1
|
Jesus RLC, Araujo FA, Alves QL, Dourado KC, Silva DF. Targeting temperature-sensitive transient receptor potential channels in hypertension: far beyond the perception of hot and cold. J Hypertens 2023; 41:1351-1370. [PMID: 37334542 DOI: 10.1097/hjh.0000000000003487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Transient receptor potential (TRP) channels are nonselective cation channels and participate in various physiological roles. Thus, changes in TRP channel function or expression have been linked to several disorders. Among the many TRP channel subtypes, the TRP ankyrin type 1 (TRPA1), TRP melastatin type 8 (TRPM8), and TRP vanilloid type 1 (TRPV1) channels are temperature-sensitive and recognized as thermo-TRPs, which are expressed in the primary afferent nerve. Thermal stimuli are converted into neuronal activity. Several studies have described the expression of TRPA1, TRPM8, and TRPV1 in the cardiovascular system, where these channels can modulate physiological and pathological conditions, including hypertension. This review provides a complete understanding of the functional role of the opposing thermo-receptors TRPA1/TRPM8/TRPV1 in hypertension and a more comprehensive appreciation of TRPA1/TRPM8/TRPV1-dependent mechanisms involved in hypertension. These channels varied activation and inactivation have revealed a signaling pathway that may lead to innovative future treatment options for hypertension and correlated vascular diseases.
Collapse
Affiliation(s)
- Rafael Leonne C Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Fênix A Araujo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| | - Quiara L Alves
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Keina C Dourado
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Darizy F Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| |
Collapse
|
2
|
Lian H, Qin Z, Wu M, Zuo P, Bai L, Lu M, Li L, Zhang H. Contractility detection of isolated mouse papillary muscle using myotronic Myostation-Intact device. Animal Model Exp Med 2022; 5:445-452. [PMID: 36168142 PMCID: PMC9610137 DOI: 10.1002/ame2.12272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background To understand the relationship between myocardial contractility and external stimuli, detecting ex vivo myocardial contractility is necessary. Methods We elaborated a method for contractility detection of isolated C57 mouse papillary muscle using Myostation‐Intact system under different frequencies, voltages, and calcium concentrations. Results The results indicated that the basal contractility of the papillary muscle was 0.27 ± 0.03 mN at 10 V, 500‐ms pulse duration, and 1 Hz. From 0.1 to 1.0 Hz, contractility decreased with an increase in frequency (0.45 ± 0.11–0.10 ± 0.02 mN). The voltage‐initiated muscle contractility varied from 3 to 6 V, and the contractility gradually increased as the voltage increased from 6 to 10 V (0.14 ± 0.02–0.28 ± 0.03 mN). Moreover, the muscle contractility increased when the calcium concentration was increased from 1.5 to 3 mM (0.45 ± 0.17–1.11 ± 0.05 mN); however, the contractility stopped increasing even when the concentration was increased to 7.5 mM (1.02 ± 0.23 mN). Conclusions Our method guaranteed the survivability of papillary muscle ex vivo and provided instructions for Myostation‐Intact users for isolated muscle contractility investigations.
Collapse
Affiliation(s)
- Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Center, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuyun Qin
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Adult Surgical Intensive Care Unit, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengge Wu
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Subcenter of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Peipei Zuo
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Subcenter of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Lina Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjie Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lulu Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Adult Surgical Intensive Care Unit, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhang
- Adult Surgical Intensive Care Unit, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Yang X, Wang W, Ma JL, Qiu YL, Lu K, Cao DS, Wu CK. BioNet: a large-scale and heterogeneous biological network model for interaction prediction with graph convolution. Brief Bioinform 2021; 23:6440126. [PMID: 34849567 PMCID: PMC8690188 DOI: 10.1093/bib/bbab491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 01/09/2023] Open
Abstract
Motivation Understanding chemical–gene interactions (CGIs) is crucial for screening drugs. Wet experiments are usually costly and laborious, which limits relevant studies to a small scale. On the contrary, computational studies enable efficient in-silico exploration. For the CGI prediction problem, a common method is to perform systematic analyses on a heterogeneous network involving various biomedical entities. Recently, graph neural networks become popular in the field of relation prediction. However, the inherent heterogeneous complexity of biological interaction networks and the massive amount of data pose enormous challenges. This paper aims to develop a data-driven model that is capable of learning latent information from the interaction network and making correct predictions. Results We developed BioNet, a deep biological networkmodel with a graph encoder–decoder architecture. The graph encoder utilizes graph convolution to learn latent information embedded in complex interactions among chemicals, genes, diseases and biological pathways. The learning process is featured by two consecutive steps. Then, embedded information learnt by the encoder is then employed to make multi-type interaction predictions between chemicals and genes with a tensor decomposition decoder based on the RESCAL algorithm. BioNet includes 79 325 entities as nodes, and 34 005 501 relations as edges. To train such a massive deep graph model, BioNet introduces a parallel training algorithm utilizing multiple Graphics Processing Unit (GPUs). The evaluation experiments indicated that BioNet exhibits outstanding prediction performance with a best area under Receiver Operating Characteristic (ROC) curve of 0.952, which significantly surpasses state-of-theart methods. For further validation, top predicted CGIs of cancer and COVID-19 by BioNet were verified by external curated data and published literature.
Collapse
Affiliation(s)
- Xi Yang
- College of Computer, National University of Defense Technology, China
| | - Wei Wang
- National Supercomputer Center in Tianjin, China
| | - Jing-Lun Ma
- College of Computer, National University of Defense Technology, China
| | - Yan-Long Qiu
- College of Computer, National University of Defense Technology, China
| | - Kai Lu
- College of Computer, National University of Defense Technology, China
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, China
| | - Cheng-Kun Wu
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
4
|
Qin Z, Shen S, Qu K, Nie Y, Zhang H. Mild hypothermia in rat with acute myocardial ischaemia-reperfusion injury complicating severe sepsis. J Cell Mol Med 2021; 25:6448-6454. [PMID: 34057282 PMCID: PMC8406477 DOI: 10.1111/jcmm.16649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) with concurrent severe sepsis has led to substantial mortality. Mild hypothermia (MHT) has been proved to have a therapeutic effect in either MIRI or severe sepsis, which suggests it might be beneficial for MIRI complicating severe sepsis. In this study, Sprague-Dawley rats with MIRI complicating severe sepsis were allotted in either MHT (33 ± 0.5°C) group or normothermia (NT, 37 ± 0.5°C) group; as control, rats receiving sham surgery and normal saline were kept at NT. After 2h of temperature maintenance, blood and heart tissue were acquired for detections. Lactate dehydrogenase (LDH) and MB isoenzyme of creatine kinase (CK-MB) in blood, triphenyl tetrazolium chloride and Evans blue staining, hematoxylin and eosin staining for myocardium were employed to detect myocardial damage. Tumor necrosis factor (TNF)-α and caspase-3 was performed by immunohistochemistry to exam myocardial inflammation and apoptosis. Detection of NADPH oxidase (NOX) 2 was for myocardial oxidative stress. In MHT group, systolic blood pressure was improved significantly compared with NT group. Myocardial infarct size, morphological change, LDH and CK-MB levels were attenuated compared to NT group. Moreover, less expressions of TNF-α, caspase-3 and NOX2 in MHT group were presented compared with NT group. MHT showed cardioprotection by improving cardiac dysfunction, reducing myocardial infarct size and attenuating myocardial injury, inflammation, apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Zhuyun Qin
- State Key Laboratory of Cardiovascular DiseaseNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeFuwai HospitalBeijingChina
| | - Shixuan Shen
- Zhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouChina
| | - Kaiyong Qu
- State Key Laboratory of Cardiovascular DiseaseNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeFuwai HospitalBeijingChina
| | - Yu Nie
- State Key Laboratory of Cardiovascular DiseaseNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeFuwai HospitalBeijingChina
| | - Haitao Zhang
- State Key Laboratory of Cardiovascular DiseaseNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeFuwai HospitalBeijingChina
| |
Collapse
|
5
|
Zhang Y, Fan X, Yang H. Long noncoding RNA FTX ameliorates hydrogen peroxide-induced cardiomyocyte injury by regulating the miR-150/KLF13 axis. Open Life Sci 2020; 15:1000-1012. [PMID: 33817286 PMCID: PMC7874544 DOI: 10.1515/biol-2020-0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 01/04/2023] Open
Abstract
Background Myocardial reperfusion is an effective therapy for acute myocardial infarction (AMI). However, ischemia/reperfusion (I/R) injury following myocardial reperfusion is a significant limitation for AMI treatment. Five prime to Xist (FTX) was recognized as a biomarker of multiple diseases, including heart disease. However, the molecular mechanism of FTX in I/R injury is unclear. Methods Cell viability was evaluated by using cell counting kit-8 (CCK-8) assay. Apoptosis was analyzed by using a caspase-3 activity detection kit and flow cytometry. The expression of FTX, microRNA (miR)-150, and Kruppel-like factor 13 (KLF13) was measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The interaction of miR-150 and FTX or KLF13 was confirmed by a dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Protein expression of KLF13 was examined by Western blot. The role of FTX was detected in I/R-injured heart tissues in vivo. Results Hydrogen peroxide (H2O2) induced cardiomyocyte injury by decreasing cell viability and expediting cell apoptosis. However, FTX alleviated cardiomyocyte injury by promoting cell proliferation and restricting cell apoptosis of H9C2 cells that were treated with H2O2. In addition, we discovered that FTX directly interacted with miR-150, while KLF13 was a target of miR-150. Rescue experiments showed that miR-150 neutralized the FTX-mediated promotion of cell progression and restriction of cell apoptosis in H9C2 cells treated with H2O2. KLF13 knockdown restored the effect of miR-150 on increased proliferation and decrease in apoptosis in H2O2-treated cardiomyocytes. Furthermore, FTX enhanced the expression of KLF13 protein through interaction with miR-150. Upregulation of FTX repressed apoptosis in I/R-injured heart tissues in vivo. Conclusion FTX relieves H2O2-induced cardiomyocyte injury by increasing KLF13 expression via depletion of miR-150, thus providing a novel therapeutic target for the alleviation of I/R injury.
Collapse
Affiliation(s)
- Yamin Zhang
- Department of Cardiology, The First Affiliated Hospital of Airforce Military Medical University, No. 127, Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Xiaoying Fan
- Department of Cardiology, The First Affiliated Hospital of Airforce Military Medical University, No. 127, Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Hua Yang
- Department of Cardiology, The First Affiliated Hospital of Airforce Military Medical University, No. 127, Changle West Road, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
6
|
Tan DX, Chen XX, Bai TZ, Zhang J, Li ZF. RETRACTED: Sevoflurane up-regulates microRNA-204 to ameliorate myocardial ischemia/reperfusion injury in mice by suppressing Cotl1. Life Sci 2020; 259:118162. [PMID: 32730836 DOI: 10.1016/j.lfs.2020.118162] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figures 4C+E and 7E, which appear to have a similar phenotype as seen in many other publications, as detailed here: https://pubpeer.com/publications/CE1E814DD630D160BEEBFC2842FE45; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. The journal requested that the corresponding author comment on these concerns and provide the raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Dian-Xiang Tan
- Department of Anesthesiology, Hengyang City Central Hospital, Hengyang 421001, Hunan, China.
| | - Xiao-Xi Chen
- Department of Anesthesiology, Hengyang City Central Hospital, Hengyang 421001, Hunan, China.
| | - Tai-Zhu Bai
- Department of Cardiovascular Medicine, Hengyang City Central Hospital, Hengyang 421001, Hunan, China.
| | - Juan Zhang
- Department of Anesthesiology, Hengyang City Central Hospital, Hengyang 421001, Hunan, China.
| | - Zhen-Fa Li
- Department of General Surgery, Hengyang City Central Hospital, Hengyang 421001, Hunan, China.
| |
Collapse
|
7
|
Alves QL, de Jesus RLC, Silva DF. Beneficial Effects Induced by TRPM8 Channels Activation to Treat Myocardial Infarction. Am J Hypertens 2020; 33:214-217. [PMID: 31848568 DOI: 10.1093/ajh/hpz195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Quiara Lovatti Alves
- Department of Bioregulation, Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Rafael Leonne Cruz de Jesus
- Department of Bioregulation, Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Darízy Flávia Silva
- Department of Bioregulation, Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|