1
|
Sufriyana H, Husnayain A, Chen YL, Kuo CY, Singh O, Yeh TY, Wu YW, Su ECY. Comparison of Multivariable Logistic Regression and Other Machine Learning Algorithms for Prognostic Prediction Studies in Pregnancy Care: Systematic Review and Meta-Analysis. JMIR Med Inform 2020; 8:e16503. [PMID: 33200995 PMCID: PMC7708089 DOI: 10.2196/16503] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 06/22/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Predictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single predictor using only one algorithm or modeling method. OBJECTIVE This study aims to review and compare the predictive performances between logistic regression (LR) and other machine learning algorithms for developing or validating a multivariable prognostic prediction model for pregnancy care to inform clinicians' decision making. METHODS Research articles from MEDLINE, Scopus, Web of Science, and Google Scholar were reviewed following several guidelines for a prognostic prediction study, including a risk of bias (ROB) assessment. We report the results based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies were primarily framed as PICOTS (population, index, comparator, outcomes, timing, and setting): Population: men or women in procreative management, pregnant women, and fetuses or newborns; Index: multivariable prognostic prediction models using non-LR algorithms for risk classification to inform clinicians' decision making; Comparator: the models applying an LR; Outcomes: pregnancy-related outcomes of procreation or pregnancy outcomes for pregnant women and fetuses or newborns; Timing: pre-, inter-, and peripregnancy periods (predictors), at the pregnancy, delivery, and either puerperal or neonatal period (outcome), and either short- or long-term prognoses (time interval); and Setting: primary care or hospital. The results were synthesized by reporting study characteristics and ROBs and by random effects modeling of the difference of the logit area under the receiver operating characteristic curve of each non-LR model compared with the LR model for the same pregnancy outcomes. We also reported between-study heterogeneity by using τ2 and I2. RESULTS Of the 2093 records, we included 142 studies for the systematic review and 62 studies for a meta-analysis. Most prediction models used LR (92/142, 64.8%) and artificial neural networks (20/142, 14.1%) among non-LR algorithms. Only 16.9% (24/142) of studies had a low ROB. A total of 2 non-LR algorithms from low ROB studies significantly outperformed LR. The first algorithm was a random forest for preterm delivery (logit AUROC 2.51, 95% CI 1.49-3.53; I2=86%; τ2=0.77) and pre-eclampsia (logit AUROC 1.2, 95% CI 0.72-1.67; I2=75%; τ2=0.09). The second algorithm was gradient boosting for cesarean section (logit AUROC 2.26, 95% CI 1.39-3.13; I2=75%; τ2=0.43) and gestational diabetes (logit AUROC 1.03, 95% CI 0.69-1.37; I2=83%; τ2=0.07). CONCLUSIONS Prediction models with the best performances across studies were not necessarily those that used LR but also used random forest and gradient boosting that also performed well. We recommend a reanalysis of existing LR models for several pregnancy outcomes by comparing them with those algorithms that apply standard guidelines. TRIAL REGISTRATION PROSPERO (International Prospective Register of Systematic Reviews) CRD42019136106; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=136106.
Collapse
Affiliation(s)
- Herdiantri Sufriyana
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Medical Physiology, College of Medicine, University of Nahdlatul Ulama Surabaya, Surabaya, Indonesia
| | - Atina Husnayain
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Biostatistics, Epidemiology, and Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ya-Lin Chen
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chao-Yang Kuo
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Onkar Singh
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Tso-Yang Yeh
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Xu H, Feng G, Wei Y, Feng Y, Yang R, Wang L, Zhang H, Li R, Qiao J. Predicting Ectopic Pregnancy Using Human Chorionic Gonadotropin (hCG) Levels and Main Cause of Infertility in Women Undergoing Assisted Reproductive Treatment: Retrospective Observational Cohort Study. JMIR Med Inform 2020; 8:e17366. [PMID: 32297865 PMCID: PMC7193436 DOI: 10.2196/17366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/26/2020] [Indexed: 01/15/2023] Open
Abstract
Background Ectopic pregnancy (EP) is a serious complication of assisted reproductive technology (ART). However, there is no acknowledged mathematical model for predicting EP in the ART population. Objective The goal of the research was to establish a model to tailor treatment for women with a higher risk of EP. Methods From December 2015 to July 2016, we retrospectively included 1703 women whose serum human chorionic gonadotropin (hCG) levels were positive on day 21 (hCG21) after fresh embryo transfer. Multivariable multinomial logistic regression was used to predict EP, intrauterine pregnancy (IUP), and biochemical pregnancy (BCP). Results The variables included in the final predicting model were (hCG21, ratio of hCG21/hCG14, and main cause of infertility). During evaluation of the model, the areas under the receiver operating curve for IUP, EP, and BCP were 0.978, 0.962, and 0.999, respectively, in the training set, and 0.963, 0.942, and 0.996, respectively, in the validation set. The misclassification rates were 0.038 and 0.045, respectively, in the training and validation sets. Our model classified the whole in vitro fertilization/intracytoplasmic sperm injection–embryo transfer population into four groups: first, the low-risk EP group, with incidence of EP of 0.52% (0.23%-1.03%); second, a predicted BCP group, with incidence of EP of 5.79% (1.21%-15.95%); third, a predicted undetermined group, with incidence of EP of 28.32% (21.10%-35.53%), and fourth, a predicted high-risk EP group, with incidence of EP of 64.11% (47.22%-78.81%). Conclusions We have established a model to sort the women undergoing ART into four groups according to their incidence of EP in order to reduce the medical resources spent on women with low-risk EP and provide targeted tailor-made treatment for women with a higher risk of EP.
Collapse
Affiliation(s)
- Huiyu Xu
- Peking University Third Hospital, Beijing, China
| | | | - Yuan Wei
- Peking University Third Hospital, Beijing, China
| | - Ying Feng
- Peking University Third Hospital, Beijing, China
| | - Rui Yang
- Peking University Third Hospital, Beijing, China
| | - Liying Wang
- Peking University Third Hospital, Beijing, China
| | | | - Rong Li
- Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Peking University Third Hospital, Beijing, China
| |
Collapse
|