1
|
Qi L, Zhang J, Wang J, An J, Xue W, Liu Q, Zhang Y. Mechanisms of ginsenosides exert neuroprotective effects on spinal cord injury: A promising traditional Chinese medicine. Front Neurosci 2022; 16:969056. [PMID: 36081662 PMCID: PMC9445311 DOI: 10.3389/fnins.2022.969056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating disorder of the central nervous system (CNS). It is mainly caused by trauma and reduces the quality of life of the affected individual. Ginsenosides are safe and effective traditional Chinese medicines (TCMs), and their efficacy against SCI is being increasingly researched in many countries, especially in China and Korea. This systematic review evaluated the neuroprotective effects of ginsenosides in SCI and elucidated their properties.
Collapse
|
2
|
Lv Z, Yin S, Cheng Z, Wang K. Lenalidomide improves H 2O 2‑induced PC12 cell injury by blocking the Notch signaling pathway. Exp Ther Med 2022; 23:421. [PMID: 35601070 PMCID: PMC9117949 DOI: 10.3892/etm.2022.11348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/27/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Zheng Lv
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610032, P.R. China
| | - Shao Yin
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610032, P.R. China
| | - Ziguan Cheng
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610032, P.R. China
| | - Kekai Wang
- Anorectal Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610032, P.R. China
| |
Collapse
|
4
|
He X, Guo X, Ma Z, Li Y, Kang J, Zhang G, Gao Y, Liu M, Chen H, Kang X. Grape seed proanthocyanidins protect PC12 cells from hydrogen peroxide-induced damage via the PI3K/AKT signaling pathway. Neurosci Lett 2021; 750:135793. [PMID: 33667598 DOI: 10.1016/j.neulet.2021.135793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/17/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
Grape seed proanthocyanidins (GSP) are natural flavonoids with strong antioxidant and anti-apoptotic effects. Oxidative stress and neuronal apoptosis are major contributors to spinal cord injury (SCI). In this study, we assessed the potential protective effects of GSP on hydrogen peroxide (H2O2)-damaged pheochromocytoma-12 (PC12) cells in an in vitro model of SCI as well as the putative mechanism of action. We established a model using PC12 cells with oxidative damage induced by H2O2. Cells were treated with various concentrations of GSP (control group, 200 μmol/L H2O2 group, 5 μM GSP + H2O2 group, 10 μM GSP + H2O2 group, and 25 μM GSP + H2O2 group). The CCK-8 assay was used to determine cell activity. Dichloro-dihydro-fluorescein diacetate was used to detect intracellular reactive oxygen species (ROS), and flow cytometry was used to determine apoptosis rate. Western blot analysis was used to detect the expression of caspase-3, Bax, Bcl-2, and PI3K/AKT proteins. The results showed that GSP reduced H2O2-induced intracellular ROS and inhibited apoptosis. Furthermore, GSP inhibited the expression of caspase-3 and Bax, while promoting the expression of Bcl-2. In addition, GSP promoted the phosphorylation of PI3K and AKT. Moreover, a PI3K inhibitor (LY294002) weakened the protective effects of GSP on H2O2-induced PC12 cells. In conclusion, GSP pretreatment can protect PC12 cells from oxidative damage induced by H2O2 via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730000, China
| | - Xudong Guo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730000, China
| | - Zhanjun Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730000, China
| | - Ying Li
- General Practice Medicine, Yanan University Affiliated Hospital, Yanan, Shaanxi 716000, China
| | - Jihe Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730000, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730000, China
| | - Yicheng Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730000, China
| | - Mingqiang Liu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730000, China
| | - Haiwei Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730000, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
5
|
Liu Y, Liu C, Zhang X, Liu Z, Yan X. Chrysophanol protects PC12 cells against oxygen glucose deprivation-evoked injury by up-regulating miR-216a. Cell Cycle 2020; 19:1433-1442. [PMID: 32401588 DOI: 10.1080/15384101.2020.1731655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Cerebral stroke refers to an acute onset of neurological deficit syndrome. In this research, we attempted to probe into the underlying mechanisms by which chrysophanol (CP) performed its regulatory roles in cerebral stroke. Methods OGD inducement was conducted in PC12 cells to construct a cerebral stroke model. Subsequently, CCK-8 assay, western blot, flow cytometry were utilized to determine cell viability, proliferation, and apoptosis, respectively. qRT-PCR was employed for detecting miR-216a expression level. Afterward, cell transfection was performed to alter miR-216a expression. Further, experiments were conducted to determine the expression of crucial factors participated in PI3 K/AKT and JAK2/STAT3 pathways for exploring the underlying mechanisms. Results OGD inducement suppressed cell viability, while promoted cell apoptosis. Besides, it enhanced the expression of proliferation-associated p53, p21, and apoptosis-associated Bax, and Cleaved-caspase-3, while suppressed the expression of Bcl-2. Furthermore, CHR exposure ameliorated the effects that OGD-evoked, and elevated the expression of miR-216a, as well as the expression of crucial factors participated in PI3 K/AKT and JAK2/STAT3 pathways. However, miR-216a silencing markedly reversed the effects triggered by CHR exposure. Conclusion CHR exposure relieved OGD-evoked PC12 cell damage by elevating miR-216a expression and thereby activating of PI3 K/AKT and JAK2/STAT3 pathways.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Neurology, Jining No.1 People's Hospital , Jining, China
| | - Chuanqian Liu
- Department of Traditional Chinese Medicine, Jining No.1 People's Hospital , Jining, China
| | - Xueting Zhang
- Department of Traditional Chinese Medicine, Jining No.1 People's Hospital , Jining, China
| | - Zhenzhen Liu
- Department of Traditional Chinese Medicine, Jining No.1 People's Hospital , Jining, China
| | - Xipeng Yan
- Department of Traditional Chinese Medicine, Jining No.1 People's Hospital , Jining, China
| |
Collapse
|