1
|
Kwon TU, Kwon YJ, Baek HS, Park H, Lee H, Chun YJ. Unraveling the molecular mechanisms of cell migration impairment and apoptosis associated with steroid sulfatase deficiency: Implications for X-linked ichthyosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167004. [PMID: 38182070 DOI: 10.1016/j.bbadis.2023.167004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Steroid sulfatase (STS) deficiency is responsible for X-linked ichthyosis (XLI), a genetic disorder characterized by rough and dry skin caused by excessive keratinization. The impaired keratinization process leads to reduced cell mobility and increased apoptosis, which can cause an excessive buildup of the stratum corneum. In this study, we investigated the mechanisms underlying XLI and found that STS deficiency reduces cell mobility and increases apoptosis in human keratinocyte HaCaT cells. To explore these mechanisms further, RNA-sequencing was conducted on skin tissues from STS transgenic and knockout mice. Our RNA-seq results revealed that STS deficiency plays a critical role in regulating multiple signaling pathways associated with cell mobility and apoptosis, such as Wnt/β signaling and the Hippo signaling pathway. Knockdown of the STS gene using shRNA in HaCaT cells led to an upregulation of E-cadherin expression and suppression of key factors involved in epithelial-mesenchymal transition (EMT), such as N-cadherin and vimentin. Inhibition of EMT involved the Hippo signaling pathway and reduction of HIF-1α. Interestingly, inhibiting STS with shRNA increased mitochondrial respiration levels, as demonstrated by the extracellular flux oxygen consumption rate. Additionally, we observed a significant increase in ROS production in partial STS knockout cells compared to control cells. Our study demonstrated that the excessive generation of ROS caused by STS deficiency induces the expression of Bax and Bak, leading to the release of cytochrome c and subsequent cell death. Consequently, STS deficiency impairs cell mobility and promotes apoptosis, offering insights into the pathophysiological processes and potential therapeutic targets for XLI.
Collapse
Affiliation(s)
- Tae-Uk Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyoung-Seok Baek
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyemin Park
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyein Lee
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
2
|
Chattaraj S, Mitra D, Ganguly A, Thatoi H, Das Mohapatra PK. A critical review on the biotechnological potential of Brewers' waste: Challenges and future alternatives. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100228. [PMID: 38450031 PMCID: PMC10915524 DOI: 10.1016/j.crmicr.2024.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
In order to comply with the stringent discharge guidelines issued by governmental organizations to protect the ecosystem, the substantial amounts of effluent and sturdy wastes produced by the beer brewing process need to be discarded or handled in the most affordable and secure manner. Huge quantities of waste material released with each brew bestow a significant opportunity for the brewing sector to move towards sustainability. The concept of circular economy and the development of technological advancements in brewery waste processing have spurred interest to valorize brewery waste for implementation in various sectors of medical and food science, industrial science, and many more intriguing fields. Biotechnological methods for valorizing brewery wastes are showing a path towards green chemistry and are feasible and advantageous to environment. The study unfolds most recent prospectus for brewery waste usage and discusses major challenges with brewery waste treatment and valorization and offers suggestions for further work.
Collapse
Affiliation(s)
- Sourav Chattaraj
- Department of Microbiology, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal PIN - 733134, India
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Science, Siksha ‘O’ Anusandhan University, Kalinga Nagar, Bhubaneswar, Odisha 751 003, India
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal PIN - 733134, India
- Department of Microbiology, Graphic Era (Deemed to be University), 566/6, Bell Road, Clement Town, Dehradun, 248002 Uttarakhand, India
| | - Arindam Ganguly
- Department of Microbiology, Bankura Sammilani College, Bankura, West Bengal PIN - 722102, India
| | - Hrudayanath Thatoi
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Science, Siksha ‘O’ Anusandhan University, Kalinga Nagar, Bhubaneswar, Odisha 751 003, India
| | - Pradeep K. Das Mohapatra
- Department of Microbiology, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal PIN - 733134, India
| |
Collapse
|
3
|
Alotaibi N, Alotaibi MO, Alshammari N, Adnan M, Patel M. Network Pharmacology Combined with Molecular Docking, Molecular Dynamics, and In Vitro Experimental Validation Reveals the Therapeutic Potential of Thymus vulgaris L. Essential Oil (Thyme Oil) against Human Breast Cancer. ACS OMEGA 2023; 8:48344-48359. [PMID: 38144096 PMCID: PMC10734022 DOI: 10.1021/acsomega.3c07782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023]
Abstract
Breast cancer is a major global health issue for women. Thyme oil, extracted from Thymus vulgaris L., has shown promising anticancer effects. In the present study, we investigated how Thyme oil can influence breast cancer treatment using a multimethod approach. We used network pharmacology to identify the active compounds of Thyme oil, their molecular targets, and the pathways involved in breast cancer. We found that Thyme oil can modulate several key proteins (EGFR, AKT1, ESR1, HSP90AA1, STAT-3, SRC, IL-6, HIF1A, JUN, and BCL2) and pathways (EGFR tyrosine kinase inhibitor resistance, prolactin signaling pathway, HIF-1 signaling pathway, estrogen signaling pathway, ERBB signaling pathway, AGE-RAGE signaling pathway, JAK-STAT signaling pathway, FoxO signaling pathway, and PI3K-AKT signaling pathway) related to breast cancer progression. We then used molecular docking and dynamics to study the interactions and stability of the Thyme oil-compound complexes. We discovered three potent compounds (aromadendrene, α-humulene, and viridiflorene) that can bind strongly to important breast cancer proteins. We also performed in vitro experiments on MCF-7 cells to confirm the cytotoxicity and antiproliferative effects of Thyme oil. We observed that Thyme oil can inhibit cancer cell growth and proliferation at a concentration of 365.37 μg/mL. Overall, our results provide a comprehensive understanding of the pharmacological mechanism of Thyme oil in breast cancer treatment and suggest its potential as a new or adjuvant therapy. Further studies are needed to validate and optimize the therapeutic efficacy of Thyme oil and its active compounds.
Collapse
Affiliation(s)
- Nahaa
M. Alotaibi
- Department
of Biology, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Modhi O. Alotaibi
- Department
of Biology, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nawaf Alshammari
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 55473, Saudi Arabia
| | - Mohd Adnan
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 55473, Saudi Arabia
| | - Mitesh Patel
- Research
and Development Cell, Department of Biotechnology, Parul Institute
of Applied Sciences, Parul University, Vadodara 391760, India
| |
Collapse
|
4
|
Desrini S, Ducloux J, Hamion G, Bodet C, Labanowski J, Mustofa M, Nuryastuti T, Imbert C, Girardot M. Antibiofilm Activity of Invasive Plants against Candida albicans: Focus on Baccharis halimifolia Essential Oil and Its Compounds. Chem Biodivers 2023; 20:e202300130. [PMID: 37452792 DOI: 10.1002/cbdv.202300130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The extracts of five invasive plants were investigated for antifungal and antibiofilm activities against Candida albicans, C. glabrata, C. krusei, and C. parapsilosis. The antifungal activity was evaluated using the microdilution assay and the antibiofilm effect by measurement of the metabolic activity. Ethanol and ethanol-water extracts of Reynoutria japonica leaves inhibited 50 % of planktonic cells at 250 μg mL-1 and 15.6 μg mL-1 , respectively. Ethanol and ethanol-water extracts of Baccharis halimifolia inhibited >75 % of the mature biofilm of C. albicans at 500 μg mL-1 . The essential oil (EO) of B. halimifolia leaves was the most active (50 % inhibition (IC50 ) at 4 and 74 μg mL-1 against the maturation phase and 24 h old-biofilms of C. albicans, respectively). Oxygenated sesquiterpenes were the primary contents in this EO (62.02 %), with β-caryophyllene oxide as the major component (37 %). Aromadendrene oxide-(2), β-caryophyllene oxide, and (±)-β-pinene displayed significant activities against the maturation phase (IC50 =9-310 μ mol l-1 ) and preformed 24 h-biofilm (IC50 =38-630 μ mol l-1 ) of C. albicans with very low cytotoxicity for the first two compounds. C. albicans remained the most susceptible species to this EO and its components. This study highlighted for the first time the antibiofilm potential of B. halimifolia, its EO and some of its components.
Collapse
Affiliation(s)
- Sufi Desrini
- Department of Pharmacology, Faculty of Medicine, Universitas Islam Indonesia, 55584, Yogyakarta, Indonesia
- Doctoral Programme of Faculty Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Julien Ducloux
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Guillaume Hamion
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines UR 15560, Université de Poitiers, Poitiers, France
| | | | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
- Indonesia Biofilm Research Collaboration Center UGM-BRIN, Yogyakarta, Indonesia
| | - Titik Nuryastuti
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
- Indonesia Biofilm Research Collaboration Center UGM-BRIN, Yogyakarta, Indonesia
| | - Christine Imbert
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Marion Girardot
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| |
Collapse
|
5
|
Tarasova EV, Luchnikova NA, Grishko VV, Ivshina IB. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals (Basel) 2023; 16:872. [PMID: 37375819 PMCID: PMC10301674 DOI: 10.3390/ph16060872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Terpenes and their derivatives (terpenoids and meroterpenoids, in particular) constitute the largest class of natural compounds, which have valuable biological activities and are promising therapeutic agents. The present review assesses the biosynthetic capabilities of actinomycetes to produce various terpene derivatives; reports the main methodological approaches to searching for new terpenes and their derivatives; identifies the most active terpene producers among actinomycetes; and describes the chemical diversity and biological properties of the obtained compounds. Among terpene derivatives isolated from actinomycetes, compounds with pronounced antifungal, antiviral, antitumor, anti-inflammatory, and other effects were determined. Actinomycete-produced terpenoids and meroterpenoids with high antimicrobial activity are of interest as a source of novel antibiotics effective against drug-resistant pathogenic bacteria. Most of the discovered terpene derivatives are produced by the genus Streptomyces; however, recent publications have reported terpene biosynthesis by members of the genera Actinomadura, Allokutzneria, Amycolatopsis, Kitasatosporia, Micromonospora, Nocardiopsis, Salinispora, Verrucosispora, etc. It should be noted that the use of genetically modified actinomycetes is an effective tool for studying and regulating terpenes, as well as increasing productivity of terpene biosynthesis in comparison with native producers. The review includes research articles on terpene biosynthesis by Actinomycetes between 2000 and 2022, and a patent analysis in this area shows current trends and actual research directions in this field.
Collapse
Affiliation(s)
- Ekaterina V. Tarasova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Natalia A. Luchnikova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Victoria V. Grishko
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Irina B. Ivshina
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| |
Collapse
|
6
|
Discovery and Anticancer Activity of the Plagiochilins from the Liverwort Genus Plagiochila. Life (Basel) 2023; 13:life13030758. [PMID: 36983914 PMCID: PMC10058164 DOI: 10.3390/life13030758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The present analysis retraces the discovery of plagiochilins A-to-W, a series of seco-aromadendrane-type sesquiterpenes isolated from diverse leafy liverworts of the genus Plagiochila. Between 1978, with the first isolation of the leader product plagiochilin A from P. yokogurensis, and 2005, with the characterization of plagiochilin X from P. asplenioides, a set of 24 plagiochilins and several derivatives (plagiochilide, plagiochilal A-B) has been isolated and characterized. Analogue compounds recently described are also evoked, such as the plagiochianins and plagicosins. All these compounds have been little studied from a pharmacological viewpoint. However, plagiochilins A and C have revealed marked antiproliferative activities against cultured cancer cells. Plagiochilin A functions as an inhibitor of the termination phase of cytokinesis: the membrane abscission stage. This unique, innovative mechanism of action, coupled with its marked anticancer action, notably against prostate cancer cells, make plagiochilin A an interesting lead molecule for the development of novel anticancer agents. There are known options to increase its potency, as deduced from structure–activity relationships. The analysis shed light on this family of bryophyte species and the little-known group of bioactive terpenoid plagiochilins. Plagiochilin A and derivatives shall be further exploited for the design of novel anticancer targeting the cytokinesis pathway.
Collapse
|
7
|
Yin W, Fu X, Chang W, Han L, Meng J, Cao A, Ren X, Fan Z, Zhou S. Antiovarian cancer mechanism of esculetin: inducing G0/G1 arrest and apoptosis via JAK2/STAT3 signalling pathway. J Pharm Pharmacol 2023; 75:87-97. [PMID: 36332079 DOI: 10.1093/jpp/rgac083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Esculetin is a coumarin derivative, which is extracted from the dried barks of fraxinus chinensis Roxb. Although it is reported esculetin possesses multiple pharmacological activities, its associated regulatory mechanism on ovarian cancer isn't well investigated. METHODS Cytotoxicity is evaluated by MTT, clonogenic and living/dead cells staining assays. Migration and invasion effects are investigated by wound healing, and transwell assays. The effect of cell cycle and apoptosis are analyzed by flow cytometry and western blotting. Mitochondrial membrane potential and intracellular reactive oxygen species (ROS) is assessed by fluorescence microscope. Analysis of animal experiments are carried out by various pathological section assays. KEY FINDINGS Esculetin exerts an anti- ovarian cancer effect. It is found that apoptosis induction is promoted by the accumulation of excessive ROS and inhibition of JAK2/STAT3 signalling pathway. In addition, exposure to esculetin leads to the cell viability reduction, migration and invasion capability decrease and G0/G1 phase cell cycle arrest induced by down-regulating downstream targets of STAT3. In vivo experimental results also indicate esculetin can inhibit tumour growth of mice. CONCLUSIONS Our study provides some strong evidences to support esculetin as a potential anti-cancer agent in ovarian cancer.
Collapse
Affiliation(s)
- Wen Yin
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Xu Fu
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenwen Chang
- Lanzhou University Second Clinical Medical College/Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Li Han
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiahao Meng
- Department of biomaterials, College of Materials, Xiamen University, Xiamen, China
| | - Aijia Cao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaomin Ren
- Lanzhou University Second Clinical Medical College/Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Zhongxiong Fan
- Department of biomaterials, College of Materials, Xiamen University, Xiamen, China.,Institute of Materia Medica, Xinjiang University, Urumqi, China
| | - Suqin Zhou
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
8
|
Gan Z, Zhang Y, Gao W, Wang S, Liu Y, Xiao Y, Zhuang X, Sun A, Wang R. Effects of nonthermal plasma-activated water on the microbial sterilization and storage quality of blueberry. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Using Rosemary Essential Oil as a Potential Natural Preservative during Stirred-like Yogurt Making. Foods 2022; 11:foods11141993. [PMID: 35885236 PMCID: PMC9321113 DOI: 10.3390/foods11141993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
The popularity of rosemary has grown as a natural alternative over the synthetic supplements due to its potential health benefits. The rosemary plant has been utilized to preserve food due to its ability to prevent oxidation and microbial contamination. The reason for this study was to determine the phytochemical components and antimicrobial activity of rosemary essential oil (REO) and the effect of REO addition (0.5 and 0.7%) on the chemical, microbiological, and sensory properties of stirred-like yogurt (SLY) during 16 days of storage at 4 °C. The obtained data observed that REO exhibited antimicrobial action against Escherichia coli, Staphylococcus aureus, and Salmonella marcescens, as well as fungi (Aspergillus flavus) and yeasts (Candida albicans). Increased REO to 0.7% accelerated (p < 0.05) the development of lactic acid bacteria (LAB) in SLY (8.3 log cfu/g) and delayed yeast growth up to 12 days. Molds and coliforms were also not found in the SLY samples with REO. In comparison to control samples, sensory results showed that the addition of REO improves the overall acceptance of SLY (p < 0.05). In conclusion, the current study found that REO could be used as a natural preservative during the production of SLY to extend shelf-life and promote LAB development.
Collapse
|
10
|
Khan SU, Ullah F, Mehmood S, Fahad S, Ahmad Rahi A, Althobaiti F, Dessoky ES, Saud S, Danish S, Datta R. Antimicrobial, antioxidant and cytotoxic properties of Chenopodium glaucum L. PLoS One 2021; 16:e0255502. [PMID: 34714855 PMCID: PMC8555819 DOI: 10.1371/journal.pone.0255502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/17/2021] [Indexed: 11/18/2022] Open
Abstract
We evaluated phytochemical composition, antibacterial, antifungal, anti-oxidant and cytotoxic properties of aqueous (water) and organic extracts (methanol, ethyl acetate and n-hexane) of Chenopodium glaucum. Highest phenolic content 45 mg gallic acid equivalents (GAE)/g d.w was found in aqueous extract followed by ethyl acetate (41mg GAE/g d.w) and methanol extract (34.46 mg GAE/g d.w). Antibacterial potential of aqueous and organic extracts of C. glaucum was examined against Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli and Staphylococcus epidermidis. The aqueous, methanolic, ethyl acetate, and n-hexane extract showed antibacterial activity against A. baumannii, K. pneumoniae, E. coli and S. epidermidis. However, against A. baumannii significantly higher inhibition zone (19 mm and 18.96 mm respectively) was shown by ethyl acetate and methanol extracts. Aqueous extract possessed highest growth inhibition (11 mm) against E. coli. Aqueous, ethyl acetate and methanol extracts showed 9 mm, 10 mm, and 10.33 mm zone of inhibition against the K. pneumoniae. For antifungal activity, the extracts were less effective against Aspergillus niger but showed strong antifungal activity against Aspergillus flavus (A. flavus). The antioxidant activity was measured as DPPH (2, 2-diphenyl-1-picrylhydrazyl), H2O2 and ABTS (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity of free radicals. All the organic extracts of C. glaucum possessed ABTS, DPPH and H2O2 scavenging properties. The highest cytotoxic activity measured as half maximal inhibitory concentration (IC50) against human lungs carcinoma cells was recorded for methanolic (IC50 = 16 μg/mL) and n-hexane (IC50 = 25 μg/mL) extracts, respectively. The Gas chromatography-mass spectrometry (GC-MS) analysis showed 4 major and 26 minor compounds in n-hexane extract and 4 major and 7 minor compounds in methanol extract of the C. glaucum. It is concluded that aqueous and organic extracts of C. glaucum would be potential therapeutic agents and could be exploited on a pilot scale to treat human pathogenic diseases.
Collapse
Affiliation(s)
- Safi Ullah Khan
- Department of Botany, University of Science and Technology Bannu, Bannu, KP, Pakistan
| | - Faizan Ullah
- Department of Botany, University of Science and Technology Bannu, Bannu, KP, Pakistan
| | - Sultan Mehmood
- Department of Botany, University of Science and Technology Bannu, Bannu, KP, Pakistan
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou Hainan, China
- Department of Agronomy, The University of Haripur, Haripur, Pakistan
| | - Arsalan Ahmad Rahi
- Department of Engineering, Faculty of Artificial Intelligence and Machine Learning, University of Hertfordshire, Hatfield, United Kingdom
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | | | - Shah Saud
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Rahul Datta
- Faculty of Forestry and Wood Technology, Department of Geology and Pedology, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
11
|
Abiri R, Atabaki N, Sanusi R, Malik S, Abiri R, Safa P, Shukor NAA, Abdul-Hamid H. New Insights into the Biological Properties of Eucalyptus-Derived Essential Oil: A Promising Green Anti-Cancer Drug. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1877300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Rambod Abiri
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang, Selangor DE 43400 UPM, Malaysia
| | - Narges Atabaki
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor DE 43400 UPM, Malaysia
| | - Ruzana Sanusi
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang, Selangor DE 43400 UPM, Malaysia
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang DE 43400 UPM, Malaysia
| | - Sonia Malik
- Health Science Graduate Program, Biological & Health Sciences Centre, Federal University of Maranhao, Sao Luis, MA, Brazil
| | - Ramin Abiri
- Department of Medical Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parastoo Safa
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor DE 43400 UPM, Malaysia
| | - Nor Aini Ab Shukor
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang, Selangor DE 43400 UPM, Malaysia
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang DE 43400 UPM, Malaysia
| | - Hazandy Abdul-Hamid
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang, Selangor DE 43400 UPM, Malaysia
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang DE 43400 UPM, Malaysia
| |
Collapse
|
12
|
Anti-Tumor Efficiency of Perillylalcohol/β-Cyclodextrin Inclusion Complexes in a Sarcoma S180-Induced Mice Model. Pharmaceutics 2021; 13:pharmaceutics13020245. [PMID: 33578857 PMCID: PMC7916601 DOI: 10.3390/pharmaceutics13020245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/17/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
The low solubility and high volatility of perillyl alcohol (POH) compromise its bioavailability and potential use as chemotherapeutic drug. In this work, we have evaluated the anticancer activity of POH complexed with β-cyclodextrin (β-CD) using three complexation approaches. Molecular docking suggests the hydrogen-bond between POH and β-cyclodextrin in molar proportion was 1:1. Thermal analysis and Fourier-transform infrared spectroscopy (FTIR) confirmed that the POH was enclosed in the β-CD cavity. Also, there was a significant reduction of particle size thereof, indicating a modification of the β-cyclodextrin crystals. The complexes were tested against human L929 fibroblasts after 24 h of incubation showing no signs of cytotoxicity. Concerning the histopathological results, the treatment with POH/β-CD at a dose of 50 mg/kg promoted approximately 60% inhibition of tumor growth in a sarcoma S180-induced mice model and the reduction of nuclear immunoexpression of the Ki67 antigen compared to the control group. Obtained data suggest a significant reduction of cycling cells and tumor proliferation. Our results confirm that complexation of POH/β-CD not only solves the problem related to the volatility of the monoterpene but also increases its efficiency as an antitumor agent.
Collapse
|
13
|
Grover M, Behl T, Sanduja M, Habibur Rahman M, Ahmadi A. Exploring the Potential of Aromatherapy as an Adjuvant Therapy in Cancer and its Complications: A Comprehensive Update. Anticancer Agents Med Chem 2021; 22:629-653. [PMID: 33563202 DOI: 10.2174/1871520621666210204201937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Aromatherapy is a traditional practice of employing essential oils for the therapeutic purposes, currently headed under the category of complementary and adjuvant medicine. OBJECTIVE The aim of this review article is to summarize the potential health benefits of aromatic essential oil from traditional times till the present. It also proposed some mechanisms which can be utilized as basis for using aromatherapy in cancer and cancer linked complications. METHODS To find out the relevant and authentic data, several search engines like Science direct, Pubmed, research gate, etc. were thoroughly checked by inserting key words like aromatherapy, complementary, adjuvant therapy etc. to collect the relevant material in context of article. Also, the chemical components of essential oil were classified based on the presence of functional groups, which are further explored for their cytotoxic potential. RESULTS The result depicted the anti-cancer potential of chemical constituents of essential oil against different types of cancer. Moreover, the essential oils show promising anti-inflammatory, anti-microbial, anti-oxidant and anti-mutagenic potential in several studies, which collectively can form the basis for initiation of its anti-cancer utility. CONCLUSION Aromatherapy can serve as adjuvant economic therapy in cancer after the standardization of protocol.
Collapse
Affiliation(s)
- Madhuri Grover
- B.S. Anangpuria Institute of Pharmacy, Faridabad, Haryana, . India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, . India
| | | | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, . South Korea
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari. Iran
| |
Collapse
|
14
|
Cheng Z, McCann S, Faraone N, Clarke JA, Hudson EA, Cloonan K, Hillier NK, Tahlan K. Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces spp. Microorganisms 2020; 8:microorganisms8111767. [PMID: 33187102 PMCID: PMC7697265 DOI: 10.3390/microorganisms8111767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 01/13/2023] Open
Abstract
The Streptomyces produce a great diversity of specialized metabolites, including highly volatile compounds with potential biological activities. Volatile organic compounds (VOCs) produced by nine Streptomyces spp., some of which are of industrial importance, were collected and identified using gas chromatography–mass spectrometry (GC-MS). Biosynthetic gene clusters (BGCs) present in the genomes of the respective Streptomyces spp. were also predicted to match them with the VOCs detected. Overall, 33 specific VOCs were identified, of which the production of 16 has not been previously reported in the Streptomyces. Among chemical classes, the most abundant VOCs were terpenes, which is consistent with predicted biosynthetic capabilities. In addition, 27 of the identified VOCs were plant-associated, demonstrating that some Streptomyces spp. can also produce such molecules. It is possible that some of the VOCs detected in the current study have roles in the interaction of Streptomyces with plants and other higher organisms, which might provide opportunities for their application in agriculture or industry.
Collapse
Affiliation(s)
- Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
| | - Sean McCann
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - Nicoletta Faraone
- Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6, Canada;
| | - Jody-Ann Clarke
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
| | - E. Abbie Hudson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - Kevin Cloonan
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - N. Kirk Hillier
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
- Correspondence: (N.K.H.); (K.T.)
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
- Correspondence: (N.K.H.); (K.T.)
| |
Collapse
|
15
|
Tao J, Sun G, Li Q, Zhi X, Li Z, He Z, Chen H, Zhou A, Ye J, Xu G, Guan W, Zhang W. KIF15 promotes the evolution of gastric cancer cells through inhibition of reactive oxygen species-mediated apoptosis. J Cell Physiol 2020; 235:9388-9398. [PMID: 32342525 DOI: 10.1002/jcp.29743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022]
Abstract
Kinesin family member 15 (KIF15) is a member of the kinesin superfamily of proteins, which promotes cell mitosis, participates in the transport of intracellular materials, and helps structural assembly and cell signaling pathways transduction. However, its biological role and molecular mechanisms of action in the development of gastric cancer (GC) remain unclear. In the present study, an integrated analysis of The Cancer Genome Atlas (TCGA), Gene Expression Omnibus database, and Kaplan-Meier plotter database was performed to predict the expression and prognostic value of KIF15 in GC patients. Detection of KIF15 expression in GC cells and tissues was performed by a quantitative polymerase chain reaction. In vitro cell proliferation, viability, colony formation ability and flow cytometry assays, and in vivo tumorigenicity assay, were performed to evaluate the effects of KIF15 knockdown on GC cell phenotype. It was demonstrated that the expression of KIF15 messenger RNA in GC tissues was significantly higher compared with that in adjacent tissues, and was closely associated with larger tumor size and poor patient prognosis. In addition, functional studies demonstrated that, due to the increase in reactive oxygen species (ROS) generation, the interference with the expression of KIF15 not only decreased cell proliferation but also increased cell apoptosis and induced cell cycle arrest. ROS-mediated activation of c-Jun N-terminal kinase/c-Jun signaling reduced cell proliferation by regulating the GC cell cycle and increasing apoptosis. Taken together, the results of the present study indicate that KIF15 is an oncoprotein contributing to GC progression, and is expected to help identify novel biomarkers and treatment targets in GC.
Collapse
Affiliation(s)
- Jinqiu Tao
- Department of General Surgery, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Guangli Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Li
- School of Medicine, Southeast University, Nanjing, China
| | - Xiaofei Zhi
- Department of General Surgery, The Affiliated Hospital of Nantong University, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongyuan He
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huihui Chen
- Department of General Surgery, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Aiping Zhou
- Department of General Surgery, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Jiahui Ye
- Department of General Surgery, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Guifang Xu
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Weijie Zhang
- Department of General Surgery, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Yang H, Liu BF, Xie FJ, Yang WL, Cao N. Luteolin induces mitochondrial apoptosis in HT29 cells by inhibiting the Nrf2/ARE signaling pathway. Exp Ther Med 2020; 19:2179-2187. [PMID: 32104282 PMCID: PMC7027334 DOI: 10.3892/etm.2020.8464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of the current study was to investigate luteolin-induced apoptosis and the molecular mechanisms underlying it in HT29 cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to assess the cytotoxicity of luteolin on HT29 cells, and a dichloro-dihydro-fluorescein diacetate assay was used to measure cellular levels of reactive oxygen species (ROS). The effects of luteolin on the mitochondrial membrane potential were also evaluated. Bax and Bcl-2 mRNA expression were determined using reverse transcription-quantitative PCR. Additionally, western blot analysis was performed to assess changes in cytochrome c and caspase-3 protein expression. Localization of nuclear factor erythroid 2-related factor 2 (Nrf2) in the nucleus was also assessed using immunofluorescence. Luteolin exhibited cytotoxicity on HT29 cells in a time- and concentration-dependent manner. Additionally, ROS production was indicated to be increased and ROS scavenging was decreased, which resulted in a significant increase in the levels of ROS in the cells. The mitochondrial membrane potential was indicated to decrease following luteolin treatment. At the molecular level, luteolin significantly increased the mRNA expression of Bax and the protein expression of cytochrome c, caspase-3, p47phox and p22phox. The results revealed that luteolin decreased Bcl-2 protein expression and inhibited the nuclear localization of Nrf2. In conclusion, the current study indicated that luteolin inhibited HT29 cell proliferation and induced apoptosis via the mitochondrial pathway.
Collapse
Affiliation(s)
- Huan Yang
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Bing-Fang Liu
- Department of Nuclear Magnetic Resonance, The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fu-Jia Xie
- Department of General Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R China
| | - Wei-Lin Yang
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Nong Cao
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
17
|
Gupta PK, Tripathi SK, Pappuru S, Chabattula SC, Govarthanan K, Gupta S, Biswal BK, Chakraborty D, Verma RS. Metal-free semi-aromatic polyester as nanodrug carrier: A novel tumor targeting drug delivery vehicle for potential clinical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110285. [PMID: 31761245 DOI: 10.1016/j.msec.2019.110285] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/09/2019] [Accepted: 10/05/2019] [Indexed: 12/19/2022]
Abstract
Polyester nanomaterials have been widely used in drug delivey application from a longer period of time. This study reports the synthesis of metal-free semi-aromatic polyester (SAP) nanomaterial for drug delivery and evaluate its in vivo acute and systemic toxicity for potential clinical application. The ring opening coplymerization of commercially available cyclohexene oxide (CHO) and phthalic anhydride (PA) monomers was carried out to synthesize fully alternating poly(CHO-co-PA) copolymer using metal-free activators. The obtained low Mn SAP was found to be biocompatible, hemocompataible and biodegradable nature. This copolymer was first-time used to fabricate curcumin (CUR) loaded nanoparticles (NPs). These NPs were physicochemically characterized by thermogravimetric analyzer (TGA), X-ray diffraction (XRD), and UV/visible spectrophotometer analysis. Further, these negatively charged core-shell spherical NPs exhibited slow sustained release behavior of CUR with anomalous transport and further displayed its higher intracellular uptake in SiHa cells at different time-periods compared to free CUR. In vitro anti-cancer therapeutic effects of free CUR and poly(CHO-alt-PA)-CUR NPs were evaluated on different cancer cells. We observed the increased cytotoxicity of CUR NPs with low IC50 values compared to free CUR. These results were further substantiated with ex vivo data where, a significant reduction was observed in CUR NPs treated tumor spheroid's size as compared to free CUR. Furthermore, the different doses of metal-free poly(CHO-alt-PA) nanomaterial were tested for its acute and systemic toxicity in BALB/c mice. We did not observe any significant toxicity of tested nanomaterial on vital organs, blood cells and the body weight of mice. Our study suggest that this metal-free SAP nanomaterial can be used for potential clinical application.
Collapse
Affiliation(s)
- Piyush Kumar Gupta
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| | - Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology-Rourkela, Rourkela, 769008, Odisha, India
| | - Sreenath Pappuru
- Organometallic and Polymer Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| | - Siva Chander Chabattula
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| | - Kavitha Govarthanan
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| | - Santosh Gupta
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology-Rourkela, Rourkela, 769008, Odisha, India
| | - Debashis Chakraborty
- Organometallic and Polymer Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India.
| |
Collapse
|
18
|
Synthetic 3-alkylpyridine alkaloid analogues as a new scaffold against leukemic cell lines: cytotoxic evaluation and mode of action. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02395-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Total, Neutral, and Polar Lipids of Brewing Ingredients, By-Products and Beer: Evaluation of Antithrombotic Activities. Foods 2019; 8:foods8050171. [PMID: 31137500 PMCID: PMC6560433 DOI: 10.3390/foods8050171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/14/2019] [Accepted: 05/19/2019] [Indexed: 12/25/2022] Open
Abstract
The in vitro antithrombotic properties of polar lipid constituents of malted grain (MG), pelleted hops (PH), brewer’s spent grain (BSG), spent hops (SH), wort, and bottled beer from the same production line were assessed in human platelets. The total lipids (TL) were extracted according to the Bligh and Dyer method and further separated into the total neutral lipids (TNL) and total polar lipids (TPL) extracts by counter-current distribution. The TL, TNL, and TPL extracts of all samples were assessed for their ability to inhibit platelet-activating factor (PAF) and thrombin-induced human platelet aggregation. The raw materials, by-products, wort, and beer lipid extracts all exhibited antithrombotic properties against PAF and thrombin. However, the beer TPL exhibited the lowest IC50 values against PAF-induced (7.8 ± 3.9 µg) and thrombin-induced (4.3 ± 3.0 µg) platelet aggregation indicating that these polar lipids were the most antithrombotic. The lipid extracts tended to be more bioactive against the thrombin pathway. The fatty acid content of all the TPL extracts were assessed using GC-MS. The fatty acid composition of the most bioactive TPL extracts, the wort and the beer, shared similar fatty acid profiles. Indeed, it was noted that fermentation seems to play a role in increasing the antithrombotic properties of polar lipids against PAF and thrombin by moderately altering the polar lipid fatty acid composition. Furthermore, the use of brewing by-products as a source of functional cardioprotective lipids warrants further investigation and valorisation.
Collapse
|
20
|
Zhang X, Zhang HM. Alantolactone induces gastric cancer BGC-823 cell apoptosis by regulating reactive oxygen species generation and the AKT signaling pathway. Oncol Lett 2019; 17:4795-4802. [PMID: 31186685 PMCID: PMC6507453 DOI: 10.3892/ol.2019.10172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Alantolactone (ALT), a natural sesquiterpene lactone, has been suggested to exert anti-cancer activities in various cancer cell lines. However, the effects and mechanisms of action of ALT in human gastric cancer remains to be elucidated. In the present study, the effects of ALT on BGC-823 cells were examined and the underlying molecular mechanisms associated with these effects were investigated. Cell viability was detected by using an MTT assay. Cell cycle, cell apoptosis and the level of reactive oxygen species (ROS) were assessed by flow cytometry, and the expression levels of proteins of interest were analyzed by western blot assay. The results demonstrated that ALT triggered apoptosis and induced G0/G1 phase arrest in a dose-dependent manner. Furthermore, the expression level of the anti-apoptosis protein Bcl-2 was downregulated, and expression of the pro-apoptosis proteins Bax and cleaved PARP were significantly upregulated. The cell cycle-associated proteins cyclin-dependent kinase inhibitor 1 and cyclin-dependent kinase inhibitor 1B were also increased, while cyclin D1 was deceased. In addition, ALT induced apoptosis via the inhibition of RAC-alpha serine/threonine-protein kinase (AKT) signaling and ROS generation, which was effectively inhibited by the ROS scavenger, N-acetyl cysteine. Therefore, the results from the present study indicated that the ROS-mediated inhibition of the AKT signaling pathway serves an important role in ALT-induced apoptosis in BGC-823 cells. In conclusion, the results demonstrated that ALT exerted significant anti-cancer effects against gastric cancer cells in vitro.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Gastroenterology, People's Hospital, Chongqing 401120, P.R. China
| | - Hong-Ming Zhang
- Department of Blood Transfusion, General Hospital of Xinjiang Military Area Command for The People's Liberation Army, Urumqi, Xinjiang Uygur Autonomous Region 830000, P.R. China
| |
Collapse
|
21
|
Wen L, Liu L, Li J, Tong L, Zhang K, Zhang Q, Li C. NDRG4 protects against cerebral ischemia injury by inhibiting p53-mediated apoptosis. Brain Res Bull 2019; 146:104-111. [DOI: 10.1016/j.brainresbull.2018.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
|
22
|
Zhao Y, Sun N, Gao J, Wu D, Liu A. Antitumor activity of selenium modification of the bovine milk component β-Lg (Se-β-Lg) on H22 cells. Food Funct 2019; 10:3626-3636. [DOI: 10.1039/c8fo02520g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, the apoptosis induction and antitumor activity of a novel complex, seleno-β-lactoglobulin (Se-β-Lg), on H22 cells were explored.
Collapse
Affiliation(s)
- Yana Zhao
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Naxin Sun
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Jiayue Gao
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Di Wu
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| |
Collapse
|
23
|
PIG11 over-expression predicts good prognosis and induces HepG2 cell apoptosis via reactive oxygen species-dependent mitochondrial pathway. Biomed Pharmacother 2018; 108:435-442. [DOI: 10.1016/j.biopha.2018.09.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
|
24
|
Pavithra PS, Mehta A, Verma RS. Essential oils: from prevention to treatment of skin cancer. Drug Discov Today 2018; 24:644-655. [PMID: 30508640 DOI: 10.1016/j.drudis.2018.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/24/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
Abstract
The increasing incidence of cutaneous malignancies signifies the need for multiple treatment options. Several available reviews have emphasized the potential role of various botanical extracts and naturally occurring compounds as anti-skin-cancer agents. Few studies relate to the role of chemoprevention and therapeutic activity of essential oils (EOs) and EO components. The present review summarizes an overview of chemopreventive, anti-melanoma and anti-nonmelanoma activities of EOs from various plants and EO components in in vitro and in vivo models with special emphasis on skin cancer. Also, the mechanisms by which EOs and EO components exert their effects to induce cell death are presented.
Collapse
Affiliation(s)
- P S Pavithra
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - Alka Mehta
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - Rama S Verma
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|