1
|
Pathophysiology of Ischemic Stroke: Noncoding RNA Role in Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5815843. [PMID: 36132228 PMCID: PMC9484962 DOI: 10.1155/2022/5815843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022]
Abstract
Stroke is a neurological disease that causes significant disability and death worldwide. Ischemic stroke accounts for 75% of all strokes. The pathophysiological processes underlying ischemic stroke include oxidative stress, the toxicity of excitatory amino acids, ion disorder, enhanced apoptosis, and inflammation. Noncoding RNAs (ncRNAs) may have a vital role in regulating the pathophysiological processes of ischemic stroke, as confirmed by the altered expression of ncRNAs in blood samples from acute ischemic stroke patients, animal models, and oxygen-glucose-deprived (OGD) cell models. Due to specific changes in expression, ncRNAs can potentially be biomarkers for the diagnosis, treatment, and prognosis of ischemic stroke. As an important brain cell component, glial cells mediate the occurrence and progression of oxidative stress after ischemic stroke, and ncRNAs are an irreplaceable part of this mechanism. This review highlights the impact of ncRNAs in the oxidative stress process of ischemic stroke. It focuses on specific ncRNAs that underlie the pathophysiology of ischemic stroke and have potential as diagnostic biomarkers and therapeutic targets.
Collapse
|
2
|
Tanshinone IIA Ameliorates Nonalcoholic Steatohepatitis in Mice by Modulating Neutrophil Extracellular Traps and Hepatocyte Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5769350. [PMID: 36091584 PMCID: PMC9458403 DOI: 10.1155/2022/5769350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Salvia miltiorrhiza Bunge, a traditional Chinese medicine, is widely used in the treatment of a variety of diseases and syndromes. Tanshinone IIA (TIIA), a phenanthrenequinone-class derivative extracted from S. miltiorrhiza, is one of its main active components and has anti-inflammatory effects on various tissues and cells. This study aimed to investigate the beneficial effects of TIIA on nonalcoholic steatohepatitis (NASH) induced in mice using a methionine choline deficiency (MCD) diet and the underlying mechanism of these. Our results reveal that TIIA remarkably ameliorated hepatic steatosis and inflammation and decreased the serum levels of liver dysfunction markers while increasing the levels of serum total cholesterol and triglycerides in MCD-fed mice. TIIA significantly reduced mRNA levels of the inflammatory factors TNF-α, IL-6, and TGF-β. Similarly, TIIA inhibited caspase-3 and Bax-mediated apoptosis in MCD-fed mice. Together, our data indicate that TIIA inhibits the formation of MPO and CitH3 in neutrophil extracellular traps and inhibits apoptosis mediated by caspase-3 and Bax in hepatocytes, thereby mitigating inflammatory progression in an MCD diet-induced NASH mouse model.
Collapse
|
3
|
Guan R, Yao H, Li Z, Qian J, Yuan L, Cai Z, Ding M, Liu W, Xu J, Li Y, Sun D, Wang J, Lu W. Sodium Tanshinone IIA Sulfonate Attenuates Cigarette Smoke Extract-Induced Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis in Alveolar Epithelial Cells by Enhancing SIRT1 Pathway. Toxicol Sci 2021; 183:352-362. [PMID: 34515779 DOI: 10.1093/toxsci/kfab087] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Emphysema is one of the most important phenotypes for chronic obstructive pulmonary disease (COPD). Apoptosis in alveolar epithelial cells (AECs) causes the emphysematous alterations in the smokers and patients with COPD. Sirtuin 1 (SIRT1) is able to attenuate mitochondrial dysfunction, oxidative stress, and to modulate apoptosis. It has been shown that sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of tanshinone IIA, protects against cigarette smoke (CS)-induced emphysema/COPD in mice. However, the mechanisms underlying these findings remain unclear. Here, we investigate whether and how STS attenuates AEC apoptosis via a SIRT1-dependent mechanism. We found that STS treatment decreased CS extract (CSE)-induced apoptosis in human alveolar epithelial A549 cells. STS reduced oxidative stress, improved mitochondrial function and mitochondrial membrane potential (ΔΨm), and restored mitochondrial dynamics-related protein expression. Moreover, STS promoted mitophagy, and increased oxidative phosphorylation protein levels (complexes I-IV) in CSE-stimulated A549 cells. The protective effects of STS were associated with SIRT1 upregulation, because SIRT1 inhibition by EX 527 significantly attenuated or abolished the ability of STS to reverse the CSE-induced mitochondrial damage, oxidative stress, and apoptosis in A549 cells. In conclusion, STS ameliorates CSE-induced AEC apoptosis by improving mitochondrial function and reducing oxidative stress via enhancing SIRT1 pathway. These findings provide novel mechanisms underlying the protection of STS against CS-induced COPD.
Collapse
Affiliation(s)
- Ruijuan Guan
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Hongwei Yao
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Ziying Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jing Qian
- Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, The People's Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
| | - Liang Yuan
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Zhou Cai
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Mingjing Ding
- Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, The People's Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
| | - Wei Liu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jingyi Xu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yuanyuan Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Dejun Sun
- Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, The People's Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| |
Collapse
|
4
|
Fang ZY, Zhang M, Liu JN, Zhao X, Zhang YQ, Fang L. Tanshinone IIA: A Review of its Anticancer Effects. Front Pharmacol 2021; 11:611087. [PMID: 33597880 PMCID: PMC7883641 DOI: 10.3389/fphar.2020.611087] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Tanshinone IIA (Tan IIA) is a pharmacologically lipophilic active constituent isolated from the roots and rhizomes of the Chinese medicinal herb Salvia miltiorrhiza Bunge (Danshen). Tan IIA is currently used in China and other neighboring countries to treat patients with cardiovascular system, diabetes, apoplexy, arthritis, sepsis, and other diseases. Recently, it was reported that tan IIA could have a wide range of antitumor effects on several human tumor cell lines, but the research of the mechanism of tan IIA is relatively scattered in cancer. This review aimed to summarize the recent advances in the anticancer effects of tan IIA and to provide a novel perspective on clinical use of tan IIA.
Collapse
Affiliation(s)
- Zhong-Ying Fang
- School of Biological Sciences and Technology, University of Jinan, Jinan, China.,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miao Zhang
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Jia-Ning Liu
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Xue Zhao
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Yong-Qing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Fang
- School of Biological Sciences and Technology, University of Jinan, Jinan, China.,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Zhang J, Cai Z, Yang M, Tong L, Zhang Y. Inhibition of tanshinone IIA on renin activity protected against osteoporosis in diabetic mice. PHARMACEUTICAL BIOLOGY 2020; 58:219-224. [PMID: 32202179 PMCID: PMC7144291 DOI: 10.1080/13880209.2020.1738502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/09/2020] [Accepted: 02/28/2020] [Indexed: 06/09/2023]
Abstract
Context: Salvia miltiorrhiza Bge. (Labiatae) (SMB) is applied clinically for management of diabetic osteoporosis in China, and research results has suggested its potential action on renin-angiotensin system (RAS).Objective: This study screens and explores naturally occurring bioactive constituents from the root of SMB acting on renin activity and evaluates its osteoprotective efficacy in diabetic mice.Materials and methods: Human embryonic kidney (HEK) 293 cells, engineered to express human renin, were used as an in vitro model to identify bioactive compound, tanshinone IIA, inhibiting renin activity. The C57BL/6 mice (n = 10 in each group) with diabetes induced by streptozotocin (STZ) were intraperitoneally injected with tanshinone IIA (10 and 30 mg/kg). The mice without STZ treatment and the diabetic mice treated with aliskiren were used as non-diabetic control and positive control, respectively.Results: Tanshinone IIA was found to display inhibitory effects on renin activity of HEK-293 cells; moreover, it down-regulated protein expression of ANG II in human renin-expressed HEK-293 cells. Treatment of diabetic mice with tanshinone IIA with both doses could significantly decrease ANG II level in serum (from 16.56 ± 1.70 to 10.86 ± 0.68 and 9.14 ± 1.31 pg/mL) and reduce ANG II expression in bone, consequently improving trabecular bone mineral density and micro-structure of proximal tibial end and increasing trabecular bone area of distal femoral end in diabetic mice.Conclusions: This study revealed beneficial effects of tanshinone IIA on bone of diabetic mice, and potentially suggested the application of Salvia miltiorrhiza in the treatment of osteoporosis and drug development of tanshinone IIA as a renin inhibitor.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, PR China
| | - Zixuan Cai
- School of Pharmacy, Nantong University, Nantong, Jiangsu, PR China
| | - Min Yang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, PR China
| | - Lijuan Tong
- School of Pharmacy, Nantong University, Nantong, Jiangsu, PR China
| | - Yan Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, PR China
| |
Collapse
|
6
|
Zinc promotes functional recovery after spinal cord injury by activating Nrf2/HO-1 defense pathway and inhibiting inflammation of NLRP3 in nerve cells. Life Sci 2020; 245:117351. [PMID: 31981629 DOI: 10.1016/j.lfs.2020.117351] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
AIMS To study the specific therapeutic effect of zinc on spinal cord injury (SCI) and its specific protective mechanism. MAIN METHODS The effects of zinc ions on neuronal cells were examined in a mouse SCI model and in vitro. In vivo, neurological function was assessed by Basso Mouse Scaleat (BMS) at 1, 3, 5, 7, 10, 14, 21, and 28 days after spinal cord injury. The number of neurons and histomorphology were observed by nissl staining and hematoxylin-eosin staining (HE). The chromatin and mitochondrial structure of neurons were detected by transmission electron microscopy (TEM). The expression of nuclear factor erythroid 2 related factor 2 (Nrf2)-related antioxidant protein and NLRP3 inflammation-related protein were detected in vivo and in vitro by western blot (WB) and immunofluorescence (IF), respectively. KEY FINDINGS Zinc treatment promoted motor function recovery on days 3, 5, 7, 14, 21 and 28 after SCI. In addition, zinc reduces the mitochondrial void rate in spinal neuronal cells and promotes neuronal recovery. At the same time, zinc reduced the levels of reactive oxygen species (ROS) and malondialdehyde in spinal cord tissue after SCI, while increasing superoxide dismutase activity and glutathione peroxidase production. Zinc treatment resulted in up-regulation of Nrf2/Ho-1 levels and down-regulation of nlrp3 inflammation-associated protein expression in vitro and in vivo. SIGNIFICANCE Zinc has a protective effect on spinal cord injury by inhibiting oxidative damage and nlrp3 inflammation. Potential mechanisms may include activation of the Nrf 2/Ho-1 pathway to inhibit nlrp3 inflammation following spinal cord injury. Zinc has the potential to treat SCI.
Collapse
|
7
|
Chen M, Chen Q, Tao T. Tanshinone IIA Promotes M2 Microglia by ERβ/IL-10 Pathway and Attenuates Neuronal Loss in Mouse TBI Model. Neuropsychiatr Dis Treat 2020; 16:3239-3250. [PMID: 33408474 PMCID: PMC7781361 DOI: 10.2147/ndt.s265478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Increasing evidence indicates that activated microglia play an important role in the inflammatory response in TBI. Inhibiting M1 and stimulating M2 activated microglia have protective effects in several animal models of central nervous system (CNS) disorders. In the present study, we investigated whether tanshinone IIA (TNA) protects neurons by shifting microglia polarization in a mouse TBI model and further investigated the mechanism in vitro. MATERIALS AND METHODS Forty C57BL/6 mice were used to investigate the effect of TNA on microglia polarization in TBI. BV-2 cells were used to examine the mechanism of TNA in regulating microglia polarization. RESULTS Normal saline (NS), TNA and the combination of TNA with ICI 182,780 (ICI, an estrogen receptor antagonist) were used to treat the TBI mice. After TBI, mice from each group demonstrated functional improvement. The improvement rate in mice treated with TNA was faster than other groups. ICI partially reversed the benefits from TNA treatment. TNA treatment significantly reduced TBI-induced neuronal loss. The number of microglia after TBI was not significantly changed by TNA treatment. However, TNA treatment significantly decreased M1 macrophage markers (iNOS, TNFα and IL-1β) and increased M2 macrophage markers (CD206, arginase 1 and Ym1). This effect was partially abolished by ICI. TNA treatment downregulated M1 macrophage markers and upregulated M2 macrophage markers in BV-2 cells under LPS stimulation. IL-10 was significantly increased by TNA treatment without a significantly change of IL-4 and IL-13 expression. IL-10 knockdown completely abolished the effect of TNA on microglial M2 polarization. CONCLUSION Taken together, our data demonstrated that TNA attenuates neuronal loss in mouse TBI model and promotes M2 microglia by ERβ/IL-10 pathway. Thus, TNA could be a potential drug for TBI and/or the disorders that caused by microglial over-activation in CNS.
Collapse
Affiliation(s)
- Mingrui Chen
- Department of Neurosurgery, Chongqing Red Cross Hospital (People's Hospital of Jiangbei District), Jiangbei, Chongqing 400020, People's Republic of China
| | - Qiulin Chen
- Department of Neurosurgery, Chongqing Red Cross Hospital (People's Hospital of Jiangbei District), Jiangbei, Chongqing 400020, People's Republic of China
| | - Tao Tao
- Department of Rehabilitation Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, People's Republic of China
| |
Collapse
|
8
|
Jiang Y, Hu F, Li Q, Shen C, Yang J, Li M. Tanshinone IIA ameliorates the bleomycin-induced endothelial-to-mesenchymal transition via the Akt/mTOR/p70S6K pathway in a murine model of systemic sclerosis. Int Immunopharmacol 2019; 77:105968. [PMID: 31704290 DOI: 10.1016/j.intimp.2019.105968] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 01/07/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune inflammatory and vascular disorder leading to progressive tissue fibrosis. Tanshinone IIA (Tan IIA) is a phytochemical extracted from the Chinese herb Salvia miltiorrhiza that exhibits diverse activities. In this study, we attempted to evaluate the potential impact of Tan IIA on the skin fibrosis-related endothelial-to-mesenchymal transition (EndoMT) and investigate the underlying molecular mechanisms. EndoMT-related indexes including morphological characteristics, functional changes, histological parameters, expression levels of extracellular matrix associated genes, and changes in the expression of related biomarkers in dermal fibrosis were assessed. Tan IIA had a strong anti-fibrotic effect through amelioration of skin thickness and collagen deposition. Moreover, Tan IIA partially reversed bleomycin-induced EndoMT both in vivo and in vitro. Additionally, Tan IIA mitigated the diminution of tube formation in endothelial cells induced by bleomycin. Furthermore, mechanistically, the activation of the Akt/mTOR/p70S6K pathway was found to be involved in bleomycin-treated SSc mouse model, which was alleviated by Tan IIA. In summary, these data suggest that Tan IIA alleviates SSc-related dermal fibrosis and EndoMT and that the Akt/mTOR/p70S6K signaling pathway is involved in this regulation, thus supporting the potential of Tan IIA as a disease-modifying candidate agent for treating the vascular damage of SSc.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Feifei Hu
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Qiao Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Shen
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ming Li
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
9
|
Lu J, Shan J, Liu N, Ding Y, Wang P. Tanshinone IIA Can Inhibit Angiotensin II-Induced Proliferation and Autophagy of Vascular Smooth Muscle Cells via Regulating the MAPK Signaling Pathway. Biol Pharm Bull 2019; 42:1783-1788. [PMID: 31391347 DOI: 10.1248/bpb.b19-00053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine the effect of tanshinone IIA on Angiotensin II (Ang II)-induced proliferation and autophagy in vascular smooth muscle cells (VSMCs) and the related mechanism. VSMCs were treated with Ang II with or without tanshinone IIA (1, 5 and 10 µg/mL), and the proliferation, apoptosis in cells with different treatment were examined by methylthiazolyl tetrazolium (MTT) and flow cytometry methods. Moreover, the expression of autophagy related proteins and mitogen-activated protein kinase (MAPK) signaling molecules were examined by RT-quantitative (q)PCR and Western blot methods. Ang II induced significantly increase in the proliferation and autophagy of VSMCs, and the MAPK signaling was activated. Tanshinone IIA can attenuate Ang II-induced effects via down-regulating the MAPK signaling pathway. Tanshinone IIA can inhibit Ang II-induced proliferation and autophagy of VSMCs via regulating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Jingping Lu
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatics, Affiliated Hospital of Nanjing University of Chinese Medicine
| | - Ning Liu
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine
| | - Yao Ding
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine
| | - Pei Wang
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine
| |
Collapse
|