1
|
Chen Y, Luo Y, Liu Y, Luo D, Liu A. Dual efficacy of tocilizumab in managing PD-1 inhibitors-induced myocardial inflammatory injury and suppressing tumor growth with PD-1 inhibitors: a preclinical study. Cancer Immunol Immunother 2025; 74:52. [PMID: 39752010 PMCID: PMC11699076 DOI: 10.1007/s00262-024-03899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025]
Abstract
The combined use of tocilizumab (TCZ) and immune checkpoint inhibitors (ICIs) in cancer treatment is gaining attention, but preclinical studies are lacking. Our study aims to investigate the synergistic anti-tumor effect of TCZ combined with ICIs and its role in treating immune-related adverse events (irAEs). The clinical significance of high interleukin-6 (IL-6) expression in tumor patients was analyzed from the Cancer Genome Atlas (TCGA) database. The expression levels of IL-6 were compared before and during the onset of ICIs-associated myocarditis patients. ICIs-related myocardial inflammatory injury and therapeutic lung cancer models were constructed in C57BL/6 J mice using murine-derived programmed death-1 (PD-1) inhibitors alone or in combination with TCZ. Possible inflammatory mechanisms were proposed and validated. The anti-tumor effects and mechanisms of both drugs in combination were assessed. Patients with high IL-6 expression had a poor prognosis, and those with ICIs-associated myocarditis exhibited elevated IL-6 from baseline. In the PD-1 inhibitors-associated myocardial inflammatory injury mouse model, the levels of IL-6 in the blood and cardiac tissues were significantly elevated. TCZ ameliorated immune myocardial inflammatory injury by inhibiting the IL-6/janus kinase 2 (JAK2)/signal transducer and activator of the transcription 3 (STAT3) pathway. The group treated with PD-1 inhibitors combined with TCZ showed significantly slower tumor growth than that treated with PD-1 inhibitors alone. TCZ resisted tumor growth by inhibiting the IL-6-JAK2-STAT3 pathway. By targeting the IL-6-JAK2-STAT3 pathway, TCZ can alleviate PD-1 inhibitors-associated myocardial inflammatory injury mediated by M1-polarized macrophages and plays a synergistic anti-tumor role by inhibiting lung cancer cell proliferation.
Collapse
Affiliation(s)
- Yanxin Chen
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Department of Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan Province, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Radiation Induced Heart Damage Institute, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yuxi Luo
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Radiation Induced Heart Damage Institute, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yunwei Liu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Radiation Induced Heart Damage Institute, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Anwen Liu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Radiation Induced Heart Damage Institute, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
2
|
Gautam AK, Kumar P, Kumar V, Singh A, Mahata T, Maity B, Yadav S, Kumar D, Singh S, Saha S, Vijayakumar MR. Preclinical evaluation of dalbergin loaded PLGA-galactose-modified nanoparticles against hepatocellular carcinoma via inhibition of the AKT/NF-κB signaling pathway. Int Immunopharmacol 2024; 140:112813. [PMID: 39088916 DOI: 10.1016/j.intimp.2024.112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
Prior research has shown the effectiveness of dalbergin (DL), dalbergin nanoformulation (DLF), and dalbergin-loaded PLGA-galactose-modified nanoparticles (DLMF) in treating hepatocellular carcinoma (HCC) cells. The present investigation constructs upon our previous research and delves into the molecular mechanisms contributing to the anticancer effects of DLF and DLMF. This study examined the anti-cancer effects of DL, DLF, and DLMF by diethyl nitrosamine (DEN)-induced HCC model in albino Wistar rats. In addition, we performed biochemical, antioxidant, lipid profile tests, and histological studies of liver tissue. The anticancer efficacy of DLMF is equivalent to that of 5-fluorouracil, a commercially available therapy for HCC. Immunoblotting studies revealed a reduction in the expression of many apoptotic markers, such as p53, BAX, and Cyt-C, in HCC. Conversely, the expression of Bcl-2, TNF-α, NFκB, p-AKT, and STAT-3 was elevated. Nevertheless, the administration of DL, DLF, and DLMF effectively controlled the levels of these apoptotic markers, resulting in a considerable decrease in the expression of Bcl-2, TNF-α, NFκB, p-AKT, and STAT-3. Specifically, the activation of TNF-alpha and STAT-3 triggers the signalling pathways that include the Bcl-2 family of proteins, Cyt-C, caspase 3, and 9. This ultimately leads to apoptosis and the suppression of cell growth. Furthermore, metabolomic analysis using 1H NMR indicated that the metabolites of animals reverted to normal levels after the treatment.
Collapse
Affiliation(s)
- Anurag Kumar Gautam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India; Department of Pharmacology, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226031, Uttar Pradesh, India
| | - Vipin Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Amita Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Tarun Mahata
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Biswanath Maity
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sachin Yadav
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sanjay Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - M R Vijayakumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India.
| |
Collapse
|
3
|
Hu Y, Huang Y, Xie X, Li L, Zhang Y, Zhang X. ARF6 promotes hepatocellular carcinoma proliferation through activating STAT3 signaling. Cancer Cell Int 2023; 23:205. [PMID: 37716993 PMCID: PMC10505330 DOI: 10.1186/s12935-023-03053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/03/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) possesses the high mortality in cancers worldwide. Nevertheless, the concrete mechanism underlying HCC proliferation remains obscure. In this study, we show that high expression of ARF6 is associated with a poor clinical prognosis, which could boost the proliferation of HCC. METHODS Immunohistochemistry and western blotting were used to detect the expression level of ARF6 in HCC tissues. We analyzed the clinical significance of ARF6 in primary HCC patients. We estimated the effect of ARF6 on tumor proliferation with in vitro CCK8, colony formation assay, and in vivo nude mouse xenograft models. Immunofluorescence was conducted to investigate the ARF6 localization. western blotting was used to detect the cell cycle-related proteins with. Additionally, we examined the correlation between ARF6 and STAT3 signaling in HCC with western blotting, immunohistochemistry and xenograft assay. RESULTS ARF6 was upregulated in HCC tissues compared to adjacent normal liver tissues. The increased expression of ARF6 correlated with poor tumor differentiation, incomplete tumor encapsulation, advanced tumor TNM stage and poor prognosis. ARF6 obviously promoted HCC cell proliferation, colony formation, and cell cycle progression. In vivo nude mouse xenograft models showed that ARF6 enhanced tumor growth. Furthermore, ARF6 activated the STAT3 signaling and ARF6 expression was positively correlated with phosphorylated STAT3 level in HCC tissues. Furthermore, after intervening of STAT3, the effect of ARF6 on tumor-promoting was weakened, which demonstrated ARF6 functioned through STAT3 signaling in HCC. CONCLUSIONS Our results indicate that ARF6 promotes HCC proliferation through activating STAT3 signaling, suggesting that ARF6 may serve as potential prognostic and therapeutic targets for HCC patients.
Collapse
Affiliation(s)
- Yabing Hu
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Laboratory Medicine, Wuhan No.1 Hospital, Wuhan, China
| | - Yongchu Huang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohang Xie
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longshan Li
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochao Zhang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Bharti Sonkar A, Kumar P, Kumar A, Kumar Gautam A, Verma A, Singh A, Kumar U, Kumar D, Mahata T, Bhattacharya B, Keshari AK, Maity B, Saha S. Vinpocetine mitigates DMH-induce pre-neoplastic colon damage in rats through inhibition of pro-inflammatory cytokines. Int Immunopharmacol 2023; 119:110236. [PMID: 37148772 DOI: 10.1016/j.intimp.2023.110236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Colorectal cancer (CRC) is currently recognized as the third most prevalent cancer worldwide. Vinpocetine is a synthetic derivative of the vinca alkaloid vincamine. It has been found effective in ameliorating the growth and progression of cancerous cells. However, its pharmacological effect on colon damage remains elusive. Hence, in this study, we have shown the role of vinpocetine in DMH-induced colon carcinogenesis. At first, male albino Wistar rats were administered with DMH consistently for four weeks to induce pre-neoplastic colon damage. Afterward, animals were treated with vinpocetine (4.2 and 8.4 mg/kg/day p.o.) for 15 days. Serum samples were collected to assess the physiological parameters, including ELISA and NMR metabolomics. Colon from all the groups was collected and processed separately for histopathology and western blot analysis. Vinpocetine attenuated the altered plasma parameters; lipid profile and showed anti-proliferative action as evidenced by suppressed COX-2 stimulation and decreased levels of IL-1β, IL-2, IL-6, and IL-10. Vinpocetine is significantly effective in preventing CRC which may be associated with its anti-inflammatory and antioxidant potential. Accordingly, vinpocetine could serve as a potential anticancer agent for CRC treatment and thus be considered for future clinical and therapeutic research.
Collapse
Affiliation(s)
- Archana Bharti Sonkar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India.
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India; Department of Pharmacology, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226031, Uttar Pradesh, India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India
| | - Anurag Kumar Gautam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India
| | - Abhishek Verma
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India
| | - Amita Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India
| | - Umesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Tarun Mahata
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Bolay Bhattacharya
- Geethanjali College of Pharmacy, Cheeryal, Keesara, Hyderabad 501301, India
| | - Amit K Keshari
- Amity Institute of Pharmacy, Amity University Uttar Pradesh Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| | - Biswanath Maity
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India
| |
Collapse
|
5
|
Huang B, Lang X, Li X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front Oncol 2022; 12:1023177. [PMID: 36591515 PMCID: PMC9800921 DOI: 10.3389/fonc.2022.1023177] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine involved in immune regulation. It can activate janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) signaling pathway. As one of the important signal transduction pathways in cells, JAK2/STAT3 signaling pathway plays a critical role in cell proliferation and differentiation by affecting the activation state of downstream effector molecules. The activation of JAK2/STAT3 signaling pathway is involved in tumorigenesis and development. It contributes to the formation of tumor inflammatory microenvironment and is closely related to the occurrence and development of many human tumors. This article focuses on the relationship between IL-6/JAK2/STAT3 signaling pathway and liver cancer, breast cancer, colorectal cancer, gastric cancer, lung cancer, pancreatic cancer and ovarian cancer, hoping to provide references for the research of cancer treatment targeting key molecules in IL-6/JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Bei Huang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaoling Lang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,*Correspondence: Xiaoling Lang, ; Xihong Li,
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China,*Correspondence: Xiaoling Lang, ; Xihong Li,
| |
Collapse
|
6
|
Kumar P, Kumar M, Gautam AK, Sonkar AB, Verma A, Singh A, Nisha R, Kumar U, Kumar D, Mahata T, Bhattacharya B, Maity B, Pandeya A, Gosipatala SB, Saha S. Ameliorative effect of fluvoxamine against colon carcinogenesis via COX-2 blockade with oxidative and metabolic stress reduction at the cellular, molecular and metabolic levels. BBA ADVANCES 2022; 2:100046. [PMID: 37082584 PMCID: PMC10074870 DOI: 10.1016/j.bbadva.2022.100046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fluvoxamine's (FLX's) anticancer potential was investigated in pre-clinical research utilizing a DMH-induced colorectal cancer (CRC) rat model. qRT-PCR and immunoblotting validated the mechanistic investigation. The CRC condition was induced in response to COX-2 and IL-6, however, following FLX therapy, the condition returned to normal. FLX's anti-CRC potential may be attributable to COX-2 inhibition since this molecular activity was more apparent for COX-2 than IL-6. FLX repaired the altered metabolites linked to CRC rats, according to 1H-NMR analysis. FLX was shown to be similar to 5-FU in terms of tumor protection, which may be useful in future medication development.
Collapse
Affiliation(s)
- Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
- Aryakul College of Pharmacy & Research, Gauri- Bijnaur Road, Natkur, adjacent to CRPF Base Camp, Lucknow, 226002, Uttar Pradesh, India
- Corresponding author: Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, India.
| | - Mohit Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Anurag Kumar Gautam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Archana Bharti Sonkar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Abhishek Verma
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Amita Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Raquibun Nisha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Umesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Tarun Mahata
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Bolay Bhattacharya
- Gethanjali College of Pharmacy, Cheeryal, Keesara, Hyderabad, 501301, India
| | - Biswanath Maity
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Abhishek Pandeya
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Sunil Babu Gosipatala
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| |
Collapse
|
7
|
Wu P, Tian T, Zhao J, Song Q, Wu X, Guo Y, Yu Y, Tan S, Xia H. IRE1α-JNK pathway-mediated autophagy promotes cell survival in response to endoplasmic reticulum stress during the initial phase of hepatic steatosis. Life Sci 2020; 264:118668. [PMID: 33121987 DOI: 10.1016/j.lfs.2020.118668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/10/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
AIMS It has been widely reported that autophagy and inositol-requiring enzyme-1α (IRE1α)-c-Jun N-terminal kinase (JNK) pathway was involved in cell survival under endoplasmic reticulum (ER) stress, but their specific roles in hepatic steatosis remain unclear. This study aimed to determine the interaction between autophagy and IRE1α-JNK pathway on cell survival in response to ER stress during the initial phase of hepatic steatosis. METHODS Hepatic steatosis was induced in HepG2 cells by supplementing oleic acid (OA). Lipid accumulation was evaluated by BODIPY493/503 staining. ER stress and IRE1α-JNK signaling were investigated by western blot. Autophagy was monitored by western blot, GFP-LC3 plasmid and immunofluorescence staining, while apoptosis was determined by western blotting, Annexin-V-FITC/PI staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. KEY FINDINGS Aggravated lipid accumulation was found under increased ER stress during the initial phase of hepatic steatosis. Meanwhile, an increase of autophagy and no alteration of apoptosis were observed under increased ER stress. Interestingly, autophagy was induced by ER stress, while autophagy suppression led to an increase of apoptosis in response to ER stress Moreover, further study showed that IRE1α-JNK pathway was activated after ER stress and consequently induced autophagy, which promoted cell survival in the initial phase of hepatic steatosis. SIGNIFICANCE We conclude that IRE1α-JNK pathway was activated during ER stress in the initial phase of hepatic steatosis and promoted cell survival by enhancing autophagy. Targeting IRE1α-JNK-autophagy signaling may provide new insight into preventive strategies for hepatic steatosis.
Collapse
Affiliation(s)
- Pengbo Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Tian Tian
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Jinbo Zhao
- Department of Cardiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei, PR China
| | - Qi Song
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Xiaoman Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yitian Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yuanjie Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Shiyun Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Hongmiao Xia
- Medical Examination Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
8
|
Kaur S, Bansal Y, Kumar R, Bansal G. A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors. Bioorg Med Chem 2020; 28:115327. [PMID: 31992476 DOI: 10.1016/j.bmc.2020.115327] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/03/2020] [Accepted: 01/12/2020] [Indexed: 02/07/2023]
Abstract
Interleukin-6 (IL-6) is a pleiotropic pro-inflammatory cytokine. Its deregulation is associated with chronic inflammation, and multifactorial auto-immune disorders. It mediates its biological roles through a hexameric complex composed of IL-6 itself, its receptor IL-6R, and glycoprotein 130 (IL-6/IL-6R/gp130). This complex, in turn, activates different signaling mechanisms (classical and trans-signaling) to execute various biochemical functions. The trans-signaling mechanism activates various pathological routes, like JAK/STAT3, Ras/MAPK, PI3K-PKB/Akt, and regulation of CD4+ T cells and VEGF levels, which cause cancer, multiple sclerosis, rheumatoid arthritis, anemia, inflammatory bowel disease, Crohn's disease, and Alzheimer's disease. Involvement of IL-6 in pathophysiology of these complex diseases makes it an important target for the treatment of these diseases. Though some anti-IL-6 monoclonal antibodies are being used clinically, but their high cost, only parenteral administration, and possibility of immunogenicity have limited their use, and warranted the development of novel small non-peptide molecules as IL-6 inhibitors. In the present report, all molecules reported in literature as IL-6 inhibitors have been classified as IL-6 production, IL-6R, and IL-6 signaling inhibitors. Reports available till date are critically studied to identify important and salient structural features common in these molecules. These analyses would assist medicinal chemists to design novel and potent IL-6 production and signaling inhibitors, through knowledge- and/or computer-based approaches, for the treatment of complex multifactorial diseases.
Collapse
Affiliation(s)
- Sukhvir Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Yogita Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India.
| | - Raj Kumar
- Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, India
| | - Gulshan Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| |
Collapse
|