1
|
Yalameha B, Reza Nejabati H. Urinary Exosomal Metabolites: Overlooked Clue for Predicting Cardiovascular Risk. Clin Chim Acta 2023:117445. [PMID: 37315726 DOI: 10.1016/j.cca.2023.117445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Over the last decade, increasing research has focused on urinary exosomes (UEs) in biological fluids and their relationship with physiological and pathological processes. UEs are membranous vesicles with a size of 40-100 nm, containing a number of bioactive molecules such as proteins, lipids, mRNAs, and miRNAs. These vesicles are an inexpensive non-invasive source that can be used in clinical settings to differentiate healthy patients from diseased patients, thereby serving as potential biomarkers for the early identification of disease. Recent studies have reported the isolation of small molecules called exosomal metabolites from individuals' urine with different diseases. These metabolites could utilize for a variety of purposes, such as the discovery of biomarkers, investigation of mechanisms related to disease development, and importantly prediction of cardiovascular diseases (CVDs) risk factors, including thrombosis, inflammation, oxidative stress, hyperlipidemia as well as homocysteine. It has been indicated that alteration in urinary metabolites of N1-methylnicotinamide, 4-aminohippuric acid, and citric acid can be valuable in predicting cardiovascular risk factors, providing a novel approach to evaluating the pathological status of CVDs. Since the UEs metabolome has been clearly and precisely so far unexplored in CVDs, the present study has specifically addressed the role of the mentioned metabolites in the prediction of CVDs risk factors.
Collapse
Affiliation(s)
- Banafsheh Yalameha
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
McCarty MF. Nutraceutical and Dietary Strategies for Up-Regulating Macroautophagy. Int J Mol Sci 2022; 23:2054. [PMID: 35216170 PMCID: PMC8875972 DOI: 10.3390/ijms23042054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Macroautophagy is a "cell cleansing" process that rids cells of protein aggregates and damaged organelles that may contribute to disease pathogenesis and the dysfunctions associated with aging. Measures which boost longevity and health span in rodents typically up-regulate macroautophagy, and it has often been suggested that safe strategies which can promote this process in humans may contribute to healthful aging. The kinase ULK1 serves as a trigger for autophagy initiation, and the transcription factors TFEB, FOXO1, ATF4 and CHOP promote expression of a number of proteins which mediate macroautophagy. Nutraceutical or dietary measures which stimulate AMPK, SIRT1, eIF5A, and that diminish the activities of AKT and mTORC1, can be expected to boost the activities of these pro-autophagic factors. The activity of AMPK can be stimulated with the phytochemical berberine. SIRT1 activation may be achieved with a range of agents, including ferulic acid, melatonin, urolithin A, N1-methylnicotinamide, nicotinamide riboside, and glucosamine; correction of ubiquinone deficiency may also be useful in this regard, as may dietary strategies such as time-restricted feeding or intermittent fasting. In the context of an age-related decrease in cellular polyamine levels, provision of exogenous spermidine can boost the hypusination reaction required for the appropriate post-translational modification of eIF5A. Low-protein plant-based diets could be expected to increase ATF4 and CHOP expression, while diminishing IGF-I-mediated activation of AKT and mTORC1. Hence, practical strategies for protecting health by up-regulating macroautophagy may be feasible.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, San Diego, CA 92109, USA
| |
Collapse
|
3
|
Nejabati HR, Ghaffari-Novin M, Fathi-Maroufi N, Faridvand Y, Holmberg HC, Hansson O, Nikanfar S, Nouri M. N1-Methylnicotinamide: Is It Time to Consider as a Dietary Supplement for Athletes? Curr Pharm Des 2022; 28:800-805. [DOI: 10.2174/1381612828666220211151204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Exercise is considered to be a “medicine” due to its modulatory roles in metabolic disorders such as diabetes and obesity. The intensity and duration of exercise determine the mechanism of energy production by various tissues of the body, especially by muscles, in which the requirement for adenosine triphosphate (ATP) increases by as much as 100-fold. Naturally, athletes try to improve their exercise performance by dietary supplementation with, e.g., vitamins, metabolites, and amino acids. MNAM, as a vitamin B3 metabolite, reduces serum levels and liver contents of triglycerides, and cholesterol and induces lipolysis. It stimulates gluconeogenesis and prohibits liver cholesterol and fatty acid synthesis through the expression of sirtuin1 (SIRT1). It seems that MNAM is not responsible for the actions of NNMT in the adipose tissues as MNAM inhibits the activity of NNMT in the adipose tissue and acts like inhibitors of its activity. NNMT-MNAM axis is more activated in the muscles of participants who were undergoing the high-volume-low-intensity exercise and caloric restriction. Therefore, MNAM could be an important myokine during exercise and fasting where it provides the required energy for muscles through the induction of lipolysis and gluconeogenesis in the liver and adipose tissues, respectively. Increased levels of MNAM in exercise and fasting led us to propose that the consumption of MNAM during training especially endurance training could boost exercise capacity and improves performance. Therefore, in this review, we shed light on the potential of MNAM as a dietary supplement in sports medicine.
Collapse
Affiliation(s)
- Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Ghaffari-Novin
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Nazila Fathi-Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Faridvand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Ola Hansson
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Saba Nikanfar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Rudnicka E, Suchta K, Grymowicz M, Calik-Ksepka A, Smolarczyk K, Duszewska AM, Smolarczyk R, Meczekalski B. Chronic Low Grade Inflammation in Pathogenesis of PCOS. Int J Mol Sci 2021; 22:ijms22073789. [PMID: 33917519 PMCID: PMC8038770 DOI: 10.3390/ijms22073789] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a one of the most common endocrine disorders, with a prevalence rate of 5–10% in reproductive aged women. It’s characterized by (1) chronic anovulation, (2) biochemical and/or clinical hyperandrogenism, and (3) polycystic ovarian morphology. PCOS has significant clinical implications and can lead to health problems related to the accumulation of adipose tissue, such as obesity, insulin resistance, metabolic syndrome, and type 2 diabetes. There is also evidence that PCOS patients are at higher risk of cardiovascular diseases, atherosclerosis, and high blood pressure. Several studies have reported the association between polycystic ovary syndrome (PCOS) and low-grade chronic inflammation. According to known data, inflammatory markers or their gene markers are higher in PCOS patients. Correlations have been found between increased levels of C-reactive protein (CRP), interleukin 18 (IL-18), tumor necrosis factor (TNF-α), interleukin 6 (IL-6), white blood cell count (WBC), monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α) in the PCOS women compared with age- and BMI-matched controls. Women with PCOS present also elevated levels of AGEs and increased RAGE (receptor for advanced glycation end products) expression. This chronic inflammatory state is aggravating by obesity and hyperinsulinemia. There are studies describing mutual impact of hyperinsulinemia and obesity, hyperandrogenism, and inflammatory state. Endothelial cell dysfunction may be also triggered by inflammatory cytokines. Many factors involved in oxidative stress, inflammation, and thrombosis were proposed as cardiovascular risk markers showing the endothelial cell damage in PCOS. Those markers include asymmetric dimethylarginine (ADMA), C-reactive protein (CRP), homocysteine, plasminogen activator inhibitor-I (PAI-I), PAI-I activity, vascular endothelial growth factor (VEGF) etc. It was also proposed that the uterine hyperinflammatory state in polycystic ovary syndrome may be responsible for significant pregnancy complications ranging from miscarriage to placental insufficiency. In this review, we discuss the most importance evidence concerning the role of the process of chronic inflammation in pathogenesis of PCOS.
Collapse
Affiliation(s)
- Ewa Rudnicka
- Department of Gynaecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland; (K.S.); (M.G.); (A.C.-K.); (R.S.)
- Correspondence: ; Tel.: +48-604167450
| | - Katarzyna Suchta
- Department of Gynaecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland; (K.S.); (M.G.); (A.C.-K.); (R.S.)
| | - Monika Grymowicz
- Department of Gynaecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland; (K.S.); (M.G.); (A.C.-K.); (R.S.)
| | - Anna Calik-Ksepka
- Department of Gynaecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland; (K.S.); (M.G.); (A.C.-K.); (R.S.)
| | - Katarzyna Smolarczyk
- Department of Dermatology and Venereology, Medical University of Warsaw, 00-315 Warsaw, Poland;
| | - Anna M. Duszewska
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Roman Smolarczyk
- Department of Gynaecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland; (K.S.); (M.G.); (A.C.-K.); (R.S.)
| | - Blazej Meczekalski
- Department of Gynaecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| |
Collapse
|
5
|
Hong G, Wu H, Ma ST, Su Z. Catechins from oolong tea improve uterine defects by inhibiting STAT3 signaling in polycystic ovary syndrome mice. Chin Med 2020; 15:125. [PMID: 33292347 PMCID: PMC7708239 DOI: 10.1186/s13020-020-00405-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background It is showed that inflammation is causative factor for PCOS, leading to a decline in ovarian fertility. Previous studies have reported that tea consumption can reduce the incidence of ovarian cancer. We speculate that catechins from oolong tea (Camellia sinensis (L.) O. Kuntze) may have a potential therapeutic effect on PCOS. This study aims to investigate the effects of oolong tea catechins on the uterus of polycystic ovary syndrome (PCOS) mice induced by insulin combined with human chorionic gonadotropin (hCG). Methods Sixty female mice were divided into 6 groups (n = 10): model, model + Metformin 200 mg/kg, model + catechins 25 mg/kg, model + catechins 50 mg/kg, and model + catechins 100 mg/kg. Another forty female mice were divided into 4 groups (n = 10): control, control + catechins 100 mg/kg, model, and model + catechins 100 mg/kg. Ovarian and uterine weight coefficients, sex hormone levels, glucose metabolism and insulin resistance, and ovarian and uterine pathology were examined. Changes in NF-κB-mediated inflammation, MMP2 and MMP9 expressions, and STAT3 signaling were evaluated in the uterus of mice. Results Catechins could effectively reduce the ovarian and uterine organ coefficients, reduce the levels of E2, FSH and LH in the blood and the ratio of LH/FSH, and improve glucose metabolism and insulin resistance in PCOS mice induced by insulin combined with hCG. In addition, catechins could significantly down-regulated the expression of p-NF-κB p65 in the uterus and the protein expressions of the pro-inflammatory factors (IL-1β, IL-6, and TNF-α). The expressions of mmp2 and mmp9 associated with matrix degradation in uterine tissue were also significantly down-regulated by catechins. Further, catechins significantly reduced the expression of p-STAT3 and increased the expression of p-IRS1 and p-PI3K in the uterus of PCOS mice. Conclusion Catechins from oolong tea can alleviate ovarian dysfunction and insulin resistance in PCOS mice by inhibiting uterine inflammation and matrix degradation via inhibiting p-STAT3 signaling.
Collapse
Affiliation(s)
- Ge Hong
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin, 300192, China.,Life and Health College, Anhui Science and Technology University, Fengyang, 233100, China
| | - Hao Wu
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 200192, China
| | - Shi-Tang Ma
- Life and Health College, Anhui Science and Technology University, Fengyang, 233100, China.
| | - Zhe Su
- Tianjin Institute for Drug Control, Tianjin, 300000, China
| |
Collapse
|
6
|
Yang D, Li N, Ma A, Dai F, Zheng Y, Hu X, Wang Y, Xian S, Zhang L, Yuan M, Liu S, Deng Z, Yang Y, Cheng Y. Identification of Potential Biomarkers of Polycystic Ovary Syndrome via Integrated Bioinformatics Analysis. Reprod Sci 2020; 28:1353-1361. [PMID: 33067753 DOI: 10.1007/s43032-020-00352-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a life-long reproductive, endocrine, and metabolic disorder that affects up to 17% of women of reproductive age. However, the effect of granulosa cells (GCs) transcriptome changes on oocyte capacity and follicular development in patients with PCOS has not been elucidated. This study aims to analyze transcriptome changes in GCs of PCOS from different perspectives and explore potential biomarkers for the diagnosis and treatment of PCOS. The gene expression profiles of GSE34526 and GSE107746 were obtained from the GEO database. Differentially expressed genes (DEGs) and key signaling pathways were identified. Gene Set Enrichment Analysis (GSEA) revealed that Toll-like receptors, NOD-like receptors, and NOTCH signaling pathways were obviously enriched in GCs of PCOS. We further analyzed DEGs from three aspects: transcription factors (TFs), secreted proteins, and follicular development. Compared with normal GCs, the DEGs encoding TFs and secretory proteins in GCs of PCOS remarkably changed. Besides, HAS2 and CBLN1, which are highly expressed in preovulatory follicular GCs and may trigger ovulation, were significantly decreased in GCs of PCOS. This study found candidate genes and signaling pathways in PCOS, providing new insights and foundations for the etiology of PCOS. Besides, HSA2 and CBLN1 may be potential therapeutic biomarkers for ovulation disorders in PCOS.
Collapse
Affiliation(s)
- Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Na Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Aiping Ma
- Department of Obstetrics and Gynecology, People's Hospital of Hanchuan, Hanchuan, 431600, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuejia Hu
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shu Xian
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yang
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
7
|
Nejabati HR, Schmeisser K, Shahnazi V, Samimifar D, Faridvand Y, Bahrami-Asl Z, Fathi-Maroufi N, Nikanfar S, Nouri M. N1-Methylnicotinamide: An Anti-Ovarian Aging Hormetin? Ageing Res Rev 2020; 62:101131. [PMID: 32711159 DOI: 10.1016/j.arr.2020.101131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/07/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023]
Abstract
Ovarian aging occurs due to the reduction of the quality and quantity of the oocytes, and is regulated by mitochondrial survival and apoptotic signals. Reactive Oxygen Species (ROS) are one of those signals considered detrimental to cellular homeostasis. Nowadays, ROS are regarded as a regulatory factor at low levels as it induces the stress resistance which in turn increases the longevity. It is believed that the main mechanism for the life-promoting role of the ROS mediated by the 5' Adenosine Monophosphate-activated Protein Kinase (AMPK). N1-Methylnicotinamide (MNAM) is well known for its anti-diabetic, anti-thrombotic, and anti-inflammatory activity. Aldehyde oxidase 1 (AOX1) is a detoxifying enzyme, which metabolizes the MNAM and produces two metabolites including N1-methyl-2-pyridone-5- carboxamide (2py) and N1-methyl-4-pyridone-3-carboxamide (4py). The activity of AOX1 enhances the production of ROS and improves the longevity. It has been reported that the MNAM could postpone the aging through the induction of low-level stress. It has been documented that the production of MNAM is significantly higher in the cumulus cells of the patients with Polycystic Ovary Syndrome (PCOS) and its administration on the rat model of PCOS has been shown to alleviate the hyperandrogenism and successfully activate the ovarian AMPK. Therefore, it can be hypothesized that the anti-ovarian aging effects of the MNAM are possibly based on the activation of AMPK through transient elevation of the ROS.
Collapse
|
8
|
Nejabati HR, Samadi N, Shahnazi V, Mihanfar A, Fattahi A, Latifi Z, Bahrami-asl Z, Roshangar L, Nouri M. Nicotinamide and its metabolite N1-Methylnicotinamide alleviate endocrine and metabolic abnormalities in adipose and ovarian tissues in rat model of Polycystic Ovary Syndrome. Chem Biol Interact 2020; 324:109093. [DOI: 10.1016/j.cbi.2020.109093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/18/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023]
|