1
|
Doumit M, El-Mallah C, El-Makkawi A, Obeid O, Kobeissy F, Darwish H, Abou-Kheir W. Vitamin D Deficiency Does Not Affect Cognition and Neurogenesis in Adult C57Bl/6 Mice. Nutrients 2024; 16:2938. [PMID: 39275253 PMCID: PMC11396937 DOI: 10.3390/nu16172938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Vitamin D deficiency is a global problem. Vitamin D, the vitamin D receptor, and its enzymes are found throughout neuronal, ependymal, and glial cells in the brain and are implicated in certain processes and mechanisms in the brain. To investigate the processes affected by vitamin D deficiency in adults, we studied vitamin D deficient, control, and supplemented diets over 6 weeks in male and female C57Bl/6 mice. The effect of the vitamin D diets on proliferation in the neurogenic niches, changes in glial cells, as well as on memory, locomotion, and anxiety-like behavior, was investigated. Six weeks on a deficient diet was adequate time to reach deficiency. However, vitamin D deficiency and supplementation did not affect proliferation, neurogenesis, or astrocyte changes, and this was reflected on behavioral measures. Supplementation only affected microglia in the dentate gyrus of female mice. Indicating that vitamin D deficiency and supplementation do not affect these processes over a 6-week period.
Collapse
Affiliation(s)
- Mark Doumit
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Carla El-Mallah
- Department of Nutrition and Food Science, Faculty of Agriculture and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Alaa El-Makkawi
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Omar Obeid
- Department of Nutrition and Food Science, Faculty of Agriculture and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Hala Darwish
- Hariri School of Nursing, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| |
Collapse
|
2
|
Ye S, Cheng Z, Zhuo D, Liu S. Different Types of Cell Death in Diabetic Neuropathy: A Focus on Mechanisms and Therapeutic Strategies. Int J Mol Sci 2024; 25:8126. [PMID: 39125694 PMCID: PMC11311470 DOI: 10.3390/ijms25158126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetic neuropathy (DN) is a common complication of diabetes, affecting over 50% of patients, leading to significant pain and a burden. Currently, there are no effective treatments available. Cell death is considered a key factor in promoting the progression of DN. This article reviews how cell death is initiated in DN, emphasizing the critical roles of oxidative stress, mitochondrial dysfunction, inflammation, endoplasmic reticulum stress, and autophagy. Additionally, we thoroughly summarize the mechanisms of cell death that may be involved in the pathogenesis of DN, including apoptosis, autophagy, pyroptosis, and ferroptosis, among others, as well as potential therapeutic targets offered by these death mechanisms. This provides potential pathways for the prevention and treatment of diabetic neuropathy in the future.
Collapse
Affiliation(s)
- Shang Ye
- Department of Clinical Medicine, School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.Y.); (Z.C.); (D.Z.)
| | - Zilin Cheng
- Department of Clinical Medicine, School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.Y.); (Z.C.); (D.Z.)
| | - Dongye Zhuo
- Department of Clinical Medicine, School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.Y.); (Z.C.); (D.Z.)
| | - Shuangmei Liu
- Department of Physiology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
3
|
Lv Y, Yao X, Li X, Ouyang Y, Fan C, Qian Y. Cell metabolism pathways involved in the pathophysiological changes of diabetic peripheral neuropathy. Neural Regen Res 2024; 19:598-605. [PMID: 37721290 PMCID: PMC10581560 DOI: 10.4103/1673-5374.380872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/31/2023] [Accepted: 06/08/2023] [Indexed: 09/19/2023] Open
Abstract
Diabetic peripheral neuropathy is a common complication of diabetes mellitus. Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies. However, existing limited treatments for diabetic peripheral neuropathy expose the urgent need for cell metabolism research. Given the lack of comprehensive understanding of energy metabolism changes and related signaling pathways in diabetic peripheral neuropathy, it is essential to explore energy changes and metabolic changes in diabetic peripheral neuropathy to develop suitable treatment methods. This review summarizes the pathophysiological mechanism of diabetic peripheral neuropathy from the perspective of cellular metabolism and the specific interventions for different metabolic pathways to develop effective treatment methods. Various metabolic mechanisms (e.g., polyol, hexosamine, protein kinase C pathway) are associated with diabetic peripheral neuropathy, and researchers are looking for more effective treatments through these pathways.
Collapse
Affiliation(s)
- Yaowei Lv
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Li
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Yuan P, Feng A, Wei Y, Li S, Fu Y, Wang X, Guo M, Feng W, Zheng X. Indole-3-carboxaldehyde alleviates cisplatin-induced acute kidney injury in mice by improving mitochondrial dysfunction via PKA activation. Food Chem Toxicol 2024; 186:114546. [PMID: 38408633 DOI: 10.1016/j.fct.2024.114546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Cisplatin (DDP) is widely used in the treatment of cancer as a chemotherapeutic drug. However, its severe nephrotoxicity limits the extensive application of cisplatin, which is characterized by injury and apoptosis of renal tubular epithelial cells. This study aimed to reveal the protective effect and its underlying mechanism of Indole-3-carboxaldehyde (IC) against DDP-induced AKI in mice and NRK-52E cells pretreated with PKA antagonist (H-89). Here, we reported that IC improved renal artery blood flow velocity and renal function related indicators, attenuated renal pathological changes, which were confirmed by the results of HE staining and PASM staining. Meanwhile, IC inhibited the levels of inflammatory factors, oxidative stress, CTR1, OCT2, and the levels of autophagy and apoptosis. Mitochondrial dysfunction was significantly improved as observed by TEM. To clarify the potential mechanism, NRK-52E cells induced by DDP was used and the results proved that H-89 could blocked the improvement with IC effectively in vitro. Our findings showed that IC has the potential to treat cisplatin-induced AKI, and its role in protecting the kidney was closely related to activating PKA, inhibiting autophagy and apoptosis, improving mitochondrial function, which could provide a theoretical basis for the development of new clinical drugs.
Collapse
Affiliation(s)
- Peipei Yuan
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China
| | - Aozi Feng
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Yaxin Wei
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Saifei Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yang Fu
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Xiao Wang
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Menghuan Guo
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Weisheng Feng
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, PR China.
| | - Xiaoke Zheng
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, PR China
| |
Collapse
|
5
|
Effect of obesity on the associations of 25-hydroxyvitamin D with prevalent and incident distal sensorimotor polyneuropathy: population-based KORA F4/FF4 study. Int J Obes (Lond) 2022; 46:1366-1374. [PMID: 35474356 PMCID: PMC9239908 DOI: 10.1038/s41366-022-01122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/09/2022]
Abstract
Background/objectives The association between vitamin D and DSPN has been investigated in cross-sectional studies in individuals with diabetes. However, evidence from prospective and population-based studies is still lacking. Also, the potential modifying effect of obesity and glucose tolerance has not been investigated. Therefore, we examined the cross-sectional and prospective associations of serum 25(OH)D with DSPN and assessed possible effect modifications. Subjects/methods The study included individuals aged 62–81 years who participated in the German KORA F4 (2006–2008) and FF4 (2013–2014) studies. DSPN was assessed using the Michigan Neuropathy Screening Instrument. Cross-sectional analyses (n = 1065; 33% of the participants had obesity) assessed the associations of baseline 25(OH)D with prevalent DSPN, while prospective analyses (n = 422) assessed the associations of 25(OH)D with incident DSPN. Results No association was found between 25(OH)D and prevalent DSPN in the total sample after adjustment for age, sex, season of blood sampling, BMI, metabolic variables, lifestyle factors, and comorbidities. However, a decrease by 10 nmol/L in 25(OH)D was associated with prevalent DSPN (RR (95% CI) 1.08 (1.01, 1.16)) in individuals with obesity but not in normal-weight individuals (RR (95% CI) 0.97 (0.92, 1.02), pinteraction = 0.002). No evidence for effect modification by glucose tolerance was found (p > 0.05). In the prospective analysis, 25(OH)D levels in the first and second tertiles were associated with higher risk of DSPN (RR (95% CI) 1.18 (1.02; 1.38) and 1.40 (1.04; 1.90)) compared to the third tertile after adjustment for age, sex, season of blood sampling, and BMI. There was no evidence for effect modification by obesity or glucose tolerance categories. Conclusions Our study did not show consistent evidence for cross-sectional and prospective associations between serum 25(OH)D levels and DSPN in the total study population of older individuals. However, there was evidence for an association between lower serum 25(OH)D levels and higher prevalence of DSPN in individuals with obesity.
Collapse
|
6
|
Environmental Factors and the Risk of Developing Type 1 Diabetes-Old Disease and New Data. BIOLOGY 2022; 11:biology11040608. [PMID: 35453807 PMCID: PMC9027552 DOI: 10.3390/biology11040608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022]
Abstract
Simple Summary Despite many studies, the risk factors of type 1 diabetes (T1DM) in children and adolescents are still not fully understood and remain a big challenge. Therefore, an extensive online search for scientific research on factors related to diabetes has been performed for the identification of new factors of unexplained etiology. A better understanding of the role of viral, bacterial, and yeast-like fungi infections related to the risk of T1DM in children and adolescents and the identification of new risk factors, especially those spread by the droplet route, is of great importance for people and families with diabetes. Abstract The incidence of type 1 diabetes (T1D) is increasing worldwide. The onset of T1D usually occurs in childhood and is caused by the selective destruction of insulin-producing pancreatic islet cells (β-cells) by autoreactive T cells, leading to insulin deficiency. Despite advanced research and enormous progress in medicine, the causes of T1D are still not fully understood. Therefore, an extensive online search for scientific research on environmental factors associated with diabetes and the identification of new factors of unexplained etiology has been carried out using the PubMed, Cochrane, and Embase databases. The search results were limited to the past 11 years of research and discovered 143 manuscripts published between 2011 and 2022. Additionally, 21 manuscripts from between 2000 and 2010 and 3 manuscripts from 1974 to 2000 were referenced for historical reference as the first studies showcasing a certain phenomenon or mechanism. More and more scientists are inclined to believe that environmental factors are responsible for the increased incidence of diabetes. Research results show that higher T1D incidence is associated with vitamin D deficiency, a colder climate, and pollution of the environment, as well as the influence of viral, bacterial, and yeast-like fungi infections. The key viral infections affecting the risk of developing T1DM are rubella virus, mumps virus, Coxsackie virus, cytomegalovirus, and enterovirus. Since 2020, i.e., from the beginning of the COVID-19 pandemic, more and more studies have been looking for a link between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and diabetes development. A better understanding of the role of viral, bacterial, and yeast-like fungi infections related to the risk of T1DM in children and adolescents and the identification of new risk factors, especially those spread by the droplet route, is of great importance for people and families with diabetes.
Collapse
|
7
|
Qureshi Z, Ali MN, Khalid M. An Insight into Potential Pharmacotherapeutic Agents for Painful Diabetic Neuropathy. J Diabetes Res 2022; 2022:9989272. [PMID: 35127954 PMCID: PMC8813291 DOI: 10.1155/2022/9989272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/11/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetes is the 4th most common disease affecting the world's population. It is accompanied by many complications that deteriorate the quality of life. Painful diabetic neuropathy (PDN) is one of the debilitating consequences of diabetes that effects one-third of diabetic patients. Unfortunately, there is no internationally recommended drug that directly hinders the pathological mechanisms that result in painful diabetic neuropathy. Clinical studies have shown that anticonvulsant and antidepressant therapies have proven fruitful in management of pain associated with PDN. Currently, the FDA approved medications for painful diabetic neuropathies include duloxetine, pregabalin, tapentadol extended release, and capsaicin (for foot PDN only). The FDA has also approved the use of spinal cord stimulation system for the treatment of diabetic neuropathy pain. The drugs recommended by other regulatory bodies include gabapentin, amitriptyline, dextromethorphan, tramadol, venlafaxine, sodium valproate, and 5 % lidocaine patch. These drugs are only partially effective and have adverse effects associated with their use. Treating painful symptoms in diabetic patient can be frustrating not only for the patients but also for health care workers, so additional clinical trials for novel and conventional treatments are required to devise more effective treatment for PDN with minimal side effects. This review gives an insight on the pathways involved in the pathogenesis of PDN and the potential pharmacotherapeutic agents. This will be followed by an overview on the FDA-approved drugs for PDN and commercially available topical analgesic and their effects on painful diabetic neuropathies.
Collapse
Affiliation(s)
- Zunaira Qureshi
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, 44000 Islamabad, Pakistan
| | - Murtaza Najabat Ali
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, 44000 Islamabad, Pakistan
| | - Minahil Khalid
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, 44000 Islamabad, Pakistan
| |
Collapse
|
8
|
Zhao Y, Mei G, Zhou F, Kong B, Chen L, Chen H, Wang L, Tang Y, Yao P. Vitamin D decreases pancreatic iron overload in type 2 diabetes through the NF-κB-DMT1 pathway. J Nutr Biochem 2021; 99:108870. [PMID: 34563663 DOI: 10.1016/j.jnutbio.2021.108870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/30/2021] [Accepted: 09/12/2021] [Indexed: 01/04/2023]
Abstract
Emerging evidence has deemed vitamin D as a potential candidate for the intervention of type 2 diabetes (T2D). Herein, we explored the underlying mechanisms of T2D prevention by vitamin D, concentrating on pancreatic iron deposition reported recently. Zucker diabetic fatty (ZDF) rats were treated by vitamin D, with age-matched Zucker lean rats as control. As expected, vitamin D treatment for ZDF rats normalized islet morphology and β-cell function. Moreover, vitamin D alleviated iron accumulation and apoptosis in pancreatic cells of ZDF rats, accompanied by lowered divalent metal transporter 1 (DMT1) expression. Consistently, similar results were observed in high glucose-stimulated INS-1 cells treated with or without vitamin D. Nuclear factor-κB (NF-κB), a transcription factor involving DMT1 regulation, was activated in pancreases of ZDF rats and INS-1 cells exposed to high glucose, but inactivated by vitamin D or BAY 11-7082, a NF-κB inhibitor. Futhermore, IL-1β functioning as NF-κB activator abolished the suppression of NF-κB activation, DMT1 induction and the attenuation of apoptosis as a consequence of vitamin D incubation. Our study showed that iron overload in pancreas may contribute to T2D pathogenesis and uncovered a potentially protective role for vitamin D on iron deposition of diabetic pancreas through NF-κB- DMT1 signaling.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guibin Mei
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxuan Kong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huimin Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Li C, Wang W, Ni W, Jin Y, Guo S, Jin J, Chen C, Chen W, Bi Y, Zhu D. Better Islet Function and Cardiovascular Autonomic Function in Chinese Type 2 Diabetic Patients with Pure Small Fiber Neuropathy than with Mixed Neuropathy. Diabetes Ther 2021; 12:2423-2436. [PMID: 34338993 PMCID: PMC8385000 DOI: 10.1007/s13300-021-01111-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION The clinical characteristics and outcomes of small fiber neuropathy (SFN) in Chinese patients with type 2 diabetes mellitus (T2DM) have not been thoroughly described. In this study, we investigated the metabolic and neurological indexes and the prognosis of patients with T2DM based on skin biopsy. METHODS A total of 34 healthy Chinese volunteers were recruited for skin biopsy to establish the reference range of intra-epidermal nerve fiber density (IENFD), and 89 patients with T2DM attending the Nanjing Drum Tower Hospital were evaluated at baseline. Of these 89 patients, 17 with pure SFN and nine with mixed diabetic polyneuropathy (DPN) were reassessed at the end of the follow-up. RESULTS Glycated hemoglobin and postprandial blood glucose levels were lower (P = 0.005 and P = 0.041, respectively) and postprandial C-peptide and insulin levels were higher (P = 0.001 and P = 0.019, respectively) in the pure SFN group than in the mixed DPN group. A partial correlation study showed that there was a negative correlation between IENFD of the distal leg and cardiovascular autonomic reflex test (CART) scores (r = - 0.513, P = 0.001) after adjusting for age and duration of diabetes. Only vitamin B12 level (P = 0.028) and motor nerve conduction velocity (MCV) of the common peroneal nerve (P = 0.045) were increased in the patients with pure SFN at the final visit while MCVs of the common peroneal nerve (P = 0.025) and tibial nerve (P = 0.047) were decreased in the mixed DPN group at the final visit. CONCLUSION Better islet function and cardiovascular autonomic function were observed in patients with pure SFN compared with mixed DPN. The metabolic and neurological indexes remained relatively stable in the patients with pure SFN during the follow-up.
Collapse
Affiliation(s)
- Chenxi Li
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Weimin Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wenyu Ni
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yu Jin
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Department of Osteoporosis, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Simin Guo
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Jiewen Jin
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chuhui Chen
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Wei Chen
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
10
|
Hu J, Wu J, Wan F, Kou L, Yin S, Sun Y, Li Y, Zhou Q, Wang T. Calcitriol Alleviates MPP +- and MPTP-Induced Parthanatos Through the VDR/PARP1 Pathway in the Model of Parkinson's Disease. Front Aging Neurosci 2021; 13:657095. [PMID: 34393753 PMCID: PMC8362855 DOI: 10.3389/fnagi.2021.657095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/08/2021] [Indexed: 01/13/2023] Open
Abstract
The pathogenesis of Parkinson’s disease (PD) is currently unclear. Recent studies have suggested a correlation between vitamin D and PD. Vitamin D and its analogs have protective effects in animal models of PD, but these studies have not clarified the mechanism. Parthanatos is a distinct type of cell death caused by excessive activation of poly (ADP-ribose) polymerase-1 (PARP1), and the activation of PARP1 in PD models suggests that parthanatos may exist in PD pathophysiology. 1,25-Dihydroxyvitamin D3 (calcitriol) is a potential inhibitor of PARP1 in macrophages. This study aimed to investigate whether calcitriol treatment improves PD models and its effects on the parthanatos pathway. A 1-methyl-4-phenylpyridinium (MPP+)-induced cell model and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) subacute animal model were selected as the in vitro and in vivo PD models, and calcitriol was applied in these models. Results showed that parthanatos existed in the MPP+-induced cell model and pretreatment with calcitriol improved cell viability, reduced the excessive activation of PARP1, and relieved parthanatos. The application of calcitriol in the MPTP subacute animal model also improved behavioral tests, restored the damage to dopamine neurons, and reduced the activation of PARP1-related signaling pathways. To verify whether calcitriol interacts with PARP1 through its vitamin D receptor (VDR), siRNA, and overexpression plasmids were used to downregulate or overexpress VDR. Following the downregulation of VDR, the expression and activation of PARP1 increased and PARP1 was inhibited when VDR was overexpressed. Coimmunoprecipitation verified the combination of VDR and PARP1. In short, calcitriol can substantially improve parthanatos in the MPP+-induced cell model and MPTP model, and the protective effect might be partly through the VDR/PARP1 pathway, which provides a new possibility for the treatment of PD.
Collapse
Affiliation(s)
- Junjie Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunna Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiulu Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Overexpression of LMP-1 Decreases Apoptosis in Human Nucleus Pulposus Cells via Suppressing the NF- κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:8189706. [PMID: 33414896 PMCID: PMC7752285 DOI: 10.1155/2020/8189706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Intervertebral disc degeneration (IDD) is a prevalent disease characterized by low back pain. Increasing extracellular matrix (ECM) synthesis and decreasing nucleus pulposus cell (NPC) apoptosis are promising strategies to recover degenerated NP. LIM mineralization protein- (LMP-) 1 has anti-inflammatory potential and is a promising gene target for the treatment of NP degeneration. In this study, we measured the expression of LMP-1 in the NP of patients. Then, we constructed LMP-1-overexpressing NPCs using lentiviral vectors and investigated the effects of LMP-1 on cell proliferation, apoptosis, and ECM synthesis in NPCs. The results showed that LMP-1 was highly expressed in the NP of patients. LMP-1 overexpression significantly increased proliferation and decreased apoptosis in NPCs. The expression of collagen II and sulfated glycosaminoglycan (sGAG) in NPCs was also upregulated after LMP-1 was overexpressed. Moreover, we demonstrated that LMP-1 decreased apoptosis of NPCs by inhibiting NF-κB signaling activation. These findings suggest that LMP-1 plays an essential role in mediating apoptosis in NPCs by regulating NF-κB signaling and can be used as a gene target for the treatment of IDD.
Collapse
|
12
|
RETRACTED ARTICLE: Resibufogenin suppresses tumor growth and inhibits glycolysis in ovarian cancer by modulating PIM1. Naunyn Schmiedebergs Arch Pharmacol 2020; 392:1477-1489. [DOI: 10.1007/s00210-019-01687-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022]
|
13
|
Du W, Zhao S, Gao F, Wei M, An J, Jia K, Li F, Zhu L, Hao J. IFN-γ/mTORC1 decreased Rab11 in Schwann cells of diabetic peripheral neuropathy, inhibiting cell proliferation via GLUT1 downregulation. J Cell Physiol 2020; 235:5764-5776. [PMID: 31970777 DOI: 10.1002/jcp.29510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus. Rab11 is conserved gene-regulating vesicle traffic and reported to be involved in the pathogenesis of diabetes mellitus by affecting insulin sensitivity. We aimed to investigate the role of Rab11 in the pathogenesis of DPN. In this study, Rab11 expression decreased in the sciatic nerves of diabetic mice with impaired conduction function versus those of normal mice. In vitro experiment revealed interferon-γ (IFN-γ), not high glucose and interleukin 1β was the main factor to lead to Rab11 downregulation in RSC96 cells. Again, both Rab11 knockdown and IFN-γ treatment caused cell viability inhibition and the decrease in BrdU-positive cells. In contrast, overexpression of Rab11 reversed IFN-γ-reduced cell proliferation. Furthermore, mTORC1 not mTORC2 was proven to be suppressed by IFN-γ treatment in RSC96 cells, indicated in decreased phospho-p70S6K. Inhibition of the mTORC1 pathway resulted in Rab11 expression downregulation in RSC96 cells. Activation of the mTORC1 pathway effectively prevented IFN-γ-reduced Rab11 expression in RSC96 cells. Also, glucose transporter 1 (GLUT1) was found to be downregulated in RSC96 cells with Rab11 silence and overexpression of GLUT1 reversed Rab11 blocking-caused proliferation inhibition. Taken together, our findings suggest that IFN-γ decreases Rab11 expression via the inhibition of the mTORC1 signaling pathway, causing reduced cell proliferation in Schwann cells of DPN by GLUT1 downregulation.
Collapse
Affiliation(s)
- Wei Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Song Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Fan Gao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Mengyu Wei
- Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiahui An
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Keqi Jia
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Lin Zhu
- Department of Electromyogram, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|