1
|
Luo S, Li Y, Li S, Jiang R, Deng F, Liu G, Zhang J. Expression Regulation of Water Reabsorption Genes and Transcription Factors in the Kidneys of Lepus yarkandensis. Front Physiol 2022; 13:856427. [PMID: 35721542 PMCID: PMC9204326 DOI: 10.3389/fphys.2022.856427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Lepus yarkandensis is a desert-dwelling animal that has various adaptations to cope with drought. The kidney maintains water and acid-base balance mainly through the vasopressin-regulated water reabsorption pathway and proximal tubular bicarbonate reabsorption pathway. In this study, we compared the differentially expressed genes (DEGs) and transcription factors in the kidneys of L. yarkandensis and Oryctolagus cuniculus to explore the relationship between the DEGs in kidneys and the animals’ adaptations. Transcriptome sequencing data were used to predict the differentially-expressed water reabsorption genes and their transcription factors. Quantitative real-time PCR, immunohistochemistry, and western blotting were used to detect and verify the expression of DEGs in the kidney at mRNA and protein levels. Transcriptome analysis of the kidney of L. yarkandensis and O. cuniculus showed that 6,610 genes were up-regulated and 5,727 genes down-regulated in data shared by both species. According to the data, 232 transcription factors and their corresponding target genes were predicted, from which genes and transcription factors related to renal water reabsorption were screened. Quantitative RT-PCR results showed AQP1, AQP2, ADCY3, HIF1A, CREB3, and NFATc1 had higher expression in the L. yarkandensis kidney; in comparison, FXYD2 mRNA expression levels were lower. In western blotting, transcription factors HIF1A, NFATc1, NF-κB1, and critical genes ADCY3, ATPA1, and SLC4A4, were highly expressed in the kidneys of L. yarkandensis. Immunohistochemical results showed that the ADCY3 protein was in the basolateral membrane of the collecting duct, the ATP1A1 protein was in the basolateral membrane and medulla of proximal tubules, and the SLC4A4 protein was in the basolateral membrane of proximal tubules. According to these results can be inferred that HIF1A, NFATc1, and NF-κB1 play a certain role in regulating the expression of genes related to water reabsorption in the kidney of L. yarkandensis, thus improving the water reclamation efficiency of L. yarkandensis, so as to adapt to the arid desert environment.
Collapse
Affiliation(s)
- Shengjie Luo
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Yongle Li
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Shuwei Li
- College of Life Sciences and Technology, Tarim University, Alar, China.,Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources, Tarim University, Alar, China
| | - Renjun Jiang
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Fang Deng
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Guoquan Liu
- Anhui Province Key Laboratory of Translational Cancer Research and Department of Biochemistry, College of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianping Zhang
- College of Life Sciences and Technology, Tarim University, Alar, China.,Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources, Tarim University, Alar, China
| |
Collapse
|
2
|
Matchimakul P, Pongkan W, Kongtung P, Mektrirat R. Comparative quantitation of aquaporin-2 and arginine vasopressin receptor-2 localizations among chronic kidney disease and healthy kidney in dogs. Vet World 2021; 14:2773-2781. [PMID: 34903939 PMCID: PMC8654747 DOI: 10.14202/vetworld.2021.2773-2781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Aquaporin-2 (AQP2) and arginine vasopressin receptor-2 (AVPR2) are proteins that control water homeostasis in principal cells. Chronic kidney disease (CKD) is defined as the impairment and irreversible loss of kidney function and/or structure, which causes water imbalances and polyuria. The study aimed to know the expression of AQPs and AVPR2 in the kidneys of a canine with CKD. MATERIALS AND METHODS The kidneys were collected from two dog carcasses from Small Animal Teaching Hospital, Faculty of Veterinary Medicine, Chiang Mai University. The kidney tissue was prepared for immunohistochemistry and investigated the expression and localization of tissue's AQP2 and AVPR2. For statistical analysis, the Mann-Whitney U-test was applied to the data. RESULTS By immunohistochemistry, AQP2 was expressed strongly in the basolateral and apical membranes of the principal cells, whereas AVPR2 was localized in the principal cell's basolateral membrane in both renal cortex and renal medulla. In the normal kidney, the semi-quantitative immunohistochemistry for the percentage of protein expression of AQP2 and AVPR2 was 5.062±0.4587 and 4.306±0.7695, respectively. In contrast, protein expression of AQP2 and AVPR2 in CKD was found to be 1.218±0.1719 and 0.8536±0.1396, respectively. The data shows that the percentage of AQP2 and AVPR2 expression was decreased, corresponding to a 4-fold and 5-fold in CKD (p<0.001). CONCLUSION Our findings revealed that CKD was a marked decrease in AQP2 and AVPR2 expression. The central role of specific AQP2 and AVPR2 in regulating water homeostasis will provide correlations in case of CKD with polyuria.
Collapse
Affiliation(s)
- Pitchaya Matchimakul
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Integrative Research Center for Veterinary Circulatory Sciences, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Wanpitak Pongkan
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Integrative Research Center for Veterinary Circulatory Sciences, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Piyamat Kongtung
- Central Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Raktham Mektrirat
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Integrative Research Center for Veterinary Circulatory Sciences, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|