1
|
Elsherif NI, Al-Mahallawi AM, Ahmed IS, Shamma RN. Pectin nanoparticles loaded with nitric oxide donor drug: A potential approach for tissue regeneration. Int J Pharm X 2024; 7:100244. [PMID: 38585344 PMCID: PMC10997829 DOI: 10.1016/j.ijpx.2024.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024] Open
Abstract
The process of wound healing and tissue regeneration involves several key mechanisms to ensure the production of new tissues with similar cellular functions. This study investigates the impact of pectin, a natural polysaccharide, and nebivolol hydrochloride (NBV), a nitric oxide (NO) donor drug, on wound healing. Utilizing ionotropic gelation, NBV-loaded pectin nanoparticles were developed following a 2231 full factorial design. The optimized formulation, determined using Design expert® software, exhibited an encapsulation efficiency percentage of 70.68%, zeta potential of -51.4 mV, and a particle size of 572 nm, characterized by a spherical, discrete morphology. An in vivo study was conducted to evaluate the effectiveness of the optimal formulation in wound healing compared to various controls. The results demonstrated the enhanced ability of the optimal formulation to accelerate wound healing. Moreover, histopathological examination further confirmed the formulation's benefits in tissue proliferation and collagen deposition at the wound site 15 days post-injury. This suggests that the developed formulation not only promotes faster healing but does so with minimal side effects, positioning it as a promising agent for effective wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Noha I. Elsherif
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Abdulaziz M. Al-Mahallawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11835, Egypt
| | - Iman Saad Ahmed
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rehab N. Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
2
|
Neu S, Matta R, Locke JA, Troke N, Tadrous M, Saskin R, Rebullar K, Nam R, Herschorn S. The Use of Metformin in Overactive Bladder: A Retrospective Nested Case-control, Population-based Analysis. Urology 2024; 183:70-77. [PMID: 37805050 DOI: 10.1016/j.urology.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVE To determine if metformin use is associated with a lower rate of overactive bladder (OAB) medication use. Metformin facilitates the proliferation and migration of stem cells, which have been shown to improve bladder overactivity in animal models. METHODS We conducted a retrospective nested case-control cohort study using population-based health-care administrative databases. Our cohort included patients with diabetes mellitus type 2 (DM2) ≥69years. Cases received a prescription for an OAB medication, matched with up to 4 controls based on age, sex, and DM2 diagnosis date. Exposure was a new prescription for metformin prior to receiving an OAB medication. Adjusted odds ratios were estimated using conditional logistic regression. Sensitivity analysis was done to assess the relationship between cumulative days' supply of metformin and use of OAB medications. RESULTS Within our cohort of 2,233,084 patients with DM2, there were 16,549 case subjects who received a prescription for an OAB medication, and 64,171 matched controls. We found a positive association between OAB medication use and metformin use (adjusted odds ratios=1.07, 95% CI=1.03-1.12). Summed days' supply of metformin was also associated with OAB medication use, except when summed metformin days was >2220. CONCLUSION Older patients with DM2 exposed to metformin had a slightly higher rate of OAB medication use, until 2220+ days' metformin supply, whereafter no association was found. This suggests no protective role for metformin in the prevention of OAB in this patient population.
Collapse
Affiliation(s)
- Sarah Neu
- Division of Urology, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | - Rano Matta
- Division of Urology, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer A Locke
- Division of Urology, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | | | - Mina Tadrous
- ICES, Toronto, Ontario, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | | | - Karla Rebullar
- Division of Urology, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Robert Nam
- Division of Urology, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Sender Herschorn
- Division of Urology, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Tombulturk FK, Soydas T, Kanigur‐Sultuybek G. Topical metformin accelerates wound healing by promoting collagen synthesis and inhibiting apoptosis in a diabetic wound model. Int Wound J 2024; 21:e14345. [PMID: 37565543 PMCID: PMC10777749 DOI: 10.1111/iwj.14345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
The wound healing process, which is a pathophysiological process that includes various phases, is interrupted in diabetes due to hyperglycemia, and since deterioration occurs in these phases, a normal healing process is not observed. The aim of the current study is to investigate the proliferative and antiapoptotic effects of metformin on wound healing after topical application on diabetic and non-diabetic wounds. For this purpose, we applied metformin topically on the full-thickness excisional wound model we created in diabetic and nondiabetic groups. We investigated the effects of metformin on the apoptotic index by the Terminal deoxynucleotidyl transferase mediated dUTP Nick-End Labeling method and on collagen-I, collagen-III, p53, and c-jun expression levels by quantitative reverse transcription polymerase chain reaction technique in wound biopsy tissues. Our results showed that c-jun and p53 mRNA levels and apoptotic index increased with the effect of diabetes, while collagen synthesis was disrupted. As a result of the study, we showed that metformin increases cellular proliferation and has anti-apoptotic effects by increasing collagen-I/III expression and decreasing p53/c-jun level, especially in diabetic wounds and also in normal wounds. In conclusion, the topical effect of metformin on diabetic wounds reversed the adverse effects caused by diabetes, increasing the wound healing rate and improving the wound repair process.
Collapse
Affiliation(s)
- Fatma Kubra Tombulturk
- Department of Medical Laboratory Techniques, Vocational School of Health ServicesIstinye UniversityIstanbulTurkey
| | - Tugba Soydas
- Department of Medical Biology and GeneticsIstanbul Aydin University, Medical FacultyIstanbulTurkey
| | - Gönül Kanigur‐Sultuybek
- Department of Medical Biology, Cerrahpasa Medical FacultyIstanbul University‐CerrahpasaIstanbulTurkey
| |
Collapse
|
4
|
Firouzi Amandi A, Shahrtash SA, Kalavi S, Moliani A, Mousazadeh H, Rezai Seghin Sara M, Dadashpour M. Fabrication and characterization of metformin-loaded PLGA/Collagen nanofibers for modulation of macrophage polarization for tissue engineering and regenerative medicine. BMC Biotechnol 2023; 23:55. [PMID: 38115008 PMCID: PMC10731790 DOI: 10.1186/s12896-023-00825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
In tissue engineering (TE) and regenerative medicine, the accessibility of engineered scaffolds that modulate inflammatory states is extremely necessary. The aim of the current work was to assess the efficacy of metformin (MET) incorporated in PLGA/Collagen nanofibers (Met-PLGA/Col NFs) to modulate RAW264.7 macrophage phenotype from pro-inflammatory status (M1) to anti-inflammatory status (M2). Given this, MET-PLGA/Col NFs were fabricated using an electrospinning technique. Structural characterization such as morphology, chemical and mechanical properties, and drug discharge pattern were assessed. MTT assay test exposed that MET-PLGA/Col NFs remarkably had increased cell survival in comparison with pure PLGA/Collagen NFs and control (p < 0.05) 72 h after incubation. Based on the qPCR assay, a reduction in the expression of iNOS-2 and SOCS3 was found in the cells seeded on MET-PLGA/Col NFs, demonstrating the substantial modulation of the M1 phenotype to the M2 phenotype. Moreover, it was determined a main decrease in the pro-inflammatory cytokines and mediator's expression but the growth factors amount related to anti-inflammatory M2 were meaningfully upregulated. Finally, MET-PLGA/Col NFs possibly will ensure a beneficial potential for effective variation of the macrophage response from an inflammatory phase (M1) to a pro-regenerative (M2) phase.
Collapse
Affiliation(s)
| | | | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Afshin Moliani
- Isfahan Medical Students Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hanieh Mousazadeh
- Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
| | | | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
5
|
Chen J, Xiao H, Xue R, Kumar V, Aslam R, Mehdi SF, Luo H, Malhotra A, Lan X, Singhal P. Nicotine exacerbates diabetic nephropathy through upregulation of Grem1 expression. Mol Med 2023; 29:92. [PMID: 37415117 DOI: 10.1186/s10020-023-00692-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a major complication of diabetes mellitus. Clinical reports indicate that smoking is a significant risk factor for chronic kidney disease, and the tobacco epidemic exacerbates kidney damage in patients with DN. However, the underlying molecular mechanisms remain unclear. METHOD In the present study, we used a diabetic mouse model to investigate the molecular mechanisms for nicotine-exacerbated DN. Twelve-week-old female mice were injected with streptozotocin (STZ) to establish a hyperglycemic diabetic model. After four months, the control and hyperglycemic diabetic mice were further divided into four groups (control, nicotine, diabetic mellitus, nicotine + diabetic mellitus) by intraperitoneal injection of nicotine or PBS. After two months, urine and blood were collected for kidney injury assay, and renal tissues were harvested for further molecular assays using RNA-seq analysis, real-time PCR, Western blot, and immunohistochemistry. In vitro studies, we used siRNA to suppress Grem1 expression in human podocytes. Then we treated them with nicotine and high glucose to compare podocyte injury. RESULT Nicotine administration alone did not cause apparent kidney injury, but it significantly increased hyperglycemia-induced albuminuria, BUN, plasma creatinine, and the kidney tissue mRNA expression of KIM-1 and NGAL. Results from RNA-seq analysis, real-time PCR, Western blot, and immunohistochemistry analysis revealed that, compared to hyperglycemia or nicotine alone, the combination of nicotine treatment and hyperglycemia significantly increased the expression of Grem1 and worsened DN. In vitro experiments, suppression of Grem1 expression attenuated nicotine-exacerbated podocyte injury. CONCLUSION Grem1 plays a vital role in nicotine-exacerbated DN. Grem1 may be a potential therapeutic target for chronic smokers with DN.
Collapse
Affiliation(s)
- Jianning Chen
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Haiting Xiao
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Rui Xue
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Vinod Kumar
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Rukhsana Aslam
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Syed Faizan Mehdi
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Huairong Luo
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ashwani Malhotra
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Xiqian Lan
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Pravin Singhal
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|
6
|
Sánchez ML, Valdez H, Conde M, Viaña-Mendieta P, Boccaccini AR. Polymers and Bioactive Compounds with a Macrophage Modulation Effect for the Rational Design of Hydrogels for Skin Regeneration. Pharmaceutics 2023; 15:1655. [PMID: 37376103 DOI: 10.3390/pharmaceutics15061655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
The development of biomaterial platforms for dispensing reagents of interest such as antioxidants, growth factors or antibiotics based on functional hydrogels represents a biotechnological solution for many challenges that the biomedicine field is facing. In this context, in situ dosing of therapeutic components for dermatological injuries such as diabetic foot ulcers is a relatively novel strategy to improve the wound healing process. Hydrogels have shown more comfort for the treatment of wounds due to their smooth surface and moisture, as well as their structural affinity with tissues in comparison to hyperbaric oxygen therapy, ultrasound, and electromagnetic therapies, negative pressure wound therapy or skin grafts. Macrophages, one of the most important cells of the innate immune system, have been described as the key not only in relation to the host immune defense, but also in the progress of wound healing. Macrophage dysfunction in chronic wounds of diabetic patients leads to a perpetuating inflammatory environment and impairs tissue repair. Modulating the macrophage phenotype from pro-inflammatory (M1) to anti-inflammatory (M2) could be a strategy for helping to improve chronic wound healing. In this regard, a new paradigm is found in the development of advanced biomaterials capable of inducing in situ macrophage polarization to offer an approach to wound care. Such an approach opens a new direction for the development of multifunctional materials in regenerative medicine. This paper surveys emerging hydrogel materials and bioactive compounds being investigated to induce the immunomodulation of macrophages. We propose four potential functional biomaterials for wound healing applications based on novel biomaterial/bioactive compound combination that are expected to show synergistic beneficial outcomes for the local differentiation of macrophages (M1-M2) as a therapeutic strategy for chronic wound healing improvement.
Collapse
Affiliation(s)
- Mirna L Sánchez
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Hugo Valdez
- Laboratorio de Microbiología Celular e Inmunomecanismos, CINDEFI|Centro de Investigación y Desarrollo en Fermentaciones Industriales Facultad de Ciencias Exactas, La Plata B1900AJL, Argentina
| | - Micaela Conde
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina
| | - Pamela Viaña-Mendieta
- Tecnologico de Monterrey, Instituto para la Investigación en Obesidad, Monterrey 64849, Mexico
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| |
Collapse
|
7
|
Liu P, Jin K, Zong Y, He M, Lu C, Li H, Wang Y, Li C. Ionic liquid functionalized injectable and conductive hyaluronic acid hydrogels for the efficient repair of diabetic wounds under electrical stimulation. Biomater Sci 2022; 10:1795-1802. [DOI: 10.1039/d2bm00026a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The treatment and care of diabetic wounds remains a global challenge due to the the high rates of amputation, recurrence, and mortality. It has been proven that electrical stimulation has...
Collapse
|
8
|
Pu Y, Wang P, Rong Y, Tan X, Shi T, Ma J, Xue W, Chi B. Bio-fabricated nanocomposite hydrogel with ROS scavenging and local oxygenation accelerates diabetic wounds healing. J Mater Chem B 2022; 10:4083-4095. [DOI: 10.1039/d2tb00343k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chronic wounds, especially diabetic wounds, have been suffering from abnormal long inflammatory periods due to their pathological microenvironment of high reactive oxygen species (ROS) level and lack of blood vessels....
Collapse
|
9
|
Tombulturk FK, Todurga-Seven ZG, Huseyinbas O, Ozyazgan S, Ulutin T, Kanigur-Sultuybek G. Topical application of metformin accelerates cutaneous wound healing in streptozotocin-induced diabetic rats. Mol Biol Rep 2021; 49:73-83. [PMID: 34718940 DOI: 10.1007/s11033-021-06843-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Diabetic chronic wound, which is one of the diabetic complications caused by hyperglycemia, characterized by prolonged inflammation has become one of the most serious challenges in the clinic. Hyperglycemia during diabetes not only causes prolonged inflammation and delayed wound healing but also modulates the activation of nuclear factor-kappa B (NF-κB) and the expression of matrix metalloproteinases (MMPs). Although metformin is the oldest oral antihyperglycemic drug commonly used for treating type 2 diabetes, few studies have explored the molecular mechanism of its topical effect on wound healing. Therefore, we aimed to investigate the molecular effects of topical metformin application on delayed wound healing, which's common in diabetes. METHODS AND RESULTS In this context, we created a full-thickness excisional wound model in Wistar albino rats and, investigated NF-κB p65 DNA-binding activity and expression levels of RELA (p65), MMP2 and MMP9 in wound samples taken on days 0, 3, 7, and 14 from diabetic/non-diabetic rats treated with metformin and saline. As a result of our study, we showed that topically applied metformin accelerates wound healing by suppressing NF-κB p65 activity and diminishing the expression of MMP2 and MMP9. CONCLUSIONS Diabetic wounds treated with metformin healed even faster than those in the control group that mimicked standard wound healing.
Collapse
Affiliation(s)
- Fatma Kubra Tombulturk
- Medical Laboratory Techniques, Vocational School of Health Services, Istinye University, Istanbul, Turkey.,Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zeynep Gizem Todurga-Seven
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.,Department of Medical Pharmacology, Medical Faculty, Halic University, Istanbul, Turkey
| | - Onder Huseyinbas
- Research Centre, Medical Faculty, Bezmialem University, Istanbul, Turkey
| | - Sibel Ozyazgan
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Turgut Ulutin
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gonul Kanigur-Sultuybek
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
10
|
Elsherif NI, Al-Mahallawi AM, Abdelkhalek AA, Shamma RN. Investigation of the Potential of Nebivolol Hydrochloride-Loaded Chitosomal Systems for Tissue Regeneration: In Vitro Characterization and In Vivo Assessment. Pharmaceutics 2021; 13:pharmaceutics13050700. [PMID: 34064916 PMCID: PMC8150897 DOI: 10.3390/pharmaceutics13050700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, we evaluated the synergistic effect of nebivolol hydrochloride (NVH), a third-generation beta-blocker and NO donor drug, and chitosan on the tissue regeneration. Ionic gelation method was selected for the preparation of NVH-loaded chitosomes using chitosan lactate and sodium tripolyphosphate. The effect of different formulation variables was studied using a full factorial design, and NVH entrapment efficiency percentages and particle size were selected as the responses. The chosen system demonstrated high entrapment efficiency (73.68 ± 3.61%), small particle size (404.05 ± 11.2 nm), and good zeta potential value (35.6 ± 0.25 mV). The best-achieved formula demonstrated spherical morphology in transmission electron microscopy and amorphization of the crystalline drug in differential scanning calorimetry and X-ray diffraction. Cell culture studies revealed a significantly higher proliferation of the fibroblasts in comparison with the drug suspensions and the blank formula. An in vivo study was conducted to compare the efficacy of the proposed formula on wound healing. The histopathological examination showed the superiority of NVH-loaded chitosomes on the wound proliferation and the non-significant difference in the collagen deposition after 15 days of the injury to that of intact skin. In conclusion, NVH-loaded chitosomes exhibited promising results in enhancing skin healing and tissue regeneration.
Collapse
Affiliation(s)
- Noha Ibrahim Elsherif
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt;
| | - Abdulaziz Mohsen Al-Mahallawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Abdelfattah Ahmed Abdelkhalek
- Department of Microbiology of Supplementary General Science, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo 11835, Egypt;
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
- Correspondence: ; Tel.: +20-111-930-1245
| |
Collapse
|
11
|
Kinasz LRS, DE-Sousa HEV, Cavalcanti MAR, Polanski JF. PREVALENCE OF HEARING SYMPTOMS RELATED TO PATULOUS EUSTACHIAN TUBE AFTER BARIATRIC SURGERY. ACTA ACUST UNITED AC 2020; 33:e1520. [PMID: 33237164 PMCID: PMC7682150 DOI: 10.1590/0102-672020200002e1520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022]
Abstract
Background:
Rapid and severe weight loss can result in the reduction of the ear tube
lining fat tissue and it becomes patent, leading to symptoms such as
autophony, aural fullness and tinnitus. Patients after bariatric surgery
have, in theory, a predisposition to the development of such alteration.
Aim:
To evaluate the presence of patent tuba-related complaints in patients
undergoing bariatric surgery, correlating with weight and body mass index
(BMI) values, as well as demographic data.
Methods:
Cross-sectional study composed of the evaluation of patients undergoing
bariatric surgery through a standardized questionnaire about the presence of
symptoms compatible with ear tube patency.
Results:
Eighty patients were evaluated, 77 female and three males. The main
comorbidity was systemic arterial hypertension (37.5%). Fifteen (18.75%)
presented symptoms compatible with patent auditory/Eustachian tube - aural
fullness and autophony - postoperatively. In symptomatic individuals the
initial weight was 112 kg on average and the preoperative BMI was 45 kg/m²,
while in asymptomatic individuals the weight was 117 kg and BMI 47 kg/m².
There was statistical significance in the comparison between individuals
with and without symptoms in the variables of initial weight (p=0.00000),
current weight (p=0.00029), preoperative BMI (p=0.00219) and postoperative
BMI (p=0.00148).
Conclusion:
The presence of symptoms compatible with patent auditory/Eustachian tube was
18.75% of the patients submitted to bariatric surgery in the evaluated
sample. Both preoperative weight and BMI were lower in symptomatic patients
when compared with the asymptomatic group.
Collapse
|
12
|
Nakagawa T, Tsuka S, Aonuma F, Nodai T, Munemasa T, Tamura A, Mukaibo T, Kondo Y, Masaki C, Hosokawa R. Effects of metformin on the prevention of bisphosphonate-related osteonecrosis of the jaw-like lesions in rats. J Prosthodont Res 2020; 65:219-224. [PMID: 32938854 DOI: 10.2186/jpr.jpor_2019_629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE In this study, we aimed to investigate the effect of glucose metabolism on bone healing after tooth extraction in an osteoporosis rat model administered zoledronic acid (ZA) and dexamethasone (DX). METHODS In total, 24 male Wistar rats (4 weeks old) were randomly assigned to four groups: Control (subcutaneous physiological saline), ZD (subcutaneous ZA and DX twice a week), Ins+ZD (subcutaneous insulin followed by ZD treatment), and Met+ZD (oral metformin followed by ZD treatment). Blood was collected every two weeks . Two weeks after treatment initiation, the first molar tooth on the right maxilla was extracted from all rats. Four weeks later, the rats were sacrificed, and bone healing was assessed. Maxillae samples were fixed and scanned using micro-computed tomography for quantifying areas of bone defects. Hematoxylin-eosin and tartrate-resistant acid phosphatase (TRAP) staining were performed to evaluate bone apoptosis and osteoclast number. RESULTS In all experimental groups, body weight was statistically lower than that in the Control group, with no changes observed in uncarboxylated osteocalcin concentrations. The radiological analysis revealed that insulin or metformin administration improved healing in the tooth extraction socket (p < 0.01). Histological examination revealed that the osteonecrosis area was reduced in the Ins+ZD and Met+ZD groups (p < 0.01). TRAP staining presented increased osteoclast numbers in the ZD group when compared with that observed in the Control. CONCLUSIONS Tooth extraction with long-term ZA and DX administration inhibited bone remodeling and induced bisphosphonate-related osteonecrosis of the jaw-like lesions. Metformin exerted protective effects ag ainst osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Tomohito Nakagawa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Shintaro Tsuka
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Fumiko Aonuma
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Tomotaka Nodai
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Takashi Munemasa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Akiko Tamura
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Taro Mukaibo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Yusuke Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Chihiro Masaki
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| |
Collapse
|
13
|
Campos LF, Tagliari E, Casagrande TAC, Noronha LD, Campos ACL, Matias JEF. EFFECTS OF PROBIOTICS SUPPLEMENTATION ON SKIN WOUND HEALING IN DIABETIC RATS. ACTA ACUST UNITED AC 2020; 33:e1498. [PMID: 32667528 PMCID: PMC7357555 DOI: 10.1590/0102-672020190001e1498] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022]
Abstract
Background:
Chronic wounds in patients with Diabetes Mellitus often become incurable due
to prolonged and excessive production of inflammatory cytokines. The use of
probiotics modifies the intestinal microbiota and modulates inflammatory
reactions.
Aim:
To evaluate the influence of perioperative supplementation with probiotics
in the cutaneous healing process in diabetic rats.
Methods:
Forty-six rats were divided into four groups (C3, P3, C10, P10) according to
the treatment (P=probiotic or C=control, both orally administered) and day
of euthanasia, 3rd or 10th postoperative days. All
rats were induced to Diabetes Mellitus 72 h before starting the experiment
with alloxan. Supplementation was initiated five days before the incision
and maintained until euthanasia. Scalpel incision was guided by a 2x2 cm
mold and the wounds were left to heal per second-intention. The wounds were
digitally measured. Collagen densitometry was done with Picrosirius Red
staining. Histological parameters were analyzed by staining by H&E.
Results:
The contraction of the wound was faster in the P10 group which resulted in a
smaller scar area (p=0.011). There was an increase in type I collagen
deposition from the 3rd to the 10th postoperative day
in the probiotic groups (p=0.016), which did not occur in the control group
(p=0.487). The histological analysis showed a better degree of healing in
the P10 group (p=0.005), with fewer polymorphonuclear (p<0.001) and more
neovessels (p=0.001).
Conclusions:
Perioperative supplementation of probiotics stimulates skin wound healing in
diabetic rats, possibly due to attenuation of the inflammatory response and
increased neovascularization and type I collagen deposition.
Collapse
Affiliation(s)
- Letícia Fuganti Campos
- Postgraduate Program in Surgical Clinic, Federal University of Paraná, Curitiba PR, Brazil
| | - Eliane Tagliari
- Postgraduate Program in Surgical Clinic, Federal University of Paraná, Curitiba PR, Brazil
| | | | - Lúcia de Noronha
- Laboratory of Experimental Pathology, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
| | | | - Jorge Eduardo F Matias
- Postgraduate Program in Surgical Clinic, Federal University of Paraná, Curitiba PR, Brazil
| |
Collapse
|
14
|
Abstract
This review summarizes information on interrelations between diabetes development and collagen metabolism and structure. The growing global problem of diabetes requires the search for new strategies of its complications correction. Among them collagen structure violations and/or its impaired metabolism most often lead to profound disability. Even after several decades of intense studies, pathophysiological mechanisms underlying collagen changes in diabetes mellitus are still not well clear. The main complication is that not only diabetes cause changes in collagen metabolism and structure. Collagens via some mechanisms also may regulate glucose homeostasis, both directly and indirectly. The author also presented the results of own studies on bone and skin type I collagen amino acid composition changes with diabetes. Deepening our understanding of collagen metabolism and diabetes interrelations allows us to optimize approaches to overcome the collagen-mediated consequences of this disease. Recently, it has been clearly demonstrated that use of only antidiabetic agents cannot fully correct such violations. Preparations on the base of flavonoids, collagens and amino acids could be considered as perspective directions in this area of drug development.
Collapse
Affiliation(s)
- Larysa Borysivna Bondarenko
- Toxicology Department, SI “Institute of Pharmacology & Toxicology National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
| |
Collapse
|
15
|
The Potential Role of Cycloastragenol in Promoting Diabetic Wound Repair In Vitro. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7023950. [PMID: 31930133 PMCID: PMC6939423 DOI: 10.1155/2019/7023950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022]
Abstract
Background Refractory wound healing is a severe complication of diabetes with a significant socioeconomic burden. Whereas current therapies are insufficient to accelerate repair, stem cell-based therapy is increasingly recognized as an alternative that improves healing outcomes. The aim of the present study is to explore the role of cycloastragenol (CAG), a naturally occurring compound in Astragali Radix, in ameliorating refractory cutaneous wound healing in vitro, which may provide a new insight into therapeutic strategy for diabetic wounds. Methods Human epidermal stem cells (EpSCs) obtained from nine patients were exposed to CAG, with or without DKK1 (a Wnt signaling inhibitor). A lentiviral short hairpin RNA (shRNA) system was used to establish the telomerase reverse transcriptase (TERT) and β-catenin knockdown cell line. Cell counting kit-8, scratch wound healing, and transwell migration assay were used to determine the effects of CAG in cell growth and migration. The activation of TERT, β-catenin, and c-Myc was determined using real-time qPCR and western blot analysis. Chromatin immunoprecipitation (ChIP) was performed to evaluate the associations among CAG, TERT, and Wnt/β-catenin signals. Results CAG not only promoted the proliferation and migration ability of EpSCs but also increased the expression levels of TERT, β-catenin, c-Myc. These effects of CAG were most pronounced at a dose of 0.3 μM. Notably, the CAG-promoted proliferative and migratory abilities of EpSCs were abrogated in TERT and β-catenin-silenced cells. In addition, the ChIP results strongly suggested that CAG-modulated TERT was closely associated with the activation of Wnt/β-catenin signaling. Conclusion Our data indicate that CAG is a TERT activator of EpSCs and is associated with their proliferation and migration, a role it may play through the activation of Wnt/β-catenin signaling.
Collapse
|