatory drugs on cisplatin-induced nephrotoxicity in vitro and in vivo. Eur J Pharmacol 2020; 884:173339. [PMID: 32726655 DOI: 10.1016/j.ejphar.2020.173339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Cisplatin (CDDP) is an anticancer drug, often used in the treatment of several types of cancers. CDDP-induced nephrotoxicity (CIN) is one of the most severe adverse events associated with the use of CDDP. It has been suggested that the co-administration of non-steroidal anti-inflammatory drugs (NSAIDs) is a risk factor for CIN. However, the specific NSAIDs that affect CIN and the precise mechanisms underlying this interaction remain unclear. Hence, we aimed to evaluate the effect of NSAIDs on CDDP-induced cytotoxicity in vitro and confirmed the results in vivo. Using the epithelioid clone of the normal rat kidney cells (NRK-52E cells), we assessed the effects of 17 NSAIDs on CDDP-induced cytotoxicity all at once using the MTT assay. Furthermore, we evaluated two NSAIDs, which significantly attenuated or enhanced CDDP-induced cytotoxicity, in vivo. Wistar rats were treated with CDDP (5 mg/kg, i.p., day 1) and NSAIDs (p.o., day 1-4), and the kidneys were excised on day 5. Our results demonstrated that several NSAIDs attenuated, while others enhanced CDDP-induced cytotoxicity. Celecoxib significantly attenuated and flurbiprofen markedly enhanced cell dysfunction by CDDP. These results were reproduced in vivo as celecoxib decreased and flurbiprofen increased the expression of kidney injury molecule 1 (Kim-1) mRNA, a sensitive kidney injury marker, compared to the CDDP group. Moreover, celecoxib increased the antioxidant and autophagy markers quantified by qPCR in vitro and prevented a decrease in body weight induced by CDDP in vivo. In conclusion, we revealed that celecoxib significantly attenuated CIN in vitro and in vivo.
Collapse
Affiliation(s)
- Keisuke Okamoto
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Yoshitaka Saito
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
16
|
The Predictive Role of the Biomarker Kidney Molecule-1 (KIM-1) in Acute Kidney Injury (AKI) Cisplatin-Induced Nephrotoxicity. Int J Mol Sci 2019; 20:ijms20205238. [PMID: 31652595 PMCID: PMC6834366 DOI: 10.3390/ijms20205238] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) following platinum-based chemotherapeutics is a frequently reported serious side-effect. However, there are no approved biomarkers that can properly identify proximal tubular injury while routine assessments such as serum creatinine lack sensitivity. Kidney-injury-molecule 1 (KIM-1) is showing promise in identifying cisplatin-induced renal injury both in vitro and in vivo studies. In this review, we focus on describing the mechanisms of renal tubular cells cisplatin-induced apoptosis, the associated inflammatory response and oxidative stress and the role of KIM-1 as a possible biomarker used to predict cisplatin associated AKI.
Collapse
|
17
|
Volarevic V, Djokovic B, Jankovic MG, Harrell CR, Fellabaum C, Djonov V, Arsenijevic N. Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. J Biomed Sci 2019; 26:25. [PMID: 30866950 PMCID: PMC6417243 DOI: 10.1186/s12929-019-0518-9] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Background Cisplatin (cis-diamminedichloroplatinum II, CDDP) is one of the most effective chemotherapeutic agents. However, its clinical use is limited due to the severe side effects, including nephrotoxicity and acute kidney injury (AKI) which develop due to renal accumulation and biotransformation of CDDP. The alleviation or prevention of CDDP-caused nephrotoxicity is currently accomplished by hydration, magnesium supplementation or mannitol-induced forced diuresis which is considered for high-dose CDDP-treated patients. However, mannitol treatment causes over-diuresis and consequent dehydration in CDDP-treated patients, indicating an urgent need for the clinical use of safe and efficacious renoprotective drug as an additive therapy for high dose CDDP-treated patients. Main body In this review article we describe in detail signaling pathways involved in CDDP-induced apoptosis of renal tubular cells, oxidative stress and inflammatory response in injured kidneys in order to pave the way for the design of new therapeutic approaches that can minimize CDDP-induced nephrotoxicity. Most of these molecular pathways are, at the same time, crucially involved in cytotoxic activity of CDDP against tumor cells and potential alterations in their function might mitigate CDDP-induced anti-tumor effects. Conclusion Despite the fact that many molecules were designated as potential therapeutic targets for renoprotection against CDDP, modulation of CDDP-induced nephrotoxicity still represents a balance on the knife edge between renoprotection and tumor toxicity.
Collapse
Affiliation(s)
- Vladislav Volarevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, 34000, Serbia.
| | - Bojana Djokovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, 34000, Serbia
| | - Marina Gazdic Jankovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - C Randall Harrell
- Regenerative Processing Plant, LLC, US Highway 19 N Palm Harbor, Palm Harbor, Florida, 34176, USA
| | - Crissy Fellabaum
- Regenerative Processing Plant, LLC, US Highway 19 N Palm Harbor, Palm Harbor, Florida, 34176, USA
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 2 Baltzerstrasse, Bern, Switzerland
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, 34000, Serbia
| |
Collapse
|
18
|
Uzawa K, Kasamatsu A, Saito T, Kita A, Sawai Y, Toeda Y, Koike K, Nakashima D, Endo Y, Shiiba M, Takiguchi Y, Tanzawa H. Growth suppression of human oral cancer cells by candidate agents for cetuximab-side effects. Exp Cell Res 2019; 376:210-220. [DOI: 10.1016/j.yexcr.2019.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 02/02/2023]
|