1
|
Torun IE, Kilinc YB, Kilinc E, Töre F. TRESK channel activation ameliorates migraine-like pain via modulation of CGRP release from the trigeminovascular system and meningeal mast cells in experimental migraine models. Life Sci 2024; 357:123091. [PMID: 39362587 DOI: 10.1016/j.lfs.2024.123091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
AIMS Accumulating evidence indicates the involvement of TRESK potassium channels in migraine, however, effects of TRESK activation on migraine-related mechanisms remain unclear. We explored effects of TRESK channel modulation on migraine-related behavioral and molecular markers in in-vivo and ex-vivo rat models of migraine. MAIN METHODS The selective TRESK activator cloxyquin at different doses, the TRESK inhibitor A2764, and the migraine drug sumatriptan were tested alone or in different combinations in nitroglycerin (NTG)-induced in-vivo model, and in ex-vivo meningeal, trigeminal ganglion and brainstem preparations in which CGRP release was induced by capsaicin. Mechanical allodynia, CGRP and c-fos levels in trigeminovascular structures and meningeal mast cells were evaluated. KEY FINDINGS Cloxyquin attenuated NTG-induced mechanical allodynia, brainstem c-fos and CGRP levels, trigeminal ganglion CGRP levels and meningeal mast cell degranulation and number, in-vivo. It also diminished capsaicin-induced CGRP release from ex-vivo meningeal, trigeminal ganglion and brainstem preparations. Specific TRESK inhibitor A2764 abolished all effects of cloxyquin in in-vivo and ex-vivo. Combining cloxyquin and sumatriptan exerted a synergistic effect ex-vivo, but not in-vivo. SIGNIFICANCE Our findings provide the experimental evidence for the anti-migraine effect of TRESK activation in migraine-like conditions. The modulation of TRESK channels may therefore be an attractive alternative strategy to relieve migraine pain.
Collapse
Affiliation(s)
- Ibrahim Ethem Torun
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Yasemin Baranoglu Kilinc
- Department of Pediatrics, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Erkan Kilinc
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Türkiye.
| | - Fatma Töre
- Department of Physiology, Faculty of Medicine, Istanbul Atlas University, Istanbul, Türkiye
| |
Collapse
|
2
|
Greco R, Francavilla M, Facchetti S, Demartini C, Zanaboni AM, Antonangeli MI, Maffei M, Cattani F, Aramini A, Allegretti M, Tassorelli C, De Filippis L. Intranasal administration of recombinant human BDNF as a potential therapy for some primary headaches. J Headache Pain 2024; 25:184. [PMID: 39455939 PMCID: PMC11515342 DOI: 10.1186/s10194-024-01890-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND In addition to its critical role in neurogenesis, brain-derived neurotrophic factor (BDNF) modulates pain and depressive behaviors. METHODS In a translational perspective, we tested the anti-migraine activity of highly purified and characterized recombinant human BDNF (rhBDNF) in an animal model of cephalic pain based on the chronic and intermittent NTG administration (five total injections over nine days), used to mimic recurrence of attacks over a given period. To achieve this, we assessed the effects of two doses of rhBDNF (40 and 80 µg/kg) administered intranasally to adult male Sprague-Dawley rats, on trigeminal hyperalgesia (by orofacial formalin test), gene expression (by rt-PCR) of neuropeptides and inflammatory cytokines in specific areas of the brain related to migraine pain. Serum levels of CGRP, PACAP, and VIP (by ELISA) were also evaluated. The effects of rhBDNF were compared with those of sumatriptan (5 mg/kg i.p), administered 1 h before the last NTG administration. RESULTS Both doses of rhBDNF significantly reduced NTG-induced nocifensive behavior in Phase II of the orofacial formalin test. The anti-hyperalgesic effect of intranasal high-dose rhBDNF administration in the NTG-treated animals was associated with a significant modulation of mRNA levels of neuropeptides (CGRP, PACAP, VIP) and cytokines (IL-1beta, IL-10) in the trigeminal ganglion, medulla-pons, and hypothalamic area. Of note, the effects of rhBNDF treatment were comparable to those induced by the administration of sumatriptan. rhBDNF administration at both doses significantly reduced serum levels of PACAP, while the higher dose also significantly reduced serum levels of VIP. CONCLUSIONS The findings suggest that intranasal rhBDNF has the potential to be a safe, non-invasive and effective therapeutic approach for the treatment of primary headache, particularly migraine.
Collapse
Affiliation(s)
- Rosaria Greco
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
| | - Miriam Francavilla
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Sara Facchetti
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Chiara Demartini
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Maria Zanaboni
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | | | | | | | | | - Cristina Tassorelli
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|
3
|
Zorrilla E, Della Pietra A, Russo AF. Interplay between cannabinoids and the neuroimmune system in migraine. J Headache Pain 2024; 25:178. [PMID: 39407099 PMCID: PMC11481476 DOI: 10.1186/s10194-024-01883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Migraine is a common and complex neurological disorder that has a high impact on quality of life. Recent advances with drugs that target the neuropeptide calcitonin gene-related peptide (CGRP) have helped, but treatment options remain insufficient. CGRP is released from trigeminal sensory fibers and contributes to peripheral sensitization, perhaps in part due to actions on immune cells in the trigeminovascular system. In this review, we will discuss the potential of cannabinoid targeting of immune cells as an innovative therapeutic target for migraine treatment. We will cover endogenous endocannabinoids, plant-derived phytocannabinoids and synthetically derived cannabinoids. The focus will be on six types of immune cells known to express multiple cannabinoid receptors: macrophages, monocytes, mast cells, dendritic cells, B cells, and T cells. These cells also contain receptors for CGRP and as such, cannabinoids might potentially modulate the efficacy of current CGRP-targeting drugs. Unfortunately, to date most studies on cannabinoids and immune cells have relied on cell cultures and only a single preclinical study has tested cannabinoid actions on immune cells in a migraine model. Encouragingly, in that study a synthetically created stable chiral analog of an endocannabinoid reduced meningeal mast cell degranulation. Likewise, clinical trials evaluating the safety and efficacy of cannabinoid-based therapies for migraine patients have been limited but are encouraging. Thus, the field is at its infancy and there are significant gaps in our understanding of the impact of cannabinoids on immune cells in migraine. Future research exploring the interactions between cannabinoids and immune cells could lead to more targeted and effective migraine treatments.
Collapse
Affiliation(s)
- Erik Zorrilla
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Adriana Della Pietra
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.
- Veterans Affairs Healthcare System, Iowa City, IA, 52246, USA.
| |
Collapse
|
4
|
Kilinc E, Torun IE, Baranoglu Kilinc Y. Meningeal mast cell-mediated mechanisms of cholinergic system modulation in neurogenic inflammation underlying the pathophysiology of migraine. Eur J Neurosci 2024; 59:2181-2192. [PMID: 36485173 DOI: 10.1111/ejn.15888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Growing evidence indicates that the parasympathetic system is implicated in migraine headache. However, the cholinergic mechanisms in the pathophysiology of migraine remain unclear. We investigated the effects and mechanisms of cholinergic modulation and a mast cell stabilizer cromolyn in the nitroglycerin-induced in vivo migraine model and in vitro hemiskull preparations in rats. Effects of cholinergic agents (acetylcholinesterase inhibitor neostigmine, or acetylcholine, and muscarinic antagonist atropine) and mast cell stabilizer cromolyn or their combinations were tested in the in vivo and in vitro experiments. The mechanical hyperalgesia was assessed by von Frey hairs. Calcitonin gene-related peptide (CGRP) and C-fos levels were measured by enzyme-linked immunosorbent assay. Degranulation and count of meningeal mast cells were determined by toluidine-blue staining. Neostigmine augmented the nitroglycerin-induced mechanical hyperalgesia, trigeminal ganglion CGRP levels, brainstem CGRP, and C-fos levels, as well as degranulation of mast cells in vivo. Atropine inhibited neostigmine-induced additional increases in CGRP levels in trigeminal ganglion and brainstem while it failed to do this in the mechanical hyperalgesia, C-fos levels, and the mast cell degranulation. However, all systemic effects of neostigmine were abolished by cromolyn. The cholinergic agents or cromolyn did not alter basal release of CGRP, in vitro, but cromolyn alleviated the CGRP-inducing effect of capsaicin while atropine failed to do it. These results ensure for a first time direct evidence that endogenous acetylcholine contributes to migraine pathology mainly by activating meningeal mast cells while muscarinic receptors are involved in CGRP release from trigeminal ganglion and brainstem, without excluding the possible role of nicotinic cholinergic receptors.
Collapse
Affiliation(s)
- Erkan Kilinc
- Department of Physiology, Medical School, University of Bolu Abant Izzet Baysal, Bolu, Türkiye
| | - Ibrahim Ethem Torun
- Department of Physiology, Medical School, University of Bolu Abant Izzet Baysal, Bolu, Türkiye
| | | |
Collapse
|
5
|
Evaluation of a Polyherbal Formulation on the Management of Migraine Headaches due to Functional Dyspepsia: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9872933. [PMID: 36510578 PMCID: PMC9741544 DOI: 10.1155/2022/9872933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/13/2022] [Accepted: 09/15/2022] [Indexed: 12/07/2022]
Abstract
A holistic concept based on traditional Persian medicine (TPM) describes a headache with a gastrointestinal (GI) origin (gastric-headache). Although the neurological manifestations of this headache are similar to those of other headaches, its etiology is different. Considering its simultaneous effects on the brain and GI system, a formulation was designed based on this concept. This study aimed to determine the safety and efficacy of the designed formulation on migraine headache (MH) associated with functional dyspepsia (FD). A total of 75 diagnosed cases of MH patients with concurrent FD were randomly divided equally into 3 groups: (i) the polyherbal formulation, sodium valproate (VPA), and amitriptyline group, (ii) VPA, amitriptyline, and polyherbal formulation placebo group, and (iii) the polyherbal formulation and VPA placebo group. The primary outcomes, including frequency, duration, and severity of MH attacks, were measured at baseline and weeks 4, 8, and 12. However, secondary outcomes, including the Headache Impact Test 6 (HIT-6) Questionnaire and Parkman's score, were evaluated at baseline and end of treatment. The frequency, duration, and severity of migraine (P < 0.001 for all cases), HIT-6 (P < 0.001 for all cases), and FD (P < 0.001 for all cases) scores at the end of treatment showed a significant decrease in the 3 groups compared to the baseline. However, the differences in those variables between the 3 groups were not significant at the end of the study. The polyherbal formulation alone may improve the symptoms of migraine patients and other groups. This effect could be due to improving digestion and FD in migraine patients.
Collapse
|
6
|
Modulation of Glia Activation by TRPA1 Antagonism in Preclinical Models of Migraine. Int J Mol Sci 2022; 23:ijms232214085. [PMID: 36430567 PMCID: PMC9697613 DOI: 10.3390/ijms232214085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
Preclinical data point to the contribution of transient receptor potential ankyrin 1 (TRPA1) channels to the complex mechanisms underlying migraine pain. TRPA1 channels are expressed in primary sensory neurons, as well as in glial cells, and they can be activated/sensitized by inflammatory mediators. The aim of this study was to investigate the relationship between TRPA1 channels and glial activation in the modulation of trigeminal hyperalgesia in preclinical models of migraine based on acute and chronic nitroglycerin challenges. Rats were treated with ADM_12 (TRPA1 antagonist) and then underwent an orofacial formalin test to assess trigeminal hyperalgesia. mRNA levels of pro- and anti-inflammatory cytokines, calcitonin gene-related peptide (CGRP) and glia cell activation were evaluated in the Medulla oblongata and in the trigeminal ganglia. In the nitroglycerin-treated rats, ADM_12 showed an antihyperalgesic effect in both acute and chronic models, and it counteracted the changes in CGRP and cytokine gene expression. In the acute nitroglycerin model, ADM_12 reduced nitroglycerin-induced increase in microglial and astroglial activation in trigeminal nucleus caudalis area. In the chronic model, we detected a nitroglycerin-induced activation of satellite glial cells in the trigeminal ganglia that was inhibited by ADM_12. These findings show that TRPA1 antagonism reverts experimentally induced hyperalgesia in acute and chronic models of migraine and prevents multiple changes in inflammatory pathways by modulating glial activation.
Collapse
|
7
|
Greco R, Demartini C, Francavilla M, Zanaboni AM, Tassorelli C. Dual Inhibition of FAAH and MAGL Counteracts Migraine-like Pain and Behavior in an Animal Model of Migraine. Cells 2021; 10:2543. [PMID: 34685523 PMCID: PMC8534238 DOI: 10.3390/cells10102543] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
The endocannabinoid system exerts an important role in pain processing and modulation. Modulation of the system with hydrolase inhibitors of anandamide (AEA) or 2-arachidonyl glycerol (2-AG) has proved effective in reducing migraine-like features in animal models of migraine. Here, we investigated the effect of dual inhibition of the AEA and 2-AG catabolic pathways in the nitroglycerin-based animal model of migraine. The dual inhibitor JZL195 was administered to rats 2 h after nitroglycerin or vehicle injection. Rats were then exposed to the open field test and the orofacial formalin test. At the end of the tests, they were sacrificed to evaluate calcitonin gene-related peptide (CGRP) serum levels and gene expression of CGRP and cytokines in the cervical spinal cord and the trigeminal ganglion. The dual inhibitor significantly reduced the nitroglycerin-induced trigeminal hyperalgesia and pain-associated behavior, possibly via cannabinoid 1 receptors-mediated action, but it did not change the hypomotility and the anxiety behaviors induced by nitroglycerin. The decreased hyperalgesia was associated with a reduction in CGRP and cytokine gene expression levels in central and peripheral structures and reduced CGRP serum levels. These data suggest an antinociceptive synergy of the endocannabinoid action in peripheral and central sites, confirming that this system participates in reduction of cephalic pain signals.
Collapse
Affiliation(s)
- Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
| | - Chiara Demartini
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
| | - Miriam Francavilla
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
| | - Anna Maria Zanaboni
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| |
Collapse
|
8
|
Greco R, Demartini C, Zanaboni A, Casini I, De Icco R, Reggiani A, Misto A, Piomelli D, Tassorelli C. Characterization of the peripheral FAAH inhibitor, URB937, in animal models of acute and chronic migraine. Neurobiol Dis 2020; 147:105157. [PMID: 33129939 DOI: 10.1016/j.nbd.2020.105157] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
Inhibiting the activity of fatty-acid amide hydrolase (FAAH), the enzyme that deactivates the endocannabinoid anandamide, enhances anandamide-mediated signaling and holds promise as a molecular target for the treatment of human pathologies such as anxiety and pain. We have previously shown that the peripherally restricted FAAH inhibitor, URB937, prevents nitroglycerin-induced hyperalgesia - an animal model of migraine - and attenuates the activation of brain areas that are relevant for migraine pain, e.g. trigeminal nucleus caudalis and locus coeruleus. The current study is aimed at profiling the behavioral and biochemical effects of URB937 in animal models of acute and chronic migraine. We evaluated the effects of URB937 in two rat models that capture aspects of acute and chronic migraine, and are based on single or repeated administration of the vasodilating drug, nitroglycerin (NTG). In addition to nocifensive behavior, in trigeminal ganglia and medulla, we measured mRNA levels of neuropeptides and pro-inflammatory cytokines along with tissue levels of anandamide and palmitoylethanolamide (PEA), an endogenous agonist of peroxisome proliferator-activated receptor type-a (PPAR-a), which is also a FAAH substrate. In the acute migraine model, we also investigated the effect of subtype-selective antagonist for cannabinoid receptors 1 and 2 (AM251 and AM630, respectively) on nocifensive behavior and on levels of neuropeptides and pro-inflammatory cytokines. In the acute migraine paradigm, URB937 significantly reduced hyperalgesia in the orofacial formalin test when administered either before or after NTG. This effect was accompanied by an increase in anandamide and PEA levels in target neural tissue, depended upon CB1 receptor activation, and was associated with a decrease in calcitonin gene-related peptide (CGRP), substance P and cytokines TNF-alpha and IL-6 mRNA. Similar effects were observed in the chronic migraine paradigm, where URB937 counteracted NTG-induced trigeminal hyperalgesia and prevented the increase in neuropeptide and cytokine transcription. The results show that peripheral FAAH inhibition by URB937 effectively reduces both acute and chronic NTG-induced trigeminal hyperalgesia, likely via augmented anandamide-mediated CB1 receptor activation. These effects are associated with inhibition of neuropeptidergic and inflammatory pathways.
Collapse
Affiliation(s)
- Rosaria Greco
- Translational Neurovascular Research Unit, Headache Science Centre, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy.
| | - Chiara Demartini
- Translational Neurovascular Research Unit, Headache Science Centre, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| | - Annamaria Zanaboni
- Translational Neurovascular Research Unit, Headache Science Centre, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| | - Ilenia Casini
- Translational Neurovascular Research Unit, Headache Science Centre, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| | - Roberto De Icco
- Translational Neurovascular Research Unit, Headache Science Centre, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| | - Angelo Reggiani
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessandra Misto
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Cristina Tassorelli
- Translational Neurovascular Research Unit, Headache Science Centre, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| |
Collapse
|
9
|
Mangiatordi GF, Intranuovo F, Delre P, Abatematteo FS, Abate C, Niso M, Creanza TM, Ancona N, Stefanachi A, Contino M. Cannabinoid Receptor Subtype 2 (CB2R) in a Multitarget Approach: Perspective of an Innovative Strategy in Cancer and Neurodegeneration. J Med Chem 2020; 63:14448-14469. [PMID: 33094613 DOI: 10.1021/acs.jmedchem.0c01357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cannabinoid receptor subtype 2 (CB2R) represents an interesting and new therapeutic target for its involvement in the first steps of neurodegeneration as well as in cancer onset and progression. Several studies, focused on different types of tumors, report a promising anticancer activity induced by CB2R agonists due to their ability to reduce inflammation and cell proliferation. Moreover, in neuroinflammation, the stimulation of CB2R, overexpressed in microglial cells, exerts beneficial effects in neurodegenerative disorders. With the aim to overcome current treatment limitations, new drugs can be developed by specifically modulating, together with CB2R, other targets involved in such multifactorial disorders. Building on successful case studies of already developed multitarget strategies involving CB2R, in this Perspective we aim at prompting the scientific community to consider new promising target associations involving HDACs (histone deacetylases) and σ receptors by employing modern approaches based on molecular hybridization, computational polypharmacology, and machine learning algorithms.
Collapse
Affiliation(s)
| | - Francesca Intranuovo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Pietro Delre
- CNR-Institute of Crystallography, Via Amendola 122/o, 70126 Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Francesca Serena Abatematteo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Teresa Maria Creanza
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Via Amendola 122/o, 70126 Bari, Italy
| | - Nicola Ancona
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Via Amendola 122/o, 70126 Bari, Italy
| | - Angela Stefanachi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
10
|
Kilinc E, Ankarali S, Torun IE, Dagistan Y. Receptor mechanisms mediating the anti-neuroinflammatory effects of endocannabinoid system modulation in a rat model of migraine. Eur J Neurosci 2020; 55:1015-1031. [PMID: 32639078 DOI: 10.1111/ejn.14897] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 01/12/2023]
Abstract
Calcitonin gene-related peptide (CGRP), substance P and dural mast cells are main contributors in neurogenic inflammation underlying migraine pathophysiology. Modulation of endocannabinoid system attenuates migraine pain, but its mechanisms of action remain unclear. We investigated receptor mechanisms mediating anti-neuroinflammatory effects of endocannabinoid system modulation in in vivo migraine model and ex vivo hemiskull preparations in rats. To induce acute model of migraine, a single dose of nitroglycerin was intraperitoneally administered to male rats. Moreover, isolated ex vivo rat hemiskulls were prepared to study CGRP and substance P release from meningeal trigeminal afferents. We used methanandamide (cannabinoid agonist), rimonabant (cannabinoid receptor-1 CB1 antagonist), SR144528 (CB2 antagonist) and capsazepine (transient receptor potential vanilloid-1 TRPV1 antagonist) to explore effects of endocannabinoid system modulation on the neurogenic inflammation, and possible involvement of CB1, CB2 and TRPV1 receptors during endocannabinoid effects. Methanandamide attenuated nitroglycerin-induced CGRP increments in in vivo plasma, trigeminal ganglia and brainstem and also in ex vivo hemiskull preparations. Methanandamide also alleviated enhanced number and degranulation of dural mast cells induced by nitroglycerin. Rimonabant, but not capsazepine or SR144528, reversed the attenuating effects of methanandamide on CGRP release in both in vivo and ex vivo experiments. Additionally, SR144528, but not rimonabant or capsazepine, reversed the attenuating effects of methanandamide on dural mast cells. However, neither nitroglycerin nor methanandamide changed substance P levels in both in vivo and ex vivo experiments. Methanandamide modulates CGRP release in migraine-related structures via CB1 receptors and inhibits the degranulation of dural mast cells through CB2 receptors. Selective ligands targeting CB1 and CB2 receptors may provide novel and effective treatment strategies against migraine.
Collapse
Affiliation(s)
- Erkan Kilinc
- Medical Faculty, Department of Physiology, Abant Izzet Baysal University, Bolu, Turkey
| | - Seyit Ankarali
- Medical Faculty, Department of Physiology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ibrahim Ethem Torun
- Medical Faculty, Department of Physiology, Abant Izzet Baysal University, Bolu, Turkey
| | - Yasar Dagistan
- Medical Faculty, Department of Neurosurgery, Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
11
|
Xing C, Zhuang Y, Xu TH, Feng Z, Zhou XE, Chen M, Wang L, Meng X, Xue Y, Wang J, Liu H, McGuire TF, Zhao G, Melcher K, Zhang C, Xu HE, Xie XQ. Cryo-EM Structure of the Human Cannabinoid Receptor CB2-G i Signaling Complex. Cell 2020; 180:645-654.e13. [PMID: 32004460 DOI: 10.1016/j.cell.2020.01.007] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/01/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023]
Abstract
Drugs selectively targeting CB2 hold promise for treating neurodegenerative disorders, inflammation, and pain while avoiding psychotropic side effects mediated by CB1. The mechanisms underlying CB2 activation and signaling are poorly understood but critical for drug design. Here we report the cryo-EM structure of the human CB2-Gi signaling complex bound to the agonist WIN 55,212-2. The 3D structure reveals the binding mode of WIN 55,212-2 and structural determinants for distinguishing CB2 agonists from antagonists, which are supported by a pair of rationally designed agonist and antagonist. Further structural analyses with computational docking results uncover the differences between CB2 and CB1 in receptor activation, ligand recognition, and Gi coupling. These findings are expected to facilitate rational structure-based discovery of drugs targeting the cannabinoid system.
Collapse
Affiliation(s)
- Changrui Xing
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute and Departments of Computational Biology and of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Youwen Zhuang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ting-Hai Xu
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute and Departments of Computational Biology and of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - X Edward Zhou
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Maozi Chen
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lei Wang
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xing Meng
- David Van Andel Advanced Cryo-Electron Microscopy Suite, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ying Xue
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Heng Liu
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Terence Francis McGuire
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gongpu Zhao
- David Van Andel Advanced Cryo-Electron Microscopy Suite, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Karsten Melcher
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Cheng Zhang
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - H Eric Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute and Departments of Computational Biology and of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
12
|
Combination of Imipramine, a sphingomyelinase inhibitor, and β-caryophyllene improve their therapeutic effects on experimental autoimmune encephalomyelitis (EAE). Int Immunopharmacol 2019; 77:105923. [DOI: 10.1016/j.intimp.2019.105923] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022]
|