1
|
Yao D, Chen E, Li Y, Wang K, Liao Z, Li M, Huang L. The role of endoplasmic reticulum stress, mitochondrial dysfunction and their crosstalk in intervertebral disc degeneration. Cell Signal 2024; 114:110986. [PMID: 38007189 DOI: 10.1016/j.cellsig.2023.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Low back pain (LBP) is a pervasive global health issue. Roughly 40% of LBP cases are attributed to intervertebral disc degeneration (IVDD). While the underlying mechanisms of IVDD remain incompletely understood, it has been confirmed that apoptosis and extracellular matrix (ECM) degradation caused by many factors such as inflammation, oxidative stress, calcium (Ca2+) homeostasis imbalance leads to IVDD. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are involved in these processes. The initiation of ER stress precipitates cell apoptosis, and is also related to inflammation, levels of oxidative stress, and Ca2+ homeostasis. Additionally, mitochondrial dynamics, antioxidative systems, disruption of Ca2+ homeostasis are closely associated with Reactive Oxygen Species (ROS) and inflammation, promoting cell apoptosis. However, numerous crosstalk exists between the ER and mitochondria, where they interact through inflammatory cytokines, signaling pathways, ROS, or key molecules such as CHOP, forming positive and negative feedback loops. Furthermore, the contact sites between the ER and mitochondria, known as mitochondria-associated membranes (MAM), facilitate direct signal transduction such as Ca2+ transfer. However, the current attention towards this issue is insufficient. Therefore, this review summarizes the impacts of ER stress and mitochondrial dysfunction on IVDD, along with the possibly potential crosstalk between them, aiming to unveil novel avenues for IVDD intervention.
Collapse
Affiliation(s)
- Dengbo Yao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Enming Chen
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yuxi Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kun Wang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zhuangyao Liao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ming Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Lin Huang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China..
| |
Collapse
|
2
|
Wang X, Zeng Q, Ge Q, Hu S, Jin H, Wang PE, Li J. Protective effects of Shensuitongzhi formula on intervertebral disc degeneration via downregulation of NF-κB signaling pathway and inflammatory response. J Orthop Surg Res 2024; 19:80. [PMID: 38243334 PMCID: PMC10799454 DOI: 10.1186/s13018-023-04391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 01/21/2024] Open
Abstract
Low back pain (LBP) is a common orthopedic disease over the world. Lumbar intervertebral disc degeneration (IDD) is regarded as an important cause of LBP. Shensuitongzhi formula (SSTZF) is a drug used in clinical treatment for orthopedic diseases. It has been found that SSTZF can have a good treatment for IDD. But the exact mechanism has not been clarified. The results showed that SSTZF protects against LSI-induced degeneration of cartilage endplates and intervertebral discs. Meanwhile, SSTZF treatment dramatically reduces the expression of inflammatory factor as well as the expression of catabolism protein and upregulates the expression of anabolism protein in LSI-induced mice. In addition, SSTZF delayed the progression of LSI-induced IDD via downregulation the level of NF-κB signaling key gene RELA and phosphorylation of key protein P65 in endplate chondrocytes. Our study has illustrated the treatment as well as the latent mechanism of SSTZF in IDD.
Collapse
Affiliation(s)
- Xu Wang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qinghe Zeng
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qinwen Ge
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Songfeng Hu
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Orthopaedics and Traumatology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, Zhejiang, China
| | - Hongting Jin
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Ping-Er Wang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China.
| | - Ju Li
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China.
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| |
Collapse
|
3
|
Gao J, Liu J, Yu T, Xu C, Sun H, Lu C, Dan W, Dai J. Synthesis of 3-formyl-eudistomin U with anti-proliferation, anti-migration and apoptosis-promoting activities on melanoma cells. BMC Chem 2023; 17:184. [PMID: 38124159 PMCID: PMC10734049 DOI: 10.1186/s13065-023-01102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
The discovery of new lead skeleton against melanoma are urgently needed due to its highly malignant and mortality. Herein, a new molecular entity (EU-5) derived from eudistomin U was synthesized with total yield of 46%, which displayed potent activity against malignant melanoma A375 cells (IC50 = 4.4 µM), no hemolytic toxicity and good physicochemical properties in silico. Colony formation and cell cycle arrest assays revealed that EU-5 suppressed cell proliferation by causing cell cycle arrest at G0/G1 phase. Wound healing and transwell assays suggested that EU-5 could effectively inhibit migration of A375 cells in a dose-dependent manner. Calcein-AM/PI staining, Annexin V-FITC/PI apoptosis detection, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), transcriptomics, quantitative real‑time polymerase chain reaction (qRT‑PCR), spectrometric titration and molecular docking assays indicated that EU-5 could activate p53 signaling pathway and trigger mitochondria-mediated cell apoptosis. Taken together, this study provided a promising lead structure for the design of a new generation of anti-melanoma drugs.
Collapse
Affiliation(s)
- Jixiang Gao
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250100, China
| | - Jinyi Liu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Tao Yu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Chenggong Xu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Hao Sun
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Chunbo Lu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China.
| | - Jiangkun Dai
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China.
| |
Collapse
|
4
|
Zhang P, He J, Gan Y, Shang Q, Chen H, Zhao W, Shen G, Jiang X, Ren H. Plastrum testudinis Ameliorates Oxidative Stress in Nucleus Pulposus Cells via Downregulating the TNF-α Signaling Pathway. Pharmaceuticals (Basel) 2023; 16:1482. [PMID: 37895953 PMCID: PMC10610230 DOI: 10.3390/ph16101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
BackgroundPlastrum testudinis (PT), a widely used traditional Chinese medicine, exerts protective effects against bone diseases such as intervertebral disc degeneration (IDD). Despite its effectiveness, the molecular mechanisms underlying the effects of PT on IDD remain unclear. Methods In this study, we used a comprehensive strategy combining bioinformatic analysis with experimental verification to investigate the possible molecular mechanisms of PT against IDD. We retrieved targets for PT and IDD, and then used their overlapped targets for protein-protein interaction (PPI) analysis. In addition, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to investigate the anti-IDD mechanisms of PT. Moreover, in vivo and in vitro experiment validations including hematoxylin-eosin (HE) and safranine O-green staining, senescence-associated β-galactosidase (SA-β-gal) assay, cell immunofluorescence staining, intracellular ROS measurement and Western blot analysis were performed to verify bioinformatics findings. Results We identified 342 and 872 PT- and IDD-related targets (32 overlapping targets). GO enrichment analysis yielded 450 terms related to oxidative stress and inflammatory response regulation. KEGG analysis identified 48 signaling pathways, 10 of which were significant; the TNF-α signaling pathway had the highest p-value, and prostaglandin G/H synthase 2 (PTGS2), endothelin-1 (EDN1), TNF-α, JUN and FOS were enriched in this pathway. Histopathological results and safranin O/green staining demonstrated that PT attenuated IDD, and SA-β-gal assay showed that PT ameliorated nucleus pulposus cell (NPC) senescence. An ROS probe was adopted to confirm the protective effect of PT against oxidative stress. Western blot analyses confirmed that PT downregulated the protein expression of PTGS2, EDN1, TNF-α, JUN and FOS in the TNF-α signaling pathway as well as cellular senescence marker p16, proinflammatory cytokine interleukin-6 (IL6), while PT upregulated the expression of NPC-specific markers including COL2A1 and ACAN in a concentration-dependent manner. Conclusions To the best of our knowledge, this study is the first to report that PT alleviates IDD by downregulating the protein expression of PTGS2, EDN1, TNF-α, JUN and FOS in the TNF-α signaling pathway and upregulating that of COL2A1 and ACAN, thus suppressing inflammatory responses and oxidative stress in NPCs.
Collapse
Affiliation(s)
- Peng Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (P.Z.); (Y.G.); (Q.S.); (H.C.)
| | - Jiahui He
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510130, China;
| | - Yanchi Gan
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (P.Z.); (Y.G.); (Q.S.); (H.C.)
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (P.Z.); (Y.G.); (Q.S.); (H.C.)
| | - Honglin Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (P.Z.); (Y.G.); (Q.S.); (H.C.)
| | - Wenhua Zhao
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; (W.Z.); (G.S.)
| | - Gengyang Shen
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; (W.Z.); (G.S.)
| | - Xiaobing Jiang
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; (W.Z.); (G.S.)
| | - Hui Ren
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; (W.Z.); (G.S.)
| |
Collapse
|
5
|
Shah MA, Abuzar SM, Ilyas K, Qadees I, Bilal M, Yousaf R, Kassim RMT, Rasul A, Saleem U, Alves MS, Khan H, Blundell R, Jeandet P. Ginsenosides in cancer: Targeting cell cycle arrest and apoptosis. Chem Biol Interact 2023; 382:110634. [PMID: 37451663 DOI: 10.1016/j.cbi.2023.110634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Despite the existence of extensive clinical research and novel therapeutic treatments, cancer remains undefeated and the significant cause of death worldwide. Cancer is a disease in which growth of cells goes out of control, being also able to invade other parts of the body. Cellular division is strictly controlled by multiple checkpoints like G1/S and G2/M which, when dysregulated, lead to uncontrollable cell division. The current remedies which are being utilized to combat cancer are monoclonal antibodies, chemotherapy, cryoablation, and bone marrow transplant etc. and these have also been greatly disheartening because of their serious adverse effects like hypotension, neuropathy, necrosis, leukemia relapse and many more. Bioactive compounds derived from natural products have marked the history of the development of novel drug therapies against cancer among which ginsenosides have no peer as they target several signaling pathways, which when abnormally regulated, lead to cancer. Substantial research has reported that ginsenosides like Rb1, Rb2, Rb3, Rc, Rd, Rg3, Rh2 etc. can prevent and treat cancer by targeting different pathways and molecules by induction of autophagy, neutralizing ROS, induction of cancerous cell death by controlling the p53 pathway, modulation of miRNAs by decreasing Smad2 expression, regulating Bcl-2 expression by normalizing the NF-Kb pathway, inhibition of inflammatory pathways by decreasing the production of cytokines like IL-8, causing cell cycle arrest by restricting cyclin E1 and CDC2, and induction of apoptosis during malignancy by decreasing β-catenin levels etc. In this review, we have analyzed the anti-cancer therapeutic potential of various ginsenoside compounds in order to consider their possible use in new strategies in the fight against cancer.
Collapse
Affiliation(s)
| | - Syed Muhammad Abuzar
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kainat Ilyas
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Irtaza Qadees
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Momna Bilal
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Yousaf
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | | | - Azhar Rasul
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Maria Silvana Alves
- Laboratory of Cellular and Molecular Bioactivity, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine, University of Malta, Msida, MSD2080, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Imsida, Malta
| | - Philippe Jeandet
- University of Reims, Research Unit Induced Resistance and Plant Bioprotection USC INRAe 1488 Department of Biology and Biochemistry, Faculty of Sciences, 51100, Reims, France.
| |
Collapse
|
6
|
Tian X, Zhang Y, Shen L, Pan G, Yang H, Jiang Z, Zhu X, He F. Kartogenin-enhanced dynamic hydrogel ameliorates intervertebral disc degeneration via restoration of local redox homeostasis. J Orthop Translat 2023; 42:15-30. [PMID: 37560412 PMCID: PMC10407629 DOI: 10.1016/j.jot.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION Over-activation of oxidative stress due to impaired antioxidant functions in nucleus pulpous (NP) has been identified as a key factor contributing to intervertebral disc degeneration (IVDD). While Kartogenin (KGN) has previously demonstrated antioxidant properties on articular cartilage against osteoarthritis, its effects on NP degeneration have yet to be fully understood. OBJECTIVES This study aimed to investigate the protective effects of KGN on nucleus pulpous cells (NPCs) against an inflammatory environment induced by interleukin (IL)-1β, as well as to explore the therapeutic potential of KGN-enhanced dynamic hydrogel in preventing IVDD. METHODS NPCs were isolated from rat caudal IVDs and subjected to treatment with KGN at varying concentrations (ranging from 0.01 to 1 μM) in the presence of IL-1β. The expression of extracellular matrix (ECM) anabolism markers was quantitatively assessed at both the mRNA and protein levels. Additionally, intracellular reactive oxygen species and antioxidant enzyme expression were evaluated, along with the role of nuclear factor erythroid 2-related factor 2 (NRF2). Based on these findings, a dynamic self-healing hydrogel loaded with KGN was developed through interconnecting networks. Subsequently, KGN-enhanced dynamic hydrogel was administered into rat caudal IVDs that had undergone puncture injury, followed by radiographic analysis and immunohistochemical staining to evaluate the therapeutic efficacy. RESULTS In vitro treatments utilizing KGN were observed to maintain ECM synthesis and inhibit catabolic activities in IL-1β-stimulated NPCs. The mechanism behind this protective effect of KGN on NPCs was found to involve the asctivation of NRF2 and downstream antioxidant enzymes, including glutathione peroxidase 1 and heme oxygenase 1. This was further supported by the loss of both antioxidant and anabolic effects upon pharmacological inhibition of NRF2. Furthermore, a self-healing hydrogel was developed and loaded with KGN to achieve localized and sustained release of the compound. The injection of KGN-enhanced hydrogel effectively ameliorated the degradation of NP ECM and mitigated inflammation in a rat model of puncture-induced IVDD. CONCLUSIONS Our results indicate that KGN exhibits potential as a therapeutic agent for NP degeneration, and that KGN-enhanced dynamic hydrogel represents a novel approach for treating IVDD by restoring redox homeostasis in NP.The translational potential of this article: The dysregulation of oxidant and antioxidant balance has been shown to impede the repair and regeneration of NP, thereby hastening the progression of IVDD following injury. The present investigation has demonstrated that the sustained release of KGN promotes the synthesis of ECM in vitro and mitigates the progression of IVDD in vivo by restoring redox equilibrium, thereby presenting a novel therapeutic candidate based on the antioxidant properties of KGN for the treatment of IVDD.
Collapse
Affiliation(s)
- Xin Tian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Lei Shen
- Department of Orthopaedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing City, 214200, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Zhenhuan Jiang
- Department of Orthopaedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing City, 214200, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| |
Collapse
|
7
|
Wang J, Zeng L, Zhang Y, Qi W, Wang Z, Tian L, Zhao D, Wu Q, Li X, Wang T. Pharmacological properties, molecular mechanisms and therapeutic potential of ginsenoside Rg3 as an antioxidant and anti-inflammatory agent. Front Pharmacol 2022; 13:975784. [PMID: 36133804 PMCID: PMC9483152 DOI: 10.3389/fphar.2022.975784] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 12/06/2022] Open
Abstract
Inflammation and oxidative stress lead to various acute or chronic diseases, including pneumonia, liver and kidney injury, cardiovascular and cerebrovascular diseases, metabolic diseases, and cancer. Ginseng is a well-known and widely used ethnic medicine in Asian countries, and ginsenoside Rg3 is a saponin isolated from Panax ginseng C. A. Meyer, Panax notoginseng, or Panax quinquefolius L. This compound has a wide range of pharmacological properties, including antioxidant and anti-inflammatory activities, which have been evaluated in disease models of inflammation and oxidative stress. Rg3 can attenuate lung inflammation, prevent liver and kidney function damage, mitigate neuroinflammation, prevent cerebral and myocardial ischemia–reperfusion injury, and improve hypertension and diabetes symptoms. The multitarget, multipathway mechanisms of action of Rg3 have been gradually deciphered. This review summarizes the existing knowledge on the anti-inflammatory and antioxidant effects and underlying molecular mechanisms of ginsenoside Rg3, suggesting that ginsenoside Rg3 may be a promising candidate drug for the treatment of diseases with inflammatory and oxidative stress conditions.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Li Zeng
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ying Zhang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Wenxiu Qi
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Ziyuan Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Lin Tian
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
- *Correspondence: Qibiao Wu, ; Xiangyan Li, ; Tan Wang,
| | - Xiangyan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Qibiao Wu, ; Xiangyan Li, ; Tan Wang,
| | - Tan Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Qibiao Wu, ; Xiangyan Li, ; Tan Wang,
| |
Collapse
|
8
|
Oxidative Stress and Ginsenosides: An Update on the Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9299574. [PMID: 35498130 PMCID: PMC9045968 DOI: 10.1155/2022/9299574] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022]
Abstract
Ginsenosides are a class of active components extracted from ginseng plants (such as Panax ginseng, Panax quinquefolium, and Panax notoginseng). Ginsenosides have significant protective effects on the nervous system, cardiovascular system, and immune system, so they have been widely used in the treatment of related diseases. Entry of a variety of endogenous or exogenous harmful substances into the body can lead to an imbalance between the antioxidant defense system and reactive oxygen species, thus producing toxic effects on a variety of tissues and cells. In addition, oxidative stress can alter multiple signaling pathways, including the Keap1/Nrf2/ARE, PI3K/AKT, Wnt/β-catenin, and NF-κB pathways. With the deepening of research in this field, various ginsenoside monomers have been reported to exert antioxidant effects through multiple signaling pathways and thus have good application prospects. This article summarized the research advancements regarding the antioxidative effects and related mechanisms of ginsenosides, providing a theoretical basis for experimental research on and clinical treatment with ginsenosides.
Collapse
|
9
|
CAO MX, WANG XR, HU WY, YIN D, REN CZ, CHEN SY, YU ML, WEI YY, HU TJ. Regulatory effect of Panax notoginseng saponins on the oxidative stress and histone acetylation induced by porcine circovirus type 2. J Vet Med Sci 2022; 84:600-609. [PMID: 35125373 PMCID: PMC9096040 DOI: 10.1292/jvms.21-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/14/2022] [Indexed: 11/22/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) exists widely in swine populations worldwide, and healthy PCV2 virus carriers have enhanced the severity of the infection, which is becoming more difficult to control. This study investigated the regulatory effect of Panax notoginseng saponins (PNS) on the oxidative stress and histone acetylation modification induced by PCV2 in vitro and in mice. In vitro, PNS significantly increased the scavenging capacities of superoxide anion radicals (O2•-) and hydroxyl radicals (•OH) and reduced the content of hydrogen peroxide (H2O2) induced by PCV2 in porcine alveolar macrophages (3D4/2). In addition, PNS decreased the protein expression level of histone H4 acetylation (Ac-H4) by increasing the activity of histone deacetylase (HDAC) in PCV2-infected 3D4/2 cells. In vivo, PNS enhanced the scavenging capacities of •OH and O2•- and reduced the content of H2O2 in the spleens of PCV2-infected mice. PNS also reduced the protein expression level of histone H3 acetylation (Ac-H3) by reducing the activity of histone acetylase (HAT) and increasing the activity of HDAC in the spleens of PCV2-infected mice. PCV2 infection activated oxidative stress and histone acetylation in vitro and in mice, but PNS ameliorated this oxidative stress. The research can provide experimental basis for exploring the antioxidant effect and the regulation of histone acetylation of PNS on PCV2-infected 3D4/2 cells and mice in vitro and in vivo, and provide new ideas for the treatment of PCV2 infection.
Collapse
Affiliation(s)
- Mi-Xia CAO
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Xin-Rui WANG
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Wen-Yue HU
- School of Life Sciences and Biotechnology, Shanghai Jiao
Tong University, Shanghai, China
| | - Dan YIN
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Chun-Zhi REN
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Si-Yu CHEN
- Guangdong Provincial Key Laboratory of Animal Molecular
Design and Precise Breeding, College of Life Science and Engineering, Foshan University,
Foshan, China
| | - Mei-Ling YU
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Ying-Yi WEI
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Ting-Jun HU
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| |
Collapse
|
10
|
Al-Hussaniy HA, Al-Kuraishy HM, Abdulameer AGA. The Use of Panax Ginseng to Reduce the Cardiotoxicity of Doxorubicin and Study its Effect on Modulating Oxidative Stress, Inflammatory, and Apoptosis Pathways. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND: Doxorubicin (DOX) is a broad-spectrum anti-cancer drug that is used to treat a variety of cancers, including blood cancers such as leukemia and solid tissue cancers. However, its use some time limited because of its cardiotoxicity.
OBJECTIVE: The objective of the study was to determine the cardioprotective effect of ginseng in the case of cardiotoxicity caused by doxorubicin therapy.
Methods: Thirty experimental animals (male Sprague Wistar rats) were used in this research and they were separated into three groups: Rats in Group I (n# = 10) were given distilled water plus normal saline, rats in Group II (n# = 10) were given distilled water plus doxorubicin, and rats in Group III (n# = 10) were given Panax ginseng plus doxorubicin. Serum concentration, malondialdehyde (MDA), glutathione reductase (GSH), lipid peroxidase (LPO), TNF (ng/L), cardiac troponin (ng/L), brain natriuretic peptide BNP(g/L), and caspase-3 (pmol/L) levels were measured in all groups.
RESULTS: Doxorubicin caused substantial cardiotoxicity as a result of a significant increase in the elevation of cTnI to 40.09 ± 6.67 (ng/L). In addition, MDA, LPO, TNF-α, and caspase-3 levels were increased in doxorubicin group compared to the control group p < 0.05. Panax ginseng reduced cardiac troponin (cTnI) However, its effect on reduction of BNP levels insignificantly compared to the doxorubicin group p = 0.06. Panax ginseng reduced LPO and MDA and raised the antioxidant potential biomarker GSH significantly compared to the doxorubicin group p < 0.05. Panax ginseng significantly reduced inflammatory (TNF-α) and apoptotic (caspase-3) biomarkers when compared to the doxorubicin group.
CONCLUSIONS: According to the findings of this study, Panax ginseng suppresses reactive oxygen species and inflammatory and apoptotic pathways in experimental rats, thereby preventing doxorubicin-induced cardiovascular events.
Collapse
|
11
|
Sun X, Xue Z, Yasin A, He Y, Chai Y, Li J, Zhang K. Colorectal Cancer and Adjacent Normal Mucosa Differ in Apoptotic and Inflammatory Protein Expression. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
12
|
Liang H, Liu Z, Wang Y, Wang D, Tian J. Transcription factor EB mediates oxidative stress-induced intervertebral disc degeneration via the NF-κB signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1385. [PMID: 34733937 PMCID: PMC8506563 DOI: 10.21037/atm-21-3756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Background It is well known that the intervertebral disc is aggravated by a significant increase in the number of senescent cells, and oxidative stress (OS) is related to the deterioration of this tissue. Transcription factor EB (TFEB) can protect cells from OS. Accordingly, we investigated whether TFEB can prevent OS in human nucleus pulposus (NP) cells. Methods First, TFEB expression was investigated in human NP tissue samples with different degrees of degeneration. NP cells were treated with different concentrations of hydrogen peroxide (H2O2). The expression of collagen 2, aggrecan, and P65 was detected by quantitative real-time polymerase chain reaction (PCR) and Western blotting. We overexpressed and knocked out the TFEB gene to detect the expression of collagen 2, aggrecan, and P65. Results We found that the expression of TFEB decreased stepwise as the degree of intervertebral disc degeneration (IDD) increased. When the NP cells were treated with H2O2, the expression of TFEB, collagen 2, and aggrecan decreased gradually as H2O2 concentration increased. In addition, the expression of collagen2 and aggrecan increased following TFEB overexpression. However, nuclear factor-kappa B (NF-κB) decreased in NP cells after TFEB overexpression. We also found that the previously low cell viability increased and the high level of apoptosis decreased. Conclusions This study suggests that OS is associated with the development of IDD. TFEB mediates OS-induced IDD via the NF-κB signaling pathway. The TFEB gene can potentially be used as a diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- He Liang
- Clinical Medical College, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.,Department of Orthopedics, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Zhou Liu
- Department of Orthopedics, Fuyang Fifth People's Hospital, Fuyang, China
| | - Yunhao Wang
- Department of Spinal Surgery, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Deguo Wang
- Department of Orthopedics, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Jiwei Tian
- Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| |
Collapse
|
13
|
Natural Products of Pharmacology and Mechanisms in Nucleus Pulposus Cells and Intervertebral Disc Degeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9963677. [PMID: 34394398 PMCID: PMC8357477 DOI: 10.1155/2021/9963677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022]
Abstract
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain (LBP), which severely reduces the quality of life and imposes a heavy financial burden on the families of affected individuals. Current research suggests that IDD is a complex cell-mediated process. Inflammation, oxidative stress, mitochondrial dysfunction, abnormal mechanical load, telomere shortening, DNA damage, and nutrient deprivation contribute to intervertebral disc cell senescence and changes in matrix metabolism, ultimately causing IDD. Natural products are widespread, structurally diverse, afford unique advantages, and exhibit great potential in terms of IDD treatment. In recent years, increasing numbers of natural ingredients have been shown to inhibit the degeneration of nucleus pulposus cells through various modes of action. Here, we review the pharmacological effects of natural products on nucleus pulposus cells and the mechanisms involved. An improved understanding of how natural products target signalling pathways will aid the development of anti-IDD drugs. This review focuses on potential IDD drugs.
Collapse
|
14
|
Mitochondrial quality control in intervertebral disc degeneration. Exp Mol Med 2021; 53:1124-1133. [PMID: 34272472 PMCID: PMC8333068 DOI: 10.1038/s12276-021-00650-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a common and early-onset pathogenesis in the human lifespan that can increase the risk of low back pain. More clarification of the molecular mechanisms associated with the onset and progression of IDD is likely to help establish novel preventive and therapeutic strategies. Recently, mitochondria have been increasingly recognized as participants in regulating glycolytic metabolism, which has historically been regarded as the main metabolic pathway in intervertebral discs due to their avascular properties. Indeed, mitochondrial structural and functional disruption has been observed in degenerated nucleus pulposus (NP) cells and intervertebral discs. Multilevel and well-orchestrated strategies, namely, mitochondrial quality control (MQC), are involved in the maintenance of mitochondrial integrity, mitochondrial proteostasis, the mitochondrial antioxidant system, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis. Here, we address the key evidence and current knowledge of the role of mitochondrial function in the IDD process and consider how MQC strategies contribute to the protective and detrimental properties of mitochondria in NP cell function. The relevant potential therapeutic treatments targeting MQC for IDD intervention are also summarized. Further clarification of the functional and synergistic mechanisms among MQC mechanisms may provide useful clues for use in developing novel IDD treatments.
Collapse
|
15
|
Xia W, Hu S, Wang M, Xu F, Han L, Peng D. Exploration of the potential mechanism of the Tao Hong Si Wu Decoction for the treatment of postpartum blood stasis based on network pharmacology and in vivo experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113641. [PMID: 33271240 DOI: 10.1016/j.jep.2020.113641] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tao Hong Si Wu Decoction (THSWD) is a traditional prescription for blood management in traditional Chinese medicine, THSWD consists of Paeoniae Radix Alba (Paeonia lactiflora Pall.), Rehmanniae Radix Praeparata (Rehmannia glutinosa (Gaertn.) DC.), Angelicae Sinensis Radix (Angelica sinensis (Oliv.) Diels), Chuanxiong Rhizoma (Conioselinum anthriscoides 'Chuanxiong'), Persicae Seman (Prunus persica (L.) Batsch) and Carthami Flos (Carthamus tinctorius L.) at a weight ratio of 3: 4: 3: 2: 3: 2. THSWD is a commonly used prescription in the treatment of postpartum blood stasis disease. AIM OF THE STUDY To explore the potential mechanism of THSWD for the treatment of postpartum blood stasis using network pharmacology and experimental research. MATERIALS AND METHODS We extracted the active ingredients and targets in THSWD from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and constructed a herbs-ingredients-targets-disease-network, devised a protein-protein interaction (PPI) network, performed GO enrichment analysis, and performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to discover potential treatment mechanisms. A postpartum blood stasis model was established in rats, and the results of network pharmacology were verified by in vivo experiments. RESULTS The results showed that 69 potential active ingredients and 207 THSWD target genes for the treatment of postpartum blood stasis disease were obtained after ADME filtering analysis. The targets were enriched in multiple gene functions and different signaling pathways. By exploring various different signaling pathways, it was found that mitochondrial regulation of oxidative stress plays a potentially important role in the treatment of postpartum blood stasis with THSWD. Compared to model group, THSWD alleviated mitochondrial damage, decreased levels of oxidative stress in the rat model of postpartum blood stasis and reduced apoptosis in uterine cells. CONCLUSION The therapeutic effect of THSWD on postpartum blood stasis is likely related to mitochondrial regulation of oxidative stress, which paves the way for further research investigating its mechanisms.
Collapse
Affiliation(s)
- Wenwen Xia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shoushan Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Mengmeng Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Xin'an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Xin'an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Xin'an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China.
| |
Collapse
|
16
|
Overexpression of LMP-1 Decreases Apoptosis in Human Nucleus Pulposus Cells via Suppressing the NF- κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:8189706. [PMID: 33414896 PMCID: PMC7752285 DOI: 10.1155/2020/8189706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Intervertebral disc degeneration (IDD) is a prevalent disease characterized by low back pain. Increasing extracellular matrix (ECM) synthesis and decreasing nucleus pulposus cell (NPC) apoptosis are promising strategies to recover degenerated NP. LIM mineralization protein- (LMP-) 1 has anti-inflammatory potential and is a promising gene target for the treatment of NP degeneration. In this study, we measured the expression of LMP-1 in the NP of patients. Then, we constructed LMP-1-overexpressing NPCs using lentiviral vectors and investigated the effects of LMP-1 on cell proliferation, apoptosis, and ECM synthesis in NPCs. The results showed that LMP-1 was highly expressed in the NP of patients. LMP-1 overexpression significantly increased proliferation and decreased apoptosis in NPCs. The expression of collagen II and sulfated glycosaminoglycan (sGAG) in NPCs was also upregulated after LMP-1 was overexpressed. Moreover, we demonstrated that LMP-1 decreased apoptosis of NPCs by inhibiting NF-κB signaling activation. These findings suggest that LMP-1 plays an essential role in mediating apoptosis in NPCs by regulating NF-κB signaling and can be used as a gene target for the treatment of IDD.
Collapse
|
17
|
Li C, Si J, Tan F, Park KY, Zhao X. Lactobacillus plantarum KSFY06 Prevents Inflammatory Response and Oxidative Stress in Acute Liver Injury Induced by D-Gal/LPS in Mice. Drug Des Devel Ther 2021; 15:37-50. [PMID: 33442235 PMCID: PMC7797359 DOI: 10.2147/dddt.s286104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023] Open
Abstract
AIM The purpose of this study is to investigate the preventive effect of Lactobacillus plantarum KSFY06 (LP-KSFY06) on D-galactose/lipopolysaccharide (D-Gal/LPS)-induced acute liver injury (ALI) in mice. METHODS We evaluated the antioxidant capacity of LP-KSFY06 in vitro, detailed the effects of LP-KSFY06 on the organ index, liver function index, biochemical index, cytokines, and related genes, and noted the accompanying pathological changes. RESULTS The results clearly showed that LP-KSFY06 can remove 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline -6-sulphonic acid) diammonium salt (ABTS) free radicals in vitro. The analysis of the organ index and pathology demonstrated that LP-KSFY06 significantly prevented ALI. Biochemical and molecular biological analysis showed that LP-KSFY06 prevented a decrease in the antioxidant-related levels of superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC), and also prevented an increase in aspartate aminotransaminase (AST), alanine aminotransaminase (ALT), malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) levels. LP-KSFY06 upregulated the anti-inflammatory factor interleukin (IL)-10 and downregulated the pro-inflammatory factors IL-6, IL-1β, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). These oxidative and inflammatory indicators were consistent with the results of gene detections. Furthermore, we determined that LP-KSFY06 downregulated Keap1, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), IL-18, and mitogen-activated protein kinase 14 (MAPK14 or p38), upregulated Nrf2, heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase [quinone] 1 (NQO1), B-cell inhibitor-α (IκB-α), and thioredoxin (Trx) mRNA expression. These may be related to the regulation of the Kelch-like ECH-associated protein-1 (Keap1)-nuclear factor-erythroid-2-related factor (Nrf2)/antioxidant response element (ARE) and NLRP3/NF-κB pathways. CONCLUSION LP-KSFY06 is an effective multifunctional Lactobacillus with strong anti-oxidant and anti-inflammatory ability that can prevent D-gal/LPS-induced ALI in mice and assist in maintaining health.
Collapse
Affiliation(s)
- Chong Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
| | - Jun Si
- Pre-Hospital Emergency Department, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing400014, People’s Republic of China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela838, Philippines
| | - Kun-Young Park
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing400067, People’s Republic of China
| |
Collapse
|
18
|
Liu L, Xu FR, Wang YZ. Traditional uses, chemical diversity and biological activities of Panax L. (Araliaceae): A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:112792. [PMID: 32311488 DOI: 10.1016/j.jep.2020.112792] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax L. (Araliaceae) is globally-recognized plant resource suitable for the globalization of traditional Chinese medicines. It has traditionally been used as tonic agents in various ethnomedicinal systems of East Asia, especially in China. It is often used to regulate bodily functions and considered as adjuvant therapy for tumor, resuscitation of traumatic hemorrhagic shock, etc. AIM OF THIS REVIEW: This review systematically summarized the information on distributions, botanical characteristics, traditional uses, chemical components and biological activities of the genus Panax, in order to explore and exploit the therapeutic potential of this plant. MATERIALS AND METHODS The available information about genus Panax was collected via the online search on Web of Science, Google Scholar, PubMed, Baidu Scholar, Science Direct, China National Knowledge Infrastructure and Springer search. The keywords used include Panax, saponin, secondary metabolites, chemical components, biological activity, pharmacology, traditional medicinal uses, safety and other related words. The Plant List (www.theplantlist.org) and Catalogue of Life: 2019 Annual Checklist (www.catalogueoflife.org/col/) databases were used to provide the scientific names, subspecies classification and distribution information of Panax. RESULTS Panax is widely assessed concerning its phytochemistry and biological activities. To date, at least 748 chemical compounds from genus Panax were isolated, including saponins, flavonoids, polysaccharides, steroids and phenols. Among them, triterpenoid saponins and polysaccharides were the representative active ingredients of Panax plants, which have been widely investigated. Modern pharmacological studies showed that these compounds exhibited a wide range of biological activities in vitro and in vivo including antineoplastic, anti-inflammatory, hepatorenal protective, neuroprotective, immunoregulatory, cardioprotective and antidiabetic activities. Many studies also confirmed that the mechanisms of organ-protective were closely related to molecular signaling pathways, the expression of related proteins and antioxidant reactions. To sum up, genus Panax has high medicinal and social value, deserving further investigation. CONCLUSIONS The genus Panax is very promising to be fully utilized in the development of nutraceutical and pharmaceutical products. However, there is a lack of in-depth studies on ethnomedicinal uses of Panax plants. In addition, further studies of single chemical component should be performed based on the diversity of chemical structure, significant biological activities and clinical application. If the bioactive molecules and multicomponent interactions are discovered, it will be of great significance to the clinical application of Panax plants. It is an urgent requirement to carry out detailed phytochemical, pharmacology and clinical research on Panax classical prescriptions for the establishment of modern medication guidelines. Exploring the molecular basis of herbal synergistic actions may provide a new understanding of the complex disease mechanisms and accelerate the process of pharmaceutical development.
Collapse
Affiliation(s)
- Lu Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Fu-Rong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China.
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.
| |
Collapse
|
19
|
Yao M, Zhang J, Li Z, Guo S, Zhou X, Zhang W. Marein protects human nucleus pulposus cells against high glucose-induced injury and extracellular matrix degradation at least partly by inhibition of ROS/NF-κB pathway. Int Immunopharmacol 2020; 80:106126. [PMID: 31931363 DOI: 10.1016/j.intimp.2019.106126] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IDD), a major cause of discogenic low back pain, is a musculoskeletal disorder involving the apoptosis of nucleus pulposus cells (NPCs) and extracellular matrix (ECM) degradation. Marein is a major active flavonoid ingredient extracted from the hypoglycemic plant Coreopsis tinctoria with several beneficial biological activities including anti-diabetic effects. Nevertheless, there are no reports concerning the effects of marein on IDD. Our study aimed to evaluate the effects of marein on high glucose (HG)-induced injury and ECM degradation in human NPCs (HNPCs). CCK-8 assay was applied to evaluate cell viability. Flow cytometry analysis, a cell death detection ELISA, and caspase-3 activity assay were used to assess apoptosis. The mRNA expression of ECM-related proteins matrix metalloproteinase (MMP)-3, MMP-13, Collagen II, and aggrecan were determined by qRT-PCR. The changes of the nuclear factor-kappa B (NF-κB) pathway were examined by western blot. Stimulation with HG significantly reduced cell viability and induced apoptosis in HNPCs. Moreover, HG exposure increased MMP-3 and MMP-13 expression and decreased Collagen II and aggrecan expression in HNPCs. Notably, marein effectively alleviated HG-induced viability reduction, apoptosis and ECM degradation in HNPCs. We also found that marein inhibited HG-induced ROS generation and NF-κB activation in HNPCs. Inhibition of NF-κB pathway reinforced HG-induced injury and ECM degradation in HNPCs. In summary, marein protected HNPCs against HG-induced injury and ECM degradation at least partly by inhibiting the ROS/NF-κB pathway.
Collapse
Affiliation(s)
- Mingyan Yao
- Department of Endocrinology, Baoding No. 1 Central Hospital, Baoding 071000, China
| | - Jing Zhang
- Deparment of Cardiology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Zhihong Li
- Department of Endocrinology, Baoding No. 1 Central Hospital, Baoding 071000, China.
| | - Shuqin Guo
- Department of Endocrinology, Baoding No. 1 Central Hospital, Baoding 071000, China
| | - Xue Zhou
- Department of Endocrinology, Baoding No. 1 Central Hospital, Baoding 071000, China
| | - Wenjing Zhang
- Department of Cardiology, Baoding Children's Hospital, Baoding 071051, China
| |
Collapse
|
20
|
Shi Y, Wang H, Zheng M, Xu W, Yang Y, Shi F. Ginsenoside Rg3 suppresses the NLRP3 inflammasome activation through inhibition of its assembly. FASEB J 2019; 34:208-221. [PMID: 31914640 DOI: 10.1096/fj.201901537r] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022]
Abstract
Ginsenoside Rg3 is one of the main constituents of Panax ginseng. Compelling evidence has demonstrated that ginsenoside Rg3 is capable of inhibiting inflammation. However, the mechanism mediating its anti-inflammatory effects remain unclear. Here we show that ginsenoside Rg3 blocks IL-1β secretion and caspase-1 activation through inhibiting LPS priming and the NLRP3 inflammasome activation in human and mouse macrophages. Rg3 specifically inhibits activation of NLRP3 but not the NLRC4 or AIM2 inflammasomes. In addition, Rg3 has no effect on upstream regulation of NLRP3 inflammasome, such as K+ efflux, ROS production, or mitochondrial membrane potential. Mechanistically, Rg3 abrogates NEK7-NLRP3 interaction, and subsequently inhibits NLRP3-ASC interaction, ASC oligomerization, and speckle formation. More importantly, Rg3 can reduce IL-1β secretion induced by LPS in mice and protect mice from lethal endotoxic shock. Thus, our findings reveal an anti-inflammatory mechanism for Rg3 and suggest its potential use in NLRP3-driven diseases.
Collapse
Affiliation(s)
- Yuhua Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huanan Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mengjie Zheng
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wei Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yang Yang
- College of Animal Science and Technology, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang A&F University, Hangzhou, China
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Sarkar R, Das A, Paul RR, Barui A. Cigarette smoking promotes cancer-related transformation of oral epithelial cells through activation of Wnt and MAPK pathway. Future Oncol 2019; 15:3619-3631. [PMID: 31668090 DOI: 10.2217/fon-2019-0338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Study aims to investigate the effect of cigarette smoking on cancer-related transformation in oral epithelial cells of smokers through evaluating the alteration in Wnt/β-catenin and MAPK pathways. Materials & methods: Exfoliated oral epithelial cells were collected from 138 subjects and categorized into nonsmokers, smokers and clinically diagnosed precancer and cancer patients. Real-time quantitative PCR was performed to detect the fold changes of related genes. Expressions of biomarkers were assessed using immunofluorescence and western blot. Results: Study shows significant (p < 0.001) alteration in mRNA level of TNF-α, NF-κβ, FZD1, β-catenin, PARD 3, MAPK1 and vimentin genes under cigarette smoking. Conclusion: Results suggested the progression of oral cancer under cigarette smoking occurs through multiple events and activation of canonical Wnt/MAPK pathways.
Collapse
Affiliation(s)
- Ripon Sarkar
- Centre for Healthcare Science & Technology, Indian Institute of Engineering Science & Technology, Shibpur, West Bengal, India
| | - Ankita Das
- Centre for Healthcare Science & Technology, Indian Institute of Engineering Science & Technology, Shibpur, West Bengal, India
| | - Ranjan R Paul
- Department of Oral and Maxillofacial Surgery, Guru Nanak Institute of Dental Science & Research, Sodepur, West Bengal 711103, India
| | - Ananya Barui
- Centre for Healthcare Science & Technology, Indian Institute of Engineering Science & Technology, Shibpur, West Bengal, India
| |
Collapse
|
22
|
Liang H, Zhang S, Li Z. Ginsenoside Rg3 protects mouse leydig cells against triptolide by downregulation of miR-26a. Drug Des Devel Ther 2019; 13:2057-2066. [PMID: 31296984 PMCID: PMC6598939 DOI: 10.2147/dddt.s208328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/20/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Ginsenoside Rg3 has been reported to exert protection function on germ cells. However, the mechanisms by which Rg3 regulates apoptosis in mouse Leydig cells remain unclear. In addition, triptolide (TP) has been reported to induce infertility in male rats. Thus, this study aimed to investigate the protective effect of Rg3 against TP-induced toxicity in MLTC-1 cells. METHODS CCK-8, immunofluorescence assay, Western blotting and flow cytometry were used to detect cell proliferation and cell apoptosis, respectively. In addition, the dual luciferase reporter system assay was used to detect the interaction between miR-26a and GSK3β in MLTC-1 cells. RESULTS TP significantly inhibited the proliferation of MLTC-1 cells, while the inhibitory effect of TP was reversed by Rg3. In addition, TP markedly induced apoptosis in MLTC-1 cells via increasing the expressions of Bax, active caspase 3, Cyto c and active caspase 9, and decreasing the level of Bcl-2. However, Rg3 alleviated TP-induced apoptosis of MLTC-1 cells. Moreover, the level of miR-26a was obviously downregulated by Rg3 treatment. The protective effect of Rg3 against TP-induced toxicity in MLTC-1 cells was abolished by miR-26a upregulation. Meanwhile, dual-luciferase assay showed GSK3β was the direct target of miR-26a in MLTC-1 cells. Overexpression of miR-26a markedly decreased the level of GSK3β. As expected, upregulation of miR-26a could abrogate the protective effects of Rg3 against TP-induced cytotoxicity via inhibiting the expression of GSK3β. CONCLUSION These results indicated that Rg3 could protect MLTC-1 against TP by downregulation of miR-26a. Therefore, Rg3 might serve as a potential agent for the treatment of male hypogonadism.
Collapse
Affiliation(s)
- Haiyan Liang
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong515031, People’s Republic of China
| | - Suwei Zhang
- Department of Clinical Laboratory Medicine, Shantou Central Hospital, Shantou, Guangdong515031, People’s Republic of China
| | - Zhiling Li
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong515031, People’s Republic of China
- Correspondence: Zhiling LiReproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, No. 57 Changping Road, Shantou515031, Guangdong, People’s Republic of ChinaTel +8 607 548 825 8290Email
| |
Collapse
|
23
|
Liu C, Guo Y, Zhao F, Qin H, Lu H, Fang L, Wang J, Min W. Potential mechanisms mediating the protective effects of a peptide from walnut (Juglans mandshuricaMaxim.) against hydrogen peroxide induced neurotoxicity in PC12 cells. Food Funct 2019; 10:3491-3501. [DOI: 10.1039/c8fo02557f] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel neuroprotective peptide EVSGPGLSPN, which was identified from walnut protein hydrolysates, protected PC12 cells by blocking the NF-κB/caspase pathways.
Collapse
Affiliation(s)
- Chunlei Liu
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun 130118
- P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing
| | - Yong Guo
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun 130118
- P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing
| | - Fanrui Zhao
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun 130118
- P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing
| | - Hanxiong Qin
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun 130118
- P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing
| | - Hongyan Lu
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun 130118
- P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing
| | - Li Fang
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun 130118
- P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing
| | - Ji Wang
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun 130118
- P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing
| | - Weihong Min
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun 130118
- P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing
| |
Collapse
|