1
|
Bagheri SM, Allahtavakoli M, Hakimizadeh E. Neuroprotective effect of ischemic postconditioning against hyperperfusion and its mechanisms of neuroprotection. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:31. [PMID: 39239075 PMCID: PMC11376715 DOI: 10.4103/jrms.jrms_341_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/13/2023] [Accepted: 06/27/2023] [Indexed: 09/07/2024]
Abstract
Background In recent years, stroke and ischemia-reperfusion injury has motivated researchers to find new ways to reduce the complications. Although reperfusion is essential for brain survival, it is like a double-edged sword that may cause further damage to the brain. Ischemic postconditioning (IPostC) refers to the control of blood flow in postischemia-reperfusion that can reduce ischemia-reperfusion injuries. Materials and Methods Articles were collected by searching for the terms: Ischemic postconditioning and neuroprotective and ischemic postconditioning and hyperperfusion. Suitable articles were collected from electronic databases, including ISI Web of Knowledge, Medline/PubMed, ScienceDirect, Embase, Scopus, Biological Abstract, Chemical Abstract, and Google Scholar. Results New investigations show that IPostC has protection against hyperperfusion by reducing the amount of blood flow during reperfusion and thus reducing infarction volume, preventing the blood-brain barrier damage, and reducing the rate of apoptosis through the activation of innate protective systems. Numerous mechanisms have been suggested for IPostC, which include reduction of free radical production, apoptosis, inflammatory factors, and activation of endogenous protective pathways. Conclusion It seems that postconditioning can prevent damage to the brain by reducing the flow and blood pressure caused by hyperperfusion. It can protect the brain against damages such as stroke and hyperperfusion by activating various endogenous protection systems. In the present review article, we tried to evaluate both useful aspects of IPostC, neuroprotective effects, and fight against hyperperfusion.
Collapse
Affiliation(s)
- Seyyed Majid Bagheri
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Allahtavakoli
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
2
|
Dong J, Dong Y, An L, Wang Y, Li Y, Jin L. The role of the sensory input intervention in recovery of the motor function in hypoxic ischemic encephalopathy rat model. J Neurophysiol 2024; 131:865-871. [PMID: 38568478 PMCID: PMC11381113 DOI: 10.1152/jn.00054.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/24/2024] [Indexed: 05/01/2024] Open
Abstract
Motor disturbances predominantly characterize hypoxic-ischemic encephalopathy (HIE). Among its intervention methods, environmental enrichment (EE) is strictly considered a form of sensory intervention. However, limited research uses EE as a single sensory input intervention to validate outcomes postintervention. A Sprague-Dawley rat model subjected to left common carotid artery ligation and exposure to oxygen-hypoxic conditions is used in this study. EE was achieved by enhancing the recreational and stress-relief items within the cage, increasing the duration of sunlight, colorful items exposure, and introducing background music. JZL184 (JZL) was administered as neuroprotective drugs. EE was performed 21 days postoperatively and the rats were randomly assigned to the standard environment and EE groups, the two groups were redivided into control, JZL, and vehicle injection subgroups. The Western blotting and behavior test indicated that EE and JZL injections were efficacious in promoting cognitive function in rats following HIE. In addition, the motor function performance in the EE-alone intervention group and the JZL-alone group after HIE was significantly improved compared with the control group. The combined EE and JZL intervention group exhibited even more pronounced improvements in these performances. EE may enhance motor function through sensory input different from the direct neuroprotective effect of pharmacological treatment.NEW & NOTEWORTHY Rarely does literature assess motor function, even though it is common after hypoxia ischemic encephalopathy (HIE). Previously used environmental enrichment (EE) components have not been solely used as sensory inputs. Physical factors were minimized in our study to observe the effects of purely sensory inputs.
Collapse
Affiliation(s)
- Juchuan Dong
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Yifei Dong
- Department of Rehabilitation Medicine, Kunming Medical University, Kunming, People's Republic of China
| | - Lijuan An
- Department of Rehabilitation Medicine, Kunming Medical University, Kunming, People's Republic of China
| | - Yufan Wang
- Department of Rehabilitation Medicine, Kunming Medical University, Kunming, People's Republic of China
| | - Yongmei Li
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Lihua Jin
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
3
|
Bietar B, Tanner S, Lehmann C. Neuroprotection and Beyond: The Central Role of CB1 and CB2 Receptors in Stroke Recovery. Int J Mol Sci 2023; 24:16728. [PMID: 38069049 PMCID: PMC10705908 DOI: 10.3390/ijms242316728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The endocannabinoid system, with its intricate presence in numerous cells, tissues, and organs, offers a compelling avenue for therapeutic interventions. Central to this system are the cannabinoid receptors 1 and 2 (CB1R and CB2R), whose ubiquity can introduce complexities in targeted treatments due to their wide-ranging physiological influence. Injuries to the central nervous system (CNS), including strokes and traumatic brain injuries, induce localized pro-inflammatory immune responses, termed neuroinflammation. Research has shown that compensatory immunodepression usually follows, and these mechanisms might influence immunity, potentially affecting infection risks in patients. As traditional preventive treatments like antibiotics face challenges, the exploration of immunomodulatory therapies offers a promising alternative. This review delves into the potential neuroprotective roles of the cannabinoid receptors: CB1R's involvement in mitigating excitotoxicity and CB2R's dual role in promoting cell survival and anti-inflammatory responses. However, the potential of cannabinoids to reduce neuroinflammation must be weighed against the risk of exacerbating immunodepression. Though the endocannabinoid system promises numerous therapeutic benefits, understanding its multifaceted signaling mechanisms and outcomes remains a challenge.
Collapse
Affiliation(s)
- Bashir Bietar
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.B.); (S.T.)
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Sophie Tanner
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.B.); (S.T.)
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Christian Lehmann
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.B.); (S.T.)
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
4
|
Kashyap A, Kumar S, Dutt R. A review on structurally diversified synthesized molecules as monoacylglycerol lipase inhibitors and their therapeutic uses. Curr Drug Res Rev 2022; 14:96-115. [PMID: 35232358 DOI: 10.2174/2589977514666220301111457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
Monoacylglycerol is a metabolic key serine hydrolase, engaged in the regulation of signalling network system of endocannabinoids, which is associated with various physiological processes like pain, inflammation, feeding cognition and neurodegenerative diseases like Alzheimer, Parkinson's disease. The monoacylglycerol also found to act as a regulator and the free fatty acid provider in the proliferation of cancer cells, numerous aggressive tumours such as colorectal cancer, neuroblastoma and nasopharyngeal carcinoma. It also played an important role in increasing the concentration of specific lipids derived from free fatty acids like phosphatidic acid, lysophosphatidic acid, sphingosine-1-phosphate and prostaglandin E2. These signalling lipids are associated with cell proliferation, survival, tumour cell migration, contributing to tumour development, maturation and metastases. In the present study here, we are presenting a review on structurally diverse MAGL inhibitors, their development and their evaluation for different pharmacological activities.
Collapse
Affiliation(s)
- Abhishek Kashyap
- Pharmaceutical Chemistry Department (Ph.D. Scholar), School of Medical and Allied Sciences, GD Goenka University, Sohna, India
| | - Suresh Kumar
- Pharmaceutical Chemistry Department (Ph.D. Scholar), School of Medical and Allied Sciences, GD Goenka University, Sohna, India
| | - Rohit Dutt
- Pharmaceutical Chemistry Department, School of Medical and Allied Sciences, GD Goenka University, Sohna, India
| |
Collapse
|
5
|
Zeng X, He G, Yang X, Xu G, Tang Y, Li H, Yu B, Wang Z, Xu W, Song K. Zebularine protects against blood-brain-barrier (BBB) disruption through increasing the expression of zona occludens-1 (ZO-1) and vascular endothelial (VE)-cadherin. Bioengineered 2022; 13:4441-4454. [PMID: 35112992 PMCID: PMC8974047 DOI: 10.1080/21655979.2021.2024323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Blood-brain-barrier (BBB) disruption is an important pathological characteristic of ischemic stroke (IS) and mainly results from dysfunction of brain vascular endothelial cells and tight junctions. Zebularine is a novel inhibitor of DNA methyltransferase (DNMT). Here, we assessed its effects on BBB disruption in IS. Firstly, we reported that Zebularine maintained BBB integrity in middle cerebral artery occlusion (MCAO) mice by increasing the expressions of zona occludens-1 (ZO-1) and vascular endothelial (VE)-cadherin. Importantly, we found that Zebularine reduced the production of pro-inflammatory cytokines, attenuated brain edema, and improved neurological deficits. In in vitro experiments, the bEnd.3 brain endothelial cells were exposed to oxygen and glucose deprivation/reoxygenation (OGD/R), and the protective effects of Zebularine were assessed. Our findings demonstrated that Zebularine prevented OGD/R-induced cytotoxicity by reducing the release of lactate dehydrogenase (LDH). Additionally, Zebularine protected bEnd.3 cells against OGD/R-induced hyper-permeability and reduction of trans-endothelial electrical resistance (TEER). Notably, we found that treatment with Zebularine activated the Adenosine 5ʹ-monophosphate (AMP)-activated protein kinase (AMPK) pathway by increasing the phosphorylation of adenosine monophosphate-activated protein kinase α (AMPKα). Blockage of AMPKα using its specific inhibitor compound C abolished the beneficial effects of Zebularine in mitigating endothelial hyper-permeability by reducing the expressions of ZO-1 and VE-cadherin. These findings suggest that the protective effects of Zebularine against OGD/R-induced endothelial hyper-permeability are mediated by the activation of AMPKα. In conclusion, our study sheds light on the potential application of Zebularine in the treatment of IS.
Collapse
Affiliation(s)
- Xiangliang Zeng
- Department of Neurology, First Affiliated Hospital, Hunan University of Medicine, Huaihua City, Hunan Province, China
| | - Guohua He
- Department of Neurology, Changsha Central Hospital, Changsha, Hunan, China
| | - Xirong Yang
- Department of Neurology, First Affiliated Hospital, Hunan University of Medicine, Huaihua City, Hunan Province, China
| | - Guoyao Xu
- Department of Neurology, First Affiliated Hospital, Hunan University of Medicine, Huaihua City, Hunan Province, China
| | - Yidan Tang
- Department of Neurology, First Affiliated Hospital, Hunan University of Medicine, Huaihua City, Hunan Province, China
| | - Hanwen Li
- Department of Neurology, First Affiliated Hospital, Hunan University of Medicine, Huaihua City, Hunan Province, China
| | - Bing Yu
- Department of Neurology, First Affiliated Hospital, Hunan University of Medicine, Huaihua City, Hunan Province, China
| | - Zhen Wang
- Department of Neurology, Changsha Central Hospital, Changsha, Hunan, China
| | - Wei Xu
- Department of Neurology, Changsha Central Hospital, Changsha, Hunan, China
| | - Kangping Song
- Department of Neurology, Changsha Central Hospital, Changsha, Hunan, China
| |
Collapse
|
6
|
Chen C, Duan F, Xie Y, Wan Q, Liu H, Gong J, Huang L, Song Z. Nuciferine attenuates acute ischemic stroke in a rat model: a metabolomic approach for the mechanistic study. Mol Omics 2022; 18:765-778. [DOI: 10.1039/d2mo00158f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nuciferine is a promise therapeutic candidate for ischemic stroke. 1H NMR metabolomics was conducted in this study to further elucidate its pharmacological mechanism, which is helpful to be used as a potential treatment for stroke clinically.
Collapse
Affiliation(s)
- Chang Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, P. R. China
| | - Feipeng Duan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, P. R. China
| | - Yongyan Xie
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, P. R. China
| | - Quan Wan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, P. R. China
| | - Haiyun Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, P. R. China
| | - Jinpeng Gong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, P. R. China
| | - Liping Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, P. R. China
| | - Zonghua Song
- Chinese Pharmacopoeia Commission, Beijing 100061, P. R. China
| |
Collapse
|
7
|
Shabanizadeh A, Rahmani MR, Yousefi-Ahmadipour A, Asadi F, Arababadi MK. Mesenchymal Stem Cells: The Potential Therapeutic Cell Therapy to Reduce Brain Stroke Side Effects. J Stroke Cerebrovasc Dis 2021; 30:105668. [PMID: 33631477 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 01/06/2023] Open
Abstract
Tissue plasminogen activator (tPA) is the gold standard treatment for ischemic stroke in the time window of 3-4.5 hours after the onset of symptoms. However, tPA administration is associated with inflammation and neurotoxic effects. Mesenchymal stem cells (MSC)-based therapy is emerging as a promising therapeutic strategy to control different inflammatory conditions. This project was designed to examine the protective role of MSC administration alone or in combination with royal jelly (RJ) five hours after stroke onset. The mice model of middle cerebral artery occlusion (MCAO) was established and put to six groups, including intact (healthy mice without stroke), control (untreated stroke), treated with mouse MSC (mMSC), Sup (conditioned medium), RJ and combination of mMSC and RJ (mMSC/RJ). Thereafter, behavioral functions, serum and brain (in both infarcted and non-infarcted tissues) levels of interleukin (IL)-1β, IL-4, IL-10, tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) the sizes of brain infarction have been determined in the groups. Administration of mMSC and mMSC/RJ significantly improved the behavioral functions when compared to the controls. mMSC, RJ and mMSC/RJ significantly decreased the infarcted volumes. RJ and mMSC/RJ, but not mMSC, significantly decreased the brain edema. The infarction increased the serum levels of the cytokines, except TNF-α, and treatment with mMSC, Sup and RJ reduced serum levels of the pro-inflammatory cytokines. mMSC reduced IL-1β in the non-infarcted brain tissue. To conclude, data revealed that using mMSC/RJ combination significantly reduced stroke side effects, including brain edema and serum levels of pro-inflammatory cytokines, and suggested that combination therapy of MSCs with RJ may be considered as an effective stroke therapeutic strategy.
Collapse
|
8
|
Monoacylglycerol Lipase Inhibitor is Safe when Combined with Delayed r-tPA Administration in Treatment of Stroke. Inflammation 2018; 41:2052-2059. [DOI: 10.1007/s10753-018-0848-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|