1
|
Lee K, Mun S, Kim Y, Kim H, Jin Q, Lee M, Park SN. Functional Properties and Components of Koenigia alpina Extract. Skin Res Technol 2024; 30:e70102. [PMID: 39387830 PMCID: PMC11465873 DOI: 10.1111/srt.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Koenigia alpina (All.) T.M.Schust. & Reveal (alpine knotweed) is a perennial herb belonging to the Polygonaceae family. Several studies have examined Polygonaceae species' potential applications as cosmeceutical materials; however, the potential of K. alpina as a cosmeceutical has not yet been studied. MATERIALS AND METHODS Hydrogen peroxide (H2O2) and lipopolysaccharide were used to induce an inflammatory response in RAW 264.7 cells. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radicals and H2O2 were used to evaluate the free-radical scavenging activity of K. alpina extract and its protective effect against reactive oxygen species (ROS)-induced cell damage. The whitening, antiaging, and cell proliferation/migration effects of the extracts were evaluated via tyrosinase inhibition, collagenase/elastase inhibition, and wound healing assays, respectively. The anti-inflammatory effect was confirmed by evaluating nitric oxide (NO) production in RAW 264.7 cells. High-performance liquid chromatography (HPLC), UV, and MS/MS were used to determine the main components of the extract and fractions. RESULTS The ethyl acetate (EA) fraction and its aglycone fraction showed very high free-radical scavenging activities (47.5 and 47.1 µg/mL, respectively). The extract/fractions also showed significant tyrosinase inhibition (IC50 = 0.38 mg/mL in EA fraction), collagenase inhibition (IC50 = 0.21 mg/mL in EA fraction), and elastase inhibition (IC50 = 0.57 mg/mL in aglycone fraction). NO production in lipopolysaccharide-induced RAW 264.7 cells was inhibited by the extract/fractions. The extract also promoted the closure of scratch wounds in HaCaT cells. The K. alpina extract/fractions contained cardamonin, quercetin, and quercitrin. CONCLUSION K. alpina extracts/fractions showed antioxidant, antiaging, whitening, and anti-inflammatory activities, suggesting they may have potential as antiaging cosmeceuticals.
Collapse
Affiliation(s)
- Kwan‐Woo Lee
- ISTY ON NATURESuwon‐siGyeonggi‐doRepublic of Korea
| | - Su‐Hyun Mun
- NBBIO CompanySuwon‐siGyeonggi‐doRepublic of Korea
| | - Yeon‐A Kim
- NBBIO CompanySuwon‐siGyeonggi‐doRepublic of Korea
| | - Hyo‐Rim Kim
- NBBIO CompanySuwon‐siGyeonggi‐doRepublic of Korea
| | - Qinglong Jin
- NBBIO CompanySuwon‐siGyeonggi‐doRepublic of Korea
| | - Min‐Ki Lee
- NBBIO CompanySuwon‐siGyeonggi‐doRepublic of Korea
| | - Soo Nam Park
- Department of Biohealth EngineeringCollege of Science and Convergence TechnologySeoul Women's UniversityNowon‐guSeoulRepublic of Korea
| |
Collapse
|
2
|
Yagi S, Uba AI, Sinan KI, Piatti D, Sagratini G, Caprioli G, Eltigani SM, Lazarova I, Zengin G. Comparative Study on the Chemical Profile, Antioxidant Activity, and Enzyme Inhibition Capacity of Red and White Hibiscus sabdariffa Variety Calyces. ACS OMEGA 2023; 8:42511-42521. [PMID: 38024777 PMCID: PMC10652262 DOI: 10.1021/acsomega.3c05217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Hibiscus sabdariffa L. (Family: Malvaceae) is believed to be domesticated by the people of western Sudan sometime before 4000 BC for their nutritional and medicinal properties. This study aimed to investigate the chemical profile, antioxidant activity, and enzyme inhibition property of extracts from red roselle (RR) and white roselle (WR) varieties grown in Sudan. Three aqueous extracts obtained by maceration, infusion, and decoction, in addition to the methanolic one, were prepared from the two roselle varieties. Results showed that the highest total phenolic and flavonoid contents of RR were obtained from the extracts prepared by infusion (28.40 mg GAE/g) and decoction (7.94 mg RE/g) respectively, while those from the WR were recorded from the methanolic extract (49.59 mg GAE/g and 5.81 mg RE/g respectively). Extracts of RR were mainly characterized by high accumulation of chlorogenic acid (6502.34-9634.96 mg kg-1), neochlorogenic acid (937.57-8949.61 mg kg-1), and gallic acid (190-4573.55 mg kg-1). On the other hand, neochlorogenic acid (1777.05-6946.39 mg kg-1) and rutin (439.29-2806.01 mg kg-1) were the dominant compounds in WR. All extracts from RR had significant (p < 0.05) higher antioxidant activity than their respective WR except in their metal chelating power, where the methanolic extract of the latter showed the highest activity (3.87 mg EDTAE/g). RR extracts prepared by infusion recorded the highest antioxidant values (35.09, 52.17, 65.62, and 44.92 mg TE/g) in the DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), CUPRAC (cupric ion reducing antioxidant capacity), and FRAP (ferric reducing antioxidant power) assays, respectively. All aqueous extracts from the WR exerted significant (p < 0.05) acetylcholinesterase (AChE) inhibitory activity (3.42-4.77 mg GALAE/g; GALAE = galantamine equivalents), while only one extract, obtained by maceration, from RR exerted AChE inhibitory activity (4.79 mg GALAE/g). All extracts of the RR showed relatively higher BChE (butyrylcholinesterase) inhibitory activity (3.71-4.23 mg GALAE/g) than the WR ones. Methanolic extracts of the two roselle varieties displayed the highest Tyr (tyrosinase) inhibitory activity (RR = 48.25 mg KAE/g; WR = 42.71 mg KAE/g). The methanolic extract of RR exhibited the highest amylase (0.59 mmol ACAE/g) and glucosidase (1.46 mmol ACAE/g) inhibitory activity. Molecular docking analysis showed that delphinidin 3,5-diglucoside, rutin, isoquercitrin, hyperoside, and chlorogenic acid exerted the most promising enzyme inhibitory effect. In conclusion, these findings indicated that the chemical profiles and biological activity of roselle varied according to the variety, extraction solvent, and technique used. These two roselle varieties can serve as a valuable source for the development of multiple formulations in food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Sakina Yagi
- Department
of Botany, Faculty of Science, University
of Khartoum, Khartoum 0001, Sudan
| | - Abdullahi Ibrahim Uba
- Department
of Molecular Biology and Genetics, Istanbul
AREL University, Istanbul 34537, Turkey
| | - Kouadio Ibrahime Sinan
- Physiology
and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Diletta Piatti
- Department
of Botany, Faculty of Science, University
of Khartoum, Khartoum 0001, Sudan
| | - Gianni Sagratini
- Department
of Botany, Faculty of Science, University
of Khartoum, Khartoum 0001, Sudan
| | - Giovanni Caprioli
- Department
of Botany, Faculty of Science, University
of Khartoum, Khartoum 0001, Sudan
| | - Sayadat M. Eltigani
- Department
of Botany, Faculty of Science, University
of Khartoum, Khartoum 0001, Sudan
| | - Irina Lazarova
- Department
of Chemistry, Faculty of Pharmacy, Medical
University-Sofia, 2, Dunav Street, Sofia 1000, Bulgaria
| | - Gökhan Zengin
- Physiology
and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| |
Collapse
|
3
|
Kim DH, Shin DW, Lim BO. Fermented Aronia melanocarpa Inhibits Melanogenesis through Dual Mechanisms of the PI3K/AKT/GSK-3β and PKA/CREB Pathways. Molecules 2023; 28:molecules28072981. [PMID: 37049743 PMCID: PMC10095632 DOI: 10.3390/molecules28072981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
UV light causes excessive oxidative stress and abnormal melanin synthesis, which results in skin hyperpigmentation disorders such as freckles, sunspots, and age spots. Much research has been carried out to discover natural plants for ameliorating these disorders. Aronia melanocarpa contains various polyphenolic compounds with antioxidative activities, but its effects on melanogenesis have not been fully elucidated. In this study, we investigated the inhibitory effect of fermented Aronia melanocarpa (FA) fermented with Monascus purpureus on melanogenesis and its underlying mechanism in the B16F10 melanoma cell line. Our results indicate that FA inhibited tyrosinase activity and melanogenesis in alpha-melanocyte-stimulating hormone (α-MSH)-induced B16F10 cells. FA significantly downregulated the PKA/CREB pathway, resulting in decreased protein levels of tyrosinase, TRP-1, and MITF. FA also inhibited the transcription of MITF by increasing the phosphorylation levels of both GSK3β and AKT. Interestingly, we demonstrated that these results were owing to the significant increase in gallic acid, a phenolic compound of Aronia melanocarpa produced after the fermentation of Monascus purpureus. Taken together, our research suggests that Aronia melanocarpa fermented with Monascus purpureus acts as a melanin inhibitor and can be used as a potential cosmetic or therapeutic for improving hyperpigmentation disorders.
Collapse
Affiliation(s)
- Da Hee Kim
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
- Correspondence: (D.W.S.); (B.O.L.); Tel.: +82-43-840-3693 (D.W.S.); +82-43-840-3570 (B.O.L.)
| | - Beong Ou Lim
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Correspondence: (D.W.S.); (B.O.L.); Tel.: +82-43-840-3693 (D.W.S.); +82-43-840-3570 (B.O.L.)
| |
Collapse
|
4
|
Cheng JX, Li YQ, Cai J, Zhang CF, Akihisa T, Li W, Kikuchi T, Liu WY, Feng F, Zhang J. Phenolic compounds from Ficus hispida L.f. as tyrosinase and melanin inhibitors: Biological evaluation, molecular docking, and molecular dynamics. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Liu J, Xu X, Jiang R, Sun L, Zhao D. Vanillic acid in Panax ginseng root extract inhibits melanogenesis in B16F10 cells via inhibition of the NO/PKG signaling pathway. Biosci Biotechnol Biochem 2019; 83:1205-1215. [PMID: 30999826 DOI: 10.1080/09168451.2019.1606694] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Panax ginseng C. A. Meyer has been widely used in skin care. Our previous study showed that the phenolic acids in ginseng root extract (GRE) impart inhibitory effects on melanogenesis. In this study, we found that as the most abundant component of phenolic acids in GRE, vanillic acid decreased tyrosinase activity and melanin levels with or without α-MSH stimulation and suppressed the expression of microphthalmia-associated transcription factor (MITF) and melanogenic enzymes in B16F10 cells. Furthermore, vanillic acid downregulated NOS activity, nitric oxide (NO) content, cGMP level, guanylate cyclase (GC) and protein kinase G (PKG) activity, and the phosphorylation of cAMP-response element-binding protein (CREB), whereas arbutin had no effect on the NO/PKG pathway. These findings indicate that vanillic acid in GRE suppressed melanogenesis by inhibiting the NO/PKG signaling pathways. This study provides a potential mechanism underlying the inhibitory effect of ginseng on melanogenesis.
Collapse
Affiliation(s)
- Jianzeng Liu
- a Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy , Changchun University of Chinese Medicine , Changchun , PR China
| | - Xiaohao Xu
- b Research Center of Traditional Chinese Medicine , the Affiliated Hospital to Changchun University of Chinese Medicine , Changchun , PR China
| | - Rui Jiang
- c Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Science , Beihua University , Jilin , PR China
| | - Liwei Sun
- b Research Center of Traditional Chinese Medicine , the Affiliated Hospital to Changchun University of Chinese Medicine , Changchun , PR China.,c Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Science , Beihua University , Jilin , PR China
| | - Daqing Zhao
- a Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy , Changchun University of Chinese Medicine , Changchun , PR China
| |
Collapse
|
6
|
Tao X, Yin L, Xu L, Peng J. Dioscin: A diverse acting natural compound with therapeutic potential in metabolic diseases, cancer, inflammation and infections. Pharmacol Res 2018; 137:259-269. [DOI: 10.1016/j.phrs.2018.09.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 01/11/2023]
|