1
|
Leite LB, Soares LL, Portes AMO, da Silva BAF, Dias TR, Soares TI, Assis MQ, Guimarães-Ervilha LO, Carneiro-Júnior MA, Forte P, Machado-Neves M, Reis ECC, Natali AJ. Combined exercise hinders the progression of pulmonary and right heart harmful remodeling in monocrotaline-induced pulmonary arterial hypertension. J Appl Physiol (1985) 2025; 138:182-194. [PMID: 39611819 DOI: 10.1152/japplphysiol.00379.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
The aim of this study was to test whether combined physical exercise training of moderate intensity executed during the development of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) hinders the progression of pulmonary and right heart harmful functional and structural remodeling in rats. Wistar rats were injected with MCT (60 mg/kg) and after 24 h were exposed to a combined exercise training program: aerobic exercise (treadmill running-60 min/day; 60% of maximum running speed); and resistance exercise (vertical ladder climbing-15 climbs; 60% of maximum carrying load), on alternate days, 5 days/wk, for ∼3 wk. After euthanasia, the lung and right ventricle (RV) were excised and processed for histological, single myocyte, and biochemical analyses. Combined exercise increased the tolerance to physical effort (time until fatigue and relative maximum load) and prevented increases in pulmonary artery resistance (acceleration time (TA)/ejection time (TE)] and reductions in RV function [tricuspid annular plane systolic excursion (TAPSE)]. Moreover, in myocytes isolated from the RV, combined exercise preserved contraction amplitude, as well as contraction and relaxation velocities, and inhibited reductions in the amplitude and maximum speeds to peak and to decay of the intracellular Ca2+ transient. Furthermore, combined exercise avoided RV (RV weight, cardiomyocyte, extracellular matrix, collagen, inflammatory infiltrate, and extracellular matrix) and lung (pulmonary alveoli and alveolar septum) harmful structural remodeling. In addition, combined exercise restricted RV [nitric oxide (NO) and carbonyl protein (CP)] and lung [catalase (CAT), glutathione S-transferase (GST), and NO] oxidative stress. In conclusion, the applied combined exercise regime hinders the progression of pulmonary and right heart functional and structural harmful remodeling in rats with MCT-induced PAH.NEW & NOTEWORTHY This study reveals that combined exercise improves tolerance to physical effort, prevents increases in pulmonary artery resistance, and conserves the right heart function during the progression of pulmonary arterial hypertension. Our analyses show that combined exercise hinders harmful right ventricular and lung structural remodeling and oxidative stress, which reflects in the maintenance of right ventricular myocytes' contractile function by preserving the intracellular calcium cycling. An attenuated progression of the disease impacts positively on its prognosis.
Collapse
Affiliation(s)
- Luciano Bernardes Leite
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Leôncio Lopes Soares
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | | | - Taís Rodrigues Dias
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Thayana Inácia Soares
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Mirian Quintão Assis
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | | | - Pedro Forte
- Research Center for Physical Activity and Wellbeing (Livewell), Polytechnic Institute of Bragança, Bragança, Portugal
- CI-ISCE, Higher Instituto of Educational Sciences of the Douro, Penafiel, Portugal
- Department of Sports, Higher Institute of Educational Sciences of the Douro, Penafiel, Portugal
| | - Mariana Machado-Neves
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | - Antônio José Natali
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| |
Collapse
|
2
|
Song J, Cheng J, Ju W, Hu D, Zhuang D. High relative humidity environment alleviates hypoxia-induced pulmonary arterial hypertension in mice. Biochem Biophys Res Commun 2024; 733:150681. [PMID: 39276695 DOI: 10.1016/j.bbrc.2024.150681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
The environment has long been considered a crucial factor influencing the onset and progression of pulmonary diseases. Environmental therapy is also a practical treatment approach for many conditions. While research has explored the effects of factors like air pressure and oxygen concentration on pulmonary arterial hypertension (PAH), the impact of air humidity on PAH has not been investigated. In this study, we examined the role of different air humidity levels in a mouse model of PAH by controlling relative humidity. We induced PAH in mice using 10 % hypoxia, which led to significant thickening of the pulmonary vasculature, elevated right ventricular systolic pressure, and an increased right ventricular hypertrophy index (RVHI). However, when exposed to an environment with 80-95 % relative humidity, there was a marked reduction in the extent of pulmonary vascular remodeling, decreased vascular thickening, and lower RVHI, effectively preserving right heart function. Notably, changes in the Bmpr2/Tgf-β signaling pathway were significant and may play a pivotal role in this protective effect. In summary, our findings indicate that high relative humidity confers a protective effect on hypoxia-induced PAH in mice, providing novel insights into potential treatments for PAH.
Collapse
Affiliation(s)
- Jiaoyan Song
- Capital Medical University, Beijing, 100069, China
| | - Jiangtao Cheng
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Heart Center of Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Wenhao Ju
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102308, China
| | - Dan Hu
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Heart Center of Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Donglin Zhuang
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102308, China.
| |
Collapse
|
3
|
Lopes Soares L, Portes AMO, Costa SFF, Leite LB, Natali AJ. Autonomic Dysregulation in Pulmonary Hypertension: Role of Physical Exercise. Hypertension 2024; 81:2228-2236. [PMID: 39234679 DOI: 10.1161/hypertensionaha.124.23573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Pulmonary hypertension (PH) is a rare and severe condition characterized by increased pressure in the pulmonary circulation, often resulting in right ventricular failure and death. The autonomic nervous system (ANS) plays a crucial role in the cardiovascular and pulmonary controls. Dysfunction of ANS has been implicated in the pathogenesis of cardiopulmonary diseases. Conversely, dysfunctions in ANS can arise from these diseases, impacting cardiac and pulmonary autonomic functions and contributing to disease progression. The complex interaction between ANS dysfunction and PH plays a crucial role in the disease progression, making it essential to explore interventions that modulate ANS, such as physical exercise, to improve the treatment and prognosis of patients with PH. This review addresses autonomic dysfunctions found in PH and their implications for the cardiopulmonary system. Furthermore, we discuss how physical exercise, a significant modulator of ANS, may contribute to the prognosis of PH. Drawing from evidence of aerobic and resistance exercise training in patients and experimental models of PH, potential cardiovascular benefits of exercise are presented. Finally, we highlight emerging therapeutic targets and perspectives to better cope with the complex condition. A comprehensive understanding of the interaction between ANS and PH, coupled with targeted physical exercise interventions, may pave the way for innovative therapeutic strategies and significantly improve the treatment and prognosis of vulnerable patients.
Collapse
Affiliation(s)
- Leôncio Lopes Soares
- Department of Physical Education, Federal University of Viçosa, Minas Gerais, Brazil (L.L.S., S.F.F.C., L.B.L., A.J.N.)
| | | | | | - Luciano Bernardes Leite
- Department of Physical Education, Federal University of Viçosa, Minas Gerais, Brazil (L.L.S., S.F.F.C., L.B.L., A.J.N.)
| | - Antônio José Natali
- Department of Physical Education, Federal University of Viçosa, Minas Gerais, Brazil (L.L.S., S.F.F.C., L.B.L., A.J.N.)
| |
Collapse
|
4
|
Leite LB, Soares LL, Portes AMO, Soares TI, da Silva BAF, Dias TR, Costa SFF, Guimarães-Ervilha LO, Assis MQ, Lavorato VN, da Silva AN, Machado-Neves M, Reis ECC, Natali AJ. Combined physical training protects the left ventricle from structural and functional damages in experimental pulmonary arterial hypertension. Clin Hypertens 2024; 30:12. [PMID: 38689333 PMCID: PMC11061945 DOI: 10.1186/s40885-024-00270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Under the adverse remodeling of the right ventricle and interventricular septum in pulmonary arterial hypertension (PAH) the left ventricle (LV) dynamics is impaired. Despite the benefits of combined aerobic and resistance physical trainings to individuals with PAH, its impact on the LV is not fully understood. OBJECTIVE To test whether moderate-intensity combined physical training performed during the development of PAH induced by MCT in rats is beneficial to the LV's structure and function. METHODS Male Wistar rats were divided into two groups: Sedentary Hypertensive Survival (SHS, n = 7); and Exercise Hypertensive Survival (EHS, n = 7) to test survival. To investigate the effects of combined physical training, another group of rats were divided into three groups: Sedentary Control (SC, n = 7); Sedentary Hypertensive (SH, n = 7); and Exercise Hypertensive (EH, n = 7). PAH was induced through an intraperitoneal injection of MCT (60 mg/kg). Echocardiographic evaluations were conducted on the 22nd day after MCT administration. Animals in the EHS and EH groups participated in a combined physical training program, alternating aerobic (treadmill running: 50 min, 60% maximum running speed) and resistance (ladder climbing: 15 climbs with 1 min interval, 60% maximum carrying load) exercises, one session/day, 5 days/week for approximately 4 weeks. RESULTS The physical training increased survival and tolerance to aerobic (i.e., maximum running speed) and resistance (i.e., maximum carrying load) exertions and prevented reductions in ejection fraction and fractional shortening. In addition, the physical training mitigated oxidative stress (i.e., CAT, SOD and MDA) and inhibited adverse LV remodeling (i.e., Collagen, extracellular matrix, and cell dimensions). Moreover, the physical training preserved the amplitude and velocity of contraction and hindered the reductions in the amplitude and velocity of the intracellular Ca2+ transient in LV single myocytes. CONCLUSION Moderate-intensity combined physical training performed during the development of MCT-induced PAH in rats protects their LV from damages to its structure and function and hence increases their tolerance to physical exertion and prolongs their survival.
Collapse
Affiliation(s)
- Luciano Bernardes Leite
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil.
| | - Leôncio Lopes Soares
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | - Thayana Inácia Soares
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | - Taís Rodrigues Dias
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | - Luiz Otávio Guimarães-Ervilha
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Mirian Quintão Assis
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Victor Neiva Lavorato
- Department of Physical Education, Governador Ozanam Coelho University Center, Ubá, Minas Gerais, Brazil
| | | | - Mariana Machado-Neves
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Antônio José Natali
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| |
Collapse
|
5
|
Soares LL, Leite LB, Freitas MO, Ervilha LOG, Píccolo MS, Portes AMO, Drummond FR, Rezende LMTDE, Neves MM, Reis ECC, Carneiro-Júnior MA, Natali AJ. Effect of experimental pulmonary arterial hypertension on renal and bone parameters of rats submitted to resistance exercise training. AN ACAD BRAS CIENC 2024; 96:e20230446. [PMID: 38655920 DOI: 10.1590/0001-3765202420230446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/01/2023] [Indexed: 04/26/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by right ventricular failure and diminished cardiac output, potentially leading to renal and bone impairments. In contrast, resistance exercise training (RT) offers cardiovascular and bone health benefits. This study aimed to assess the impacts of stable PAH induced by monocrotaline (MCT) and RT on renal morphometry, as well as bone morphometry and biomechanical properties in male Wistar rats. Four experimental groups, untrained control (UC, n=7), trained control (TC, n=7), untrained hypertensive (UH, n=7), trained hypertensive (TH, n=7), were defined. After the first MCT or saline injection (20 mg/kg), trained rats were submitted to a RT program (i.e., Ladder climbing), 5 times/week. Seven days later the rats received the second MCT or saline dose. After euthanasia, renal and femoral histomorphometry and femoral biomechanical properties were assessed. PAH reduced renal glomerular area and volume, which was prevented by the RT. While PAH did not harm the femoral morphometry, structural and mechanical properties, RT improved the femoral parameters (e.g., length, percentage of trabeculae and bone marrow, ultimte and yield loads). Experimental stable PAH promotes renal but not bone damages, whereas RT prevents renal deteriorations and improves the femoral morphological and biomechanical properties.
Collapse
Affiliation(s)
- Leôncio L Soares
- Federal University of Viçosa, Department of Physical Education, Av. PH Rolfs, s/n, University Campus, Center, 36570-900 Viçosa, MG, Brazil
| | - Luciano B Leite
- Federal University of Viçosa, Department of Physical Education, Av. PH Rolfs, s/n, University Campus, Center, 36570-900 Viçosa, MG, Brazil
| | - Maíra O Freitas
- Federal University of Viçosa, Department of Physical Education, Av. PH Rolfs, s/n, University Campus, Center, 36570-900 Viçosa, MG, Brazil
| | - Luiz Otávio G Ervilha
- Federal University of Viçosa, Department of General Biology, Av. PH Rolfs, s/n, University Campus, Center, 36570-900 Viçosa, MG, Brazil
| | - Mayra S Píccolo
- Federal University of Viçosa, Department of Biochemistry and Molecular Biology, Av. PH Rolfs, s/n, University Campus, Center, 36570-900 Viçosa, MG, Brazil
| | - Alexandre M O Portes
- Federal University of Ouro Preto, Department of Pharmacology, Professor Paulo Magalhães Gomes Street, 122, Bauxita, 35400-000 Ouro Preto, MG, Brazil
| | - Filipe R Drummond
- Federal University of Viçosa, Department of General Biology, Av. PH Rolfs, s/n, University Campus, Center, 36570-900 Viçosa, MG, Brazil
| | - Leonardo Mateus T DE Rezende
- Federal University of Viçosa, Department of Physical Education, Av. PH Rolfs, s/n, University Campus, Center, 36570-900 Viçosa, MG, Brazil
| | - Mariana M Neves
- Federal University of Viçosa, Department of General Biology, Av. PH Rolfs, s/n, University Campus, Center, 36570-900 Viçosa, MG, Brazil
| | - Emily C C Reis
- Federal University of Viçosa, Department of Veterinary, Av. PH Rolfs, s/n, University Campus, Center, 36570-900 Viçosa, MG, Brazil
| | - Miguel A Carneiro-Júnior
- Federal University of Viçosa, Department of Physical Education, Av. PH Rolfs, s/n, University Campus, Center, 36570-900 Viçosa, MG, Brazil
| | - Antônio José Natali
- Federal University of Viçosa, Department of Physical Education, Av. PH Rolfs, s/n, University Campus, Center, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
6
|
Soares LL, Leite LB, Ervilha LOG, Pelozin BRA, Pereira NP, da Silva BAF, Portes AMO, Drummond FR, de Rezende LMT, Fernandes T, Oliveira EM, Neves MM, Reis ECC, Natali AJ. Resistance exercise training benefits pulmonary, cardiac, and muscular structure and function in rats with stable pulmonary artery hypertension. Life Sci 2023; 332:122128. [PMID: 37769805 DOI: 10.1016/j.lfs.2023.122128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
AIM We tested the effects of low- to moderate-intensity resistance exercise training (RT) on the structure and function of pulmonary, right ventricle (RV), and skeletal muscle tissues in rats with stable pulmonary artery hypertension (PAH). MAIN METHODS After the first monocrotaline (MCT; 20 mg/kg) injection, male rats were submitted to a RT program (Ladder climbing; 55-65 % intensity), 5 times/week. Seven days later rats received the second MCT dose. Physical effort tolerance test and echocardiographic examination were performed. After euthanasia, lung, heart, and biceps brachii were processed for histological, single myocyte, and biochemical analysis. KEY FINDINGS RT improved survival and physical effort tolerance (i.e., maximum carrying load), mitigated the pulmonary artery resistance increase (i.e., TA/TE), and preserved cardiac function (i.e., fractional shortening, ejection fraction, stroke volume and TAPSE). RT counteracted oxidative stress (i.e., CAT, SOD, GST, MDA and NO) and adverse remodeling in lung (i.e., collapsed alveoli) and in biceps brachii (i.e., atrophy and total collagen) tissues. RT delayed RV adverse remodeling (i.e., hypertrophy, extracellular matrix, collagen types I and III, and fibrosis) and impairments in single RV myocyte contractility (i.e., amplitude and velocity to peak and relaxation). RT improved the expression of gene (i.e., miRNA 214) and intracellular Ca2+ cycling regulatory proteins (i.e., PLBser16); and of pathological (i.e., α/β-MHC and Foxo3) and physiological (i.e., Akt, p-Akt, mTOR, p-mTOR, and Bcl-xL) hypertrophy pathways markers in RV tissue. SIGNIFICANCE Low- to moderate-intensity RT benefits the structure and function of pulmonary, RV, and skeletal muscle tissues in rats with stable pulmonary artery hypertension.
Collapse
Affiliation(s)
- Leôncio Lopes Soares
- Universidade Federal de Viçosa, Departamento de Educação Física, Viçosa, Brazil.
| | | | | | | | - Noemy Pinto Pereira
- Universidade de São Paulo, Escola de Educação Física e Esportes, São Paulo, Brazil
| | | | | | | | | | - Tiago Fernandes
- Universidade de São Paulo, Escola de Educação Física e Esportes, São Paulo, Brazil
| | | | | | | | - Antônio José Natali
- Universidade Federal de Viçosa, Departamento de Educação Física, Viçosa, Brazil
| |
Collapse
|
7
|
Drummond FR, Soares LL, Leal TF, Leite LB, Rezende LMT, Fidelis MR, Lavorato VN, Miranda DC, Carneiro-Júnior MA, Neves MM, Alberici LC, Carlo Reis EC, Neves CA, Natali AJ. Effects of voluntary running on the skeletal muscle of rats with pulmonary artery hypertension. Front Physiol 2023; 14:1206484. [PMID: 37469567 PMCID: PMC10352770 DOI: 10.3389/fphys.2023.1206484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
The effects of voluntary running on the skeletal muscle of rats with pulmonary arterial hypertension (PAH) were tested in the present study. PAH was induced in rats by a single injection of monocrotaline (MCT, 60 mg/kg). Rats in the sedentary hypertension (HS) group had their tolerance to physical exertion reduced throughout the experiment, while those in the sedentary control (SC), exercise control (EC), exercise hypertension (EH) and median exercise (EM) groups maintained or increased. Despite that, the muscular citrate synthase activity was not different between groups. The survival time was higher in the EH (32 days) than in the SH (28 days) (p = 0.0032). SH and EH groups showed a lower percentage of muscle fiber and a higher percentage of extracellular matrix compared to control groups (p < 0.0001). However, the EM and EH groups presented higher percentage of muscle fiber and lower percentage of extracellular matrix than SH group (p < 0.0001). Regarding muscular gene expression, the SH and EM groups showed a lower expression of PGC1-α (p = 0.0024) and a higher expression of VEGF (p = 0.0033) compared to SC, while PGC1-α was elevated in the EH. No difference between groups was found for the carbonylated protein levels (p > 0.05), while the TNF-α/IL-10 ratio was augmented in the EH (p = 0.0277). In conclusion, voluntary running augments the proportion of fiber and affects the gene expression of inflammatory and mitochondrial biogenesis' markers in the skeletal muscle of rats with MCT-induced PAH, which benefits their survival and tolerance to physical effort.
Collapse
Affiliation(s)
- Filipe Rios Drummond
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Leôncio Lopes Soares
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, Brazil
| | - Tiago Ferreira Leal
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, Brazil
| | - Luciano Bernardes Leite
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, Brazil
| | | | - Meilene Ribeiro Fidelis
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, Brazil
| | - Victor Neiva Lavorato
- Department of Physical Education, Governador Ozanam Coelho University Center (UNIFAGOC), Ubá, Minas Gerais, Brazil
| | - Denise Coutinho Miranda
- Department of Physical Education, Governador Ozanam Coelho University Center (UNIFAGOC), Ubá, Minas Gerais, Brazil
| | | | - Mariana Machado Neves
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Luciane Carla Alberici
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | | | - Clovis Andrade Neves
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Antônio José Natali
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, Brazil
| |
Collapse
|
8
|
Rodríguez-Chiaradía DA, Khilzi K, Blanco I, Rodó-Pin A, Martin-Ontiyuelo C, Herranz Blasco A, Garcia-Lucio J, Molina L, Marco E, Barreiro E, Piccari L, Peinado VI, Garcia AR, Tura-Ceide O, Barberà JA. Effects of Exercise Training on Circulating Biomarkers of Endothelial Function in Pulmonary Arterial Hypertension. Biomedicines 2023; 11:1822. [PMID: 37509463 PMCID: PMC10376643 DOI: 10.3390/biomedicines11071822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION In stable patients with pulmonary arterial hypertension (PAH), pulmonary rehabilitation (PR) is an effective, safe and cost-effective non-pharmacological treatment. However, the effects of PR on vascular function have been poorly explored. This study aimed to compare the amounts of circulating progenitor cells (PCs) and endothelial microvesicles (EMVs) in patients with PAH before and after 8 weeks of endurance exercise training as markers of vascular competence. METHODS A prospective study of 10 consecutive patients with PAH that successfully finished a PR program (8 weeks) was carried out before and after this intervention. Levels of circulating PCs defined as CD34+CD45low progenitor cells and levels of EMVs (CD31+ CD42b-) were measured by flow cytometry. The ratio of PCs to EMVs was taken as a measure of the balance between endothelial damage and repair capacity. RESULTS All patients showed training-induced increases in endurance time (mean change 287 s). After PR, the number of PCs (CD34+CD45low/total lymphocytes) was increased (p < 0.05). In contrast, after training, the level of EMVs (CD31+ CD42b-/total EMVs) was reduced. The ratio of PCs to EMVs was significantly higher after training (p < 0.05). CONCLUSION Our study shows, for the first time, that endurance exercise training in patients with stable PAH has a positive effect, promoting potential mechanisms of damage/repair in favor of repair. This effect could contribute to a positive hemodynamic and clinical response.
Collapse
Affiliation(s)
- Diego A Rodríguez-Chiaradía
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Karys Khilzi
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
| | - Isabel Blanco
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, 08036 Barcelona, Spain
| | - Anna Rodó-Pin
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
| | - Clara Martin-Ontiyuelo
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, 08036 Barcelona, Spain
| | - Anna Herranz Blasco
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
| | - Jessica Garcia-Lucio
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Lluis Molina
- Cardiology Department, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
| | - Ester Marco
- Physical Medicine and Rehabilitation Department, Hospital Del Mar-Hospital de L'Esperança, Parc de Salut Mar, Rehabilitation Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
- School of Medicine, Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08017 Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Lucilla Piccari
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
| | - Victor I Peinado
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, 08036 Barcelona, Spain
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain
| | - Agustín R Garcia
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, 08036 Barcelona, Spain
| | - Olga Tura-Ceide
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, 08036 Barcelona, Spain
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institut (IDIBGI), 17190 Girona, Spain
| | - Joan Albert Barberà
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
9
|
Tan Z, Chen P, Zheng Y, Pan Y, Wang B, Zhao Y. Effect of blood flow-restricted resistance training on myocardial fibrosis in early spontaneously hypertensive rats. Front Cardiovasc Med 2023; 10:1101748. [PMID: 36818353 PMCID: PMC9928848 DOI: 10.3389/fcvm.2023.1101748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Objective The purpose of this study was to explore the effect of blood flow-restricted resistance training on myocardial fibrosis in early spontaneously hypertensive rats (SHRs). Methods Four-week-old male Wistar-Kyoto rats and SHRs were randomly divided into the following groups: normal group (WKY), SHR control (SHR-SED) group, high-intensity resistance training (HIRT) group, low- and medium-intensity resistance training (LMIRT) group, and blood flow-restricted low- and medium-resistance training (BFRT) group. Body weight, hemodynamics, cardiac function, myocardial morphology and fibrosis, and the expression levels of transforming growth factor-beta1-Smad (TGFβ-1-Smad) pathway-related proteins in the myocardium were assessed. Results (1) BFRT lowered blood pressure significantly, decreased left ventricular wall thickness, and improved cardiac function. At the same time, BFRT was superior to traditional resistance training in lowering diastolic blood pressure, and was superior to HIRT in improving left ventricular compliance, reducing heart rate, and reducing left ventricular posterior wall and left ventricular mass (P < 0.05). (2) BFRT decreased collagen I and collagen fiber area in the myocardium, increased the collagen III area, and decreased the collagen I/III ratio (P < 0.05). BFRT produced a better proportion of myocardial collagen fibers than did traditional resistance training (P < 0.05). (3) In the myocardium of the BFRT group compared to the traditional resistance training group, the expression of TGFβ-1, Smad2/3/4, p-Smad2/3, CTGF, and TIMP1 was significantly downregulated, MMP2 and TIMP2 were significantly upregulated, the MMP/TIMP ratio significantly increased, and TGFβ-1 expression significantly decreased (P < 0.05). Conclusion BFRT inhibited the TGFβ-1-Smad pathway in the myocardium, downregulated the expression of CTGF, and regulated the balance between MMPs and TIMPs, thereby reducing myocardial fibrosis in SHR, and improving cardiac morphology and function. BFRT also lowered blood pressure, and achieved an effect of early prevention and treatment of hypertension. At the same time, BFRT was superior to traditional resistance training in reducing diastolic blood pressure and adjusting the proportion of myocardial collagen fibers.
Collapse
Affiliation(s)
- Zhaowen Tan
- School of Sports Science and Physical Education, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Peiyou Chen
- School of Sports Science and Physical Education, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yuchan Zheng
- Nanjing Sport Institute, Nanjing, Jiangsu, China
| | - Ying Pan
- Nanjing Sport Institute, Nanjing, Jiangsu, China
| | - Baolong Wang
- School of Sports Science and Physical Education, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yan Zhao
- Nanjing Sport Institute, Nanjing, Jiangsu, China,*Correspondence: Yan Zhao,
| |
Collapse
|
10
|
Drummond FR, Leite LB, de Miranda DC, Drummond LR, Lavorato VN, Soares LL, Neves CA, Natali AJ. Skeletal muscle dysfunctions in pulmonary arterial hypertension: Effects of aerobic exercise training. Front Physiol 2023; 14:1148146. [PMID: 37035672 PMCID: PMC10076612 DOI: 10.3389/fphys.2023.1148146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Pulmonary arterial hypertension is associated with skeletal muscle myopathy and atrophy and impaired exercise tolerance. Aerobic exercise training has been recommended as a non-pharmacological therapy for deleterious effects imposed by pulmonary arterial hypertension. Aerobic physical training induces skeletal muscle adaptations via reduced inflammation, improved anabolic processes, decreased hypoxia and regulation of mitochondrial function. These benefits improve physical exertion tolerance and quality of life in patients with pulmonary arterial hypertension. However, the mechanisms underlying the therapeutic potential of aerobic exercise to skeletal muscle disfunctions in patients with pulmonary arterial hypertension are not well understood yet. This minireview highlights the pathways involved in skeletal muscle adaptations to aerobic exercise training in patients with pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Filipe Rios Drummond
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Luciano Bernardes Leite
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, MG, Brazil
- *Correspondence: Luciano Bernardes Leite,
| | - Denise Coutinho de Miranda
- Department of Biological Sciences, Laboratory of Cell Signaling, Federal University of Ouro Preto, Viçosa, MG, Brazil
- Department of Physical Education, Governador Ozanam Coelho University Center (UNIFAGOC), Ubá, Brazil
| | - Lucas Rios Drummond
- Department of Physiology and Biophysics, Laboratory of Endocrinology and Metabolism, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Victor Neiva Lavorato
- Department of Physical Education, Governador Ozanam Coelho University Center (UNIFAGOC), Ubá, Brazil
| | - Leôncio Lopes Soares
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, MG, Brazil
| | - Clóvis Andrade Neves
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Antônio José Natali
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
11
|
Jasińska-Stroschein M. Training programs in preclinical studies. The example of pulmonary hypertension. Systematic review and meta-analysis. PLoS One 2022; 17:e0276875. [PMCID: PMC9665399 DOI: 10.1371/journal.pone.0276875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background
Exercise and cardiopulmonary exercise testing are essential in the evaluation of physiological, biochemical, and molecular responses in the experimental studies on chronic diseases such as diabetes, heart failure and hypertension. The exercise tolerance and seem to be a valuable contribution to the experiments that are performed in animal models of pulmonary hypertension (PH), as well. The current survey uses detailed quantitative analyses to assess the advantages of exercise training programs performed in preclinical studies based on outcomes such as exercise capacity, cardiopulmonary hemodynamics, and mortality.
Methods
Articles were identified through search engines in the online electronic databases Pubmed/Medline, Web of Science following the PRISMA Protocol. Studies conducted between 1991 and 2022 without language restrictions were included in this study. Heterogeneity was assessed using the Cochrane Q-test and I2 test statistics. Subgroup analysis was employed with evidence of heterogeneity. Quality assessment was carried out using SYRCLE’s risk of bias tool for animal studies. Publication bias across studies was determined using the funnel plot and Egger’s regression test statistic.
Results
The available protocols typically included treadmill running, swimming, and voluntary wheel running with a different series of intensities, times and durations; these were also used in studies examining the efficacy of chronic training programs. In 66 interventions, PH induction reduced exercise endurance by half compared to healthy subjects, while exposure to tested medical agents normalized exercise capacity. The other 58 interventions demonstrated the advantages of various exercise training programs for PH. Induction of PH reduced exercise endurance by half compared to healthy subjects (R = 0.52; 0.48 − 0.55 95%CI; P<0.0001; I2 = 98.9%), while the exposure to tested medical agents normalized exercise capacity (R = 1.75; 1.61 − 1.91 95%CI; P<0.0001; I2 = 97.8%).
Conclusion
Despite a wide spectrum of study protocols to measure exercise endurance in animals with PH, there is a significant correlation between worsening of exercise-related parameters and PH development, manifested by alterations in haemodynamic and remodeling parameters. Familiarization with exercise, training program schedule, method used for PH induction, or detailed training parameters such as slope, exercise intensity or individualization, can influence the final outcome. This in turn can impact on the diversity and reproducibility of results being obtained in particular experimental studies.
Collapse
|
12
|
Soares LL, Leite LB, Ervilha LOG, Silva BAFD, Freitas MOD, Portes AMO, Rezende LMT, Drummond FR, Carneiro MA, Neves MM, Reis ECC, Natali AJ. O Treinamento Físico Resistido Atenua as Disfunções Ventriculares Esquerdas em Modelo de Hipertensão Arterial Pulmonar. Arq Bras Cardiol 2022; 119:574-584. [PMID: 36074480 PMCID: PMC9563884 DOI: 10.36660/abc.20210681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
Fundamento A hipertrofia e a dilatação do ventrículo direito observadas na hipertensão arterial pulmonar (HAP) prejudicam a dinâmica do ventrículo esquerdo (VE) achatando o septo interventricular. Objetivo Investigar se o treinamento físico resistido (TFR) de intensidade baixa a moderada é benéfico para funções contráteis do VE e de cardiomiócitos em ratos durante o desenvolvimento de HAP induzida por monocrotalina (MCT). Métodos Foram usados ratos Wistar machos (Peso corporal: ~ 200 g). Para avaliar o tempo até o possível surgimento de insuficiência cardíaca (ou seja, ponto de desfecho), os ratos foram divididos em dois grupos, hipertensão com sedentarismo até a insuficiência (HSI, n=6) e hipertensão com treinamento até a insuficiência (HTI, n=6). Para testar os efeitos do TFR, os ratos foram divididos entre grupos de controle sedentários (CS, n=7), hipertensão com sedentarismo (HS, n=7) e hipertensão com treinamento (HT, n=7). A HAP foi induzida por duas injeções de MCT (20 mg/kg, com um intervalo de 7 dias). Os grupos com treinamento foram submetidos a um protocolo de TFR (subir escadas; 55-65% da máxima carga carregada), 5 dias por semana. A significância estatística foi definida em p <0,05. Resultados O TFR prolongou o ponto de desfecho (~25%), melhorou a tolerância ao esforço físico (~55%) e atenuou as disfunções de contratilidade de VE e de cardiomiócitos promovidas pela MCT preservando a fração de ejeção e o encurtamento fracional, a amplitude do encurtamento, e as velocidades de contração e relaxamento nos cardiomiócitos. O TFR também preveniu os aumentos de fibrose e colágeno tipo I no ventrículo esquerdo causados pela MCT, além de manter as dimensões de miócitos e colágeno tipo III reduzidas por MCT. Conclusão O TFR de intensidade baixa a moderada é benéfico para funções contráteis de VE e cardiomiócitos em ratos durante o desenvolvimento de HAP induzida por MCT.
Collapse
|
13
|
Tan Z, Zhao Y, Zheng Y, Pan Y. The Effect of Blood Flow-Restricted Low Resistance Training on Microvascular Circulation of Myocardium in Spontaneously Hypertensive Rats. Front Physiol 2022; 13:829718. [PMID: 35535353 PMCID: PMC9076488 DOI: 10.3389/fphys.2022.829718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: The purpose of this study was to explore the effect of blood flow-restricted low resistance training on microvascular rarefaction in the myocardium of spontaneously hypertensive rats (SHRs). Methods: Four-week-old male SHRs were randomly divided into the following groups: Wistar-Kyoto (WKY), SHR control (SHR-SED), high-intensity resistance training (HIRT), low-intensity resistance training (LIRT), and blood flow-restricted low resistance training (BFRT). The exercise groups began to receive exercise intervention for 8 weeks at the age of 7 weeks. Blood pressure (BP), heart rate (HR), cardiac function, capillary density, and Vascular endothelial growth factor -Phosphatidylinositol 3-kinase-Protein kinase B-Endothelial nitric oxide synthetase (VEGF-Pi3k-Akt-eNOS) were assessed. Results: 1) BP and HR of BFRT decreased significantly, Ejection fraction (EF) and Fraction shortening (FS) increased, and the effect of BFRT on lowering BP and HR was better than that of other groups (p < 0.05); 2) The expression of VEGF, VEGFR2, p-VEGFR2, Pi3k, Akt, p-Akt, eNOS and p-eNOS in the myocardium of the BFRT was significantly upregulated, and eNOS expression was significantly higher than other groups (p < 0 05); 3) the expression of VEGF in the blood of the BFRT was significantly upregulated, higher than SHR-SED, lower than HIRT (p < 0.05), and there was no significant difference between BFRT and LIRT(p > 0.05); 4) the capillary density in the myocardium of BFRT was significantly higher than other exercise groups (p < 0 05). Conclusion: Blood flow-restricted low resistance training can activate the VEGF-Pi3k-Akt-eNOS pathway, upregulate the expression of VEGF in blood, improve microvascular rarefaction, and promote myocardial microvascular circulation, thereby improving cardiac function and lowering blood pressure, achieving the preventive effect of early hypertension.
Collapse
Affiliation(s)
- Zhaowen Tan
- College of Sports Science, Nanjing Normal University, Nanjing, China
| | - Yan Zhao
- Nanjing Sport Institute, Nanjing, China
| | | | - Ying Pan
- Nanjing Sport Institute, Nanjing, China
| |
Collapse
|
14
|
Silva FDJ, Drummond FR, Fidelis MR, Freitas MO, Leal TF, de Rezende LMT, de Moura AG, Carlo Reis EC, Natali AJ. Continuous Aerobic Exercise Prevents Detrimental Remodeling and Right Heart Myocyte Contraction and Calcium Cycling Dysfunction in Pulmonary Artery Hypertension. J Cardiovasc Pharmacol 2021; 77:69-78. [PMID: 33060546 DOI: 10.1097/fjc.0000000000000928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/21/2020] [Indexed: 11/27/2022]
Abstract
ABSTRACT Pulmonary artery hypertension (PAH) imposes right heart and lung detrimental remodeling which impairs cardiac contractility, physical effort tolerance, and survival. The effects of an early moderate-intensity continuous aerobic exercise training on the right ventricle and lung structure, and on contractility and the calcium (Ca2+) transient in isolated myocytes from rats with severe PAH induced by monocrotaline were analyzed. Rats were divided into control sedentary (CS), control exercise (CE), monocrotaline sedentary (MS), and monocrotaline exercise (ME) groups. Animals from control exercise and ME groups underwent a moderate-intensity aerobic exercise on a treadmill (60 min/d; 60% intensity) for 32 days, after a monocrotaline (60 mg/kg body weight i.p.) or saline injection. The pulmonary artery resistance was higher in MS than in control sedentary (1.36-fold) and was reduced by 39.39% in ME compared with MS. Compared with MS, the ME group presented reduced alveolus (17%) and blood vessel (46%) wall, fibrosis (25.37%) and type I collagen content (55.78%), and increased alveolus (52.96%) and blood vessel (146.97%) lumen. In the right ventricle, the ME group exhibited diminished hypertrophy index (25.53%) and type I collagen content (40.42%) and improved myocyte contraction [ie, reduced times to peak (29.27%) and to 50% relax (13.79%)] and intracellular Ca2+ transient [ie, decreased times to peak (16.06%) and to 50% decay (7.41%)] compared with MS. Thus, early moderate-intensity continuous aerobic exercise prevents detrimental remodeling in the right heart and lung increases in the pulmonary artery resistance and dysfunction in single myocyte contraction and Ca2+ cycling in this model.
Collapse
MESH Headings
- Airway Remodeling
- Animals
- Arterial Pressure
- Calcium Signaling
- Disease Models, Animal
- Exercise Therapy
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Male
- Myocardial Contraction
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/therapy
- Pulmonary Artery/physiopathology
- Rats, Wistar
- Vascular Resistance
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/prevention & control
- Ventricular Function, Right
- Ventricular Remodeling
- Rats
Collapse
Affiliation(s)
| | - Filipe Rios Drummond
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil; and
| | | | | | - Tiago Ferreira Leal
- Department of Physical Education, Federal University of Viçosa, Viçosa, Brazil
| | | | | | | | - Antônio José Natali
- Department of Physical Education, Federal University of Viçosa, Viçosa, Brazil
| |
Collapse
|
15
|
Zhang X, Xu D. Effects of exercise rehabilitation training on patients with pulmonary hypertension. Pulm Circ 2020; 10:2045894020937129. [PMID: 32685130 PMCID: PMC7343373 DOI: 10.1177/2045894020937129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/01/2020] [Indexed: 11/16/2022] Open
Abstract
Pulmonary hypertension (PH) comprises a group of pathophysiological syndromes characterized by elevated pulmonary artery pressure and pulmonary vascular resistance, which lead to right ventricular overload, and even right heart failure. PH has a poor prognosis and severely leads to a decline in quality of life. Historically, patients with PH were advised to limit their physical activity. However, an increasing number of studies have reported the safety and efficacy of exercise rehabilitation training in PH. This review briefly examined and summarized the effects of exercise rehabilitation training on PH patients reported in the recent literature. The findings of the reviewed studies indicate that exercise rehabilitation training in PH patients has beneficial effects in terms of exercise capacity and quality of life, vascular and right ventricle remodelling, inflammatory response, muscular function and oxidative stress. However, the underlying mechanisms and appropriate exercise strategies (e.g. the duration and intensity of exercise) still need to be explored. In conclusion, exercise rehabilitation training of the appropriate intensity and frequency can improve the prognosis and quality of life of PH patients. The training should be monitored by professional staff and be provided as an adjunct to pharmacological treatment. Larger clinical trials are required to confirm the safety and efficacy of exercise rehabilitation training in PH.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Danyan Xu
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|