1
|
Ali GF, Hassanein EHM, Mohamed WR. Molecular mechanisms underlying methotrexate-induced intestinal injury and protective strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8165-8188. [PMID: 38822868 PMCID: PMC11522073 DOI: 10.1007/s00210-024-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated inflammatory chronic diseases. Despite being frequently prescribed, MTX's severe multiple toxicities can occasionally limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 (JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counteracting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alleviated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage and the development of various agent plans to attenuate MTX-mediated intestinal injury.
Collapse
Affiliation(s)
- Gaber F Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt.
| |
Collapse
|
2
|
Li Z, Zhou J, Cui S, Hu S, Li B, Liu X, Zhang C, Zou Y, Hu Y, Yu Y, Shen B, Yang B. Activation of sigma-1 receptor ameliorates sepsis-induced myocardial injury by mediating the Nrf2/HO1 signaling pathway to attenuate mitochondrial oxidative stress. Int Immunopharmacol 2024; 127:111382. [PMID: 38141412 DOI: 10.1016/j.intimp.2023.111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Sepsis is a condition that triggers the release of large amounts of reactive oxygen species and inflammatory factors in the body, leading to myocardial injury and cardiovascular dysfunction - an important contributor to the high mortality rate associated with sepsis. Although it has been demonstrated that the sigma-1 receptor (S1R) is essential for preventing oxidative stress, its effectiveness in treating sepsis is yet unknown. AIM This study aimed to investigate the role and mechanisms of S1R activation in sepsis-induced myocardial injury. METHODS A model of sepsis-induced myocardial injury was constructed by performing cecum ligation and puncture(CLP) surgery on rats. Flv or BD1047 were intraperitoneally injected into rats for one consecutive week before performing CLP, and then intraperitoneally injected into the rats again 1 h after the surgery.The effects of Flv and BD1047 were detected by HE staining, immunofluorescence staining, IHC staining, echocardiography measurements,TUNEL, oxidative stress detection, TEM, flow cytometry and western blot. We further validated the mechanism in vitro using neonatal rat cardiomyocites and H9C2 cells. RESULTS S1R protein level was reduced in the hearts of septic rats, whereas administration of Flv, an S1R activator, ameliorated myocardial injury, mitochondrial oxidative stress, and pathological manifestations of sepsis. On the other hand, administration of the S1R inhibitor BD1047 exacerbated the mitochondrial oxidative stress, and apoptosis, as well as symptoms and pathological manifestations of sepsis. In addition, we found that up-regulation of S1R activated the Nrf2/HO1 signaling pathway and promoted nuclear translocation of Nrf2, which activated downstream proteins to generate antioxidant factors, such as HO1, in turn alleviating oxidative stress and countering myocardial damage. CONCLUSION By scavenging ROS accumulation and reducing mitochondrial oxidative stress via the Nrf2/HO1 signaling pathway, activation of S1R improves cardiac function, mitigates death of cardiomyocytes, and attenuates sepsis-induced myocardial injury.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jining Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Bin Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Ying Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yiqian Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Bo Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
3
|
Ergene S, Hemsinli D, Karakisi SO, Tümkaya L, Mercantepe T, Yilmaz A, Yel I. Resveratrol Attenuates Degeneration and Apoptosis of Cardiomyocytes Induced by Aortic Clamping. Braz J Cardiovasc Surg 2023; 38:e20230224. [PMID: 37801567 PMCID: PMC10550301 DOI: 10.21470/1678-9741-2023-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 10/08/2023] Open
Abstract
INTRODUCTION Objective: To investigate the potential beneficial effects of resveratrol (RVT) against ischemia-reperfusion injury of myocardial tissue during surgical treatment of ruptured abdominal aortic aneurysm. METHODS Four groups were established - control, ischemia/reperfusion (I/R), sham (I/R+solvent/dimethyl sulfoxide [DMSO]), and I/R+RVT. Ruptured abdominal aortic aneurysm model was used as the experimental protocol. RESULTS In the I/R and I/R+DMSO groups, malondialdehyde (MDA) levels in myocardial tissue were found to be significantly increased compared to the control group. The MDA level in myocardial tissue was significantly decreased in the I/ R+RVT group compared to the I/R group. In I/R and I/R+DMSO groups, glutathione peroxidase (GSH) levels in myocardial tissue were found to be significantly decreased compared to the control group. The GSH level in the myocardial tissue was significantly increased in the I/R+RVT group compared to the I/R group. In the light microscope, isotropic and anisotropic band disorganized atypical cardiomyocytes in the I/R group and degenerative cardiomyocytes and edematous areas in the I/R+DMSO group were observed. Degenerative cardiomyocytes and edematous areas were decreased in the I/R+RVT group. When heart tissue sections incubated with cleaved caspase-3 primary antibodies were examined under the light microscope, apoptotic cardiomyocytes were present in I/R and I/R+DMSO groups. A decrease in the number of apoptotic cardiomyocytes was observed in the I/R+RVT group. CONCLUSION The findings of the present study indicate that RVT exhibits protective effects against ischemia-reperfusion injury occurring in the myocardium as a distant organ as a result of abdominal aorta clamping.
Collapse
Affiliation(s)
- Saban Ergene
- Department of Cardiovascular Surgery, Faculty of Medicine, Recep
Tayyip Erdogan University, Rize, Turkey
| | - Dogus Hemsinli
- Department of Cardiovascular Surgery, Faculty of Medicine, Recep
Tayyip Erdogan University, Rize, Turkey
| | - Sedat Ozan Karakisi
- Department of Cardiovascular Surgery, Faculty of Medicine, Recep
Tayyip Erdogan University, Rize, Turkey
| | - Levent Tümkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep
Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep
Tayyip Erdogan University, Rize, Turkey
| | - Adnan Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Recep
Tayyip Erdogan University, Rize, Turkey
| | - Ibrahim Yel
- Department of Cardiovascular Surgery, Faculty of Medicine, Recep
Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
4
|
Chen XS, Cui JR, Meng XL, Wang SH, Wei W, Gao YL, Shou ST, Liu YC, Chai YF. Angiotensin-(1-7) ameliorates sepsis-induced cardiomyopathy by alleviating inflammatory response and mitochondrial damage through the NF-κB and MAPK pathways. J Transl Med 2023; 21:2. [PMID: 36593471 PMCID: PMC9807106 DOI: 10.1186/s12967-022-03842-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND There is no available viable treatment for Sepsis-Induced Cardiomyopathy (SIC), a common sepsis complication with a higher fatality risk. The septic patients showed an abnormal activation of the renin angiotensin (Ang) aldosterone system (RAAS). However, it is not known how the Ang II and Ang-(1-7) affect SIC. METHODS Peripheral plasma was collected from the Healthy Control (HC) and septic patients and Ang II and Ang-(1-7) protein concentrations were measured. The in vitro and in vivo models of SIC were developed using Lipopolysaccharide (LPS) to preliminarily explore the relationship between the SIC state, Ang II, and Ang-(1-7) levels, along with the protective function of exogenous Ang-(1-7) on SIC. RESULTS Peripheral plasma Ang II and the Ang II/Ang-(1-7) levels in SIC-affected patients were elevated compared to the levels in HC and non-SIC patients, however, the HC showed higher Ang-(1-7) levels. Furthermore, peripheral plasma Ang II, Ang II/Ang-(1-7), and Ang-(1-7) levels in SIC patients were significantly correlated with the degree of myocardial injury. Additionally, exogenous Ang-(1-7) can attenuate inflammatory response, reduce oxidative stress, maintain mitochondrial dynamics homeostasis, and alleviate mitochondrial structural and functional damage by inhibiting nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thus alleviating SIC. CONCLUSIONS Plasma Ang-(1-7), Ang II, and Ang II/Ang-(1-7) levels were regarded as significant SIC biomarkers. In SIC, therapeutic targeting of RAAS, for example with Ang-(1-7), may exert protective roles against myocardial damage.
Collapse
Affiliation(s)
- Xin-Sen Chen
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Jing-Rui Cui
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Xiang-Long Meng
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Shu-Hang Wang
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Wei Wei
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yu-Lei Gao
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Song-Tao Shou
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yan-Cun Liu
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yan-Fen Chai
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| |
Collapse
|
5
|
Chen XS, Wang SH, Liu CY, Gao YL, Meng XL, Wei W, Shou ST, Liu YC, Chai YF. Losartan attenuates sepsis-induced cardiomyopathy by regulating macrophage polarization via TLR4-mediated NF-κB and MAPK signaling. Pharmacol Res 2022; 185:106473. [PMID: 36182039 DOI: 10.1016/j.phrs.2022.106473] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/25/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022]
Abstract
Sepsis-induced cardiomyopathy (SIC) is a serious complication of sepsis with high mortality but no effective treatment. The renin angiotensin (Ang) aldosterone system (RAAS) is activated in patients with sepsis but it is unclear how the Ang II/Ang II type 1 receptor (AT1R) axis contributes to SIC. This study examined the link between the Ang II/AT1R axis and SIC as well as the protective effect of AT1R blockers (ARBs). The Ang II level in peripheral plasma and AT1R expression on monocytes were significantly higher in patients with SIC compared with those in non-SIC patients and healthy controls and were correlated with the degree of myocardial injury. The ARB losartan reduced the infiltration of neutrophils, monocytes, and macrophages into the heart and spleen of SIC mice. Additionally, losartan regulated macrophage polarization from the M1 to the M2 subtype via nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thereby maintaining the mitochondrial dynamics balance in cardiomyocytes and reducing oxidative stress and cardiomyocyte apoptosis. In conclusion, the plasma Ang II level and AT1R expression on plasma monocytes are an important biomarker in SIC. Therapeutic targeting of AT1R, for example with losartan, can potentially protect against myocardial injury in SIC.
Collapse
Affiliation(s)
- Xin-Sen Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Shu-Hang Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Chen-Yan Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Yu-Lei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Xiang-Long Meng
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Wei Wei
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Song-Tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Yan-Cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China.
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China.
| |
Collapse
|
6
|
Fang Y, Zhang X. A propensity score-matching analysis of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker exposure on in-hospital mortality in patients with acute respiratory failure. Pharmacotherapy 2022; 42:387-396. [PMID: 35344607 PMCID: PMC9322533 DOI: 10.1002/phar.2677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023]
Abstract
STUDY OBJECTIVE To explore the impact of pre-hospital ACEI and ARB exposure on the prognosis of ARF patients. DESIGN A single-center retrospective cohort study. SETTING Medical Information Mart for Intensive Care-III (MIMIC-III) database. PATIENTS The patients meeting ICD-9 code of acute respiratory failure were enrolled. INTERVENTION The primary exposure was the pre-hospital exposure of ACEI and ARB. MEASUREMENT AND MAIN RESULTS The primary outcome was in-hospital mortality. Multiple logistic regression analysis was conducted to determine the independent effect of ACEI/ARB exposure on mortality. Propensity score matching (PSM) method was adopted to reduce bias of the confounders. Subgroup analysis and sensitivity analysis were used to test the stability of the conclusion. 5335 adult ARF patients were enrolled. Mortality was significantly decreased in patients with ACEI/ARB exposure before and after PSM, and the adjusted odds ratio (OR) of ACEI/ARB exposure was 0.56 (95% CI 0.43-0.72). In the subgroup analysis, ACEI/ARB lost its protective effect in young subgroup, but no significant interaction was found between ACEI/ARB exposure and age (p = 0.082). The point estimation and lower 95% limit of E-value was 2.97 and 2.12. In sensitivity analysis, ACEI/ARB exposure showed similar effect in ARDS cohort, but no significantly difference was found in the MIMIC-IV database, which may be explained by small sample size of the ACEI/ARB group. CONCLUSIONS Among patients with acute respiratory failure, pre-hospital ACEI/ARB exposure was associated with better outcomes and acted as an independent factor. The relationship between ACEI/ARB and prognosis of ARF is worth investigating further.
Collapse
Affiliation(s)
- Yi‐Peng Fang
- Laboratory of Molecular CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Laboratory of Medical Molecular ImagingThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Shantou University Medical CollegeShantouChina
| | - Xin Zhang
- Laboratory of Molecular CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Laboratory of Medical Molecular ImagingThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Shantou University Medical CollegeShantouChina
| |
Collapse
|
7
|
Topcu A, Kostakoglu U, Mercantepe T, Yilmaz HK, Tumkaya L, Uydu HA. The cardioprotective effects of perindopril in a model of polymicrobial sepsis: The role of radical oxygen species and the inflammation pathway. J Biochem Mol Toxicol 2022; 36:e23080. [PMID: 35417068 DOI: 10.1002/jbt.23080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/21/2022] [Accepted: 04/01/2022] [Indexed: 11/11/2022]
Abstract
Mortality rates associated with myocardial dysfunction due to sepsis and septic shock are generally high across the world. The present study focused on the antioxidant and anti-inflammatory effects of perindopril (PER) for the purpose of preventing the adverse effects of sepsis on the myocardium and developing new alternatives in treatment. The control group received only saline solution via the oral route for 4 days. The second group underwent cecal ligation puncture (CLP), and the third underwent CLP and received PER (2 mg/kg). Rats in the third group received 2 mg/kg PER per oral (p.o.) from 4 days before induction of sepsis. Thiobarbituric acid reactive species (TBARS), total thiol (-SH), interleukin-1 beta (IL-1β), IL-6, 8-hydroxy-2'-deoxyguanosine (8-OHdG), and nuclear factor kappa B (NF-κB/p65) levels increased in the CLP groups. In contrast, PER (2 mg/kg) decreased the levels of biochemical parameters other than total-SH and decreased 8-OHdG, NF-κB/p65 immunopositivity in rat heart tissues. The data from this study show that impairment of the oxidant/antioxidant balance and inflammatory cytokine levels in favor of inflammation in heart tissue under septic conditions results in severe tissue damage. PER administration before sepsis was shown to exhibit antioxidant and anti-inflammatory properties by reducing these effects. This in turn increased the importance of PER as new evidence of its protective effects in heart tissue.
Collapse
Affiliation(s)
- Atilla Topcu
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ugur Kostakoglu
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Hulya K Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Huseyin A Uydu
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
8
|
Evaluation of Natural Peptides to Prevent and Reduce the Novel SARS-CoV-2 Infection. J FOOD QUALITY 2022. [DOI: 10.1155/2022/2102937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In a preventive context, natural peptides can play a major role against SARS-CoV-2, so their character of GRAS (generally recognized as safe) means they would not need innocuity analyses to be employed. This study analyses the potential of pea peptides, LSDRFS and SDRFSY, and amaranth peptides, GGV, IGV, IVG, VGVL, and VIKP, against the SARS-CoV-2 hosts, ACE2 (angiotensin-converting enzyme 2), ACE (angiotensin-converting enzyme), and CD26 (cluster of differentiation 26), and SARS-CoV-2 enzymes, spike glycoprotein and 3CLpro (3-chymotrypsin-like protease). Also, currently used drugs were analysed to contrast drug and peptide behaviour. Employing docking, virtual screening, and molecular dynamics assays, SDRFSY, LSDRFS, and VIKP were detected as potential bioactive peptides by blocking ACE2 and CD26 or reducing the inflammation associated with COVID-19. Enzyme inhibition analyses were also performed, proving the ability of SDRFSY and LSDRFS as ACE2-blocking agents against the spike glycoprotein with inhibition capacities above 80%.
Collapse
|
9
|
Sayed AM, Abdel-Fattah MM, Arab HH, Mohamed WR, Hassanein EHM. Targeting inflammation and redox aberrations by perindopril attenuates methotrexate-induced intestinal injury in rats: Role of TLR4/NF-κB and c-Fos/c-Jun pro-inflammatory pathways and PPAR-γ/SIRT1 cytoprotective signals. Chem Biol Interact 2022; 351:109732. [PMID: 34737150 DOI: 10.1016/j.cbi.2021.109732] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 01/06/2023]
Abstract
AIMS The use of methotrexate (MTX), a classical immunosuppressant and anti-cancer agent, is associated with multiple organ toxicities, including the intestinal injury. Components of the renin-angiotensin system are expressed in the intestinal epithelium and mucosal immune cells where they provoke pro-inflammatory and pro-oxidant action. The present study was conducted to investigate the potential ability of perindopril (PER), an angiotensin-converting enzyme inhibitor (ACEI), to attenuate MTX-induced intestinal injury with emphasis on the role of the pro-inflammatory TLR4/NF-κB and c-Fos/c-Jun pathways alongside PPAR-γ and SIRT1 cytoprotective signals. MATERIALS AND METHODS The intestinal injury was induced by a single-dose injection of 20 mg/kg of MTX i.p at the end of the 5th day. PER was administrated once daily in a dose of 1 mg/kg, i.p, for five days before MTX and five days later. RESULTS Herein, perindopril attenuated the intestinal injury as seen by lowering the histopathological aberrations and preserving the goblet cells in villi/crypts. These beneficial actions were associated with downregulating the expression of the pro-inflammatory angiotensin II, TNF-α, IL-1β, and IL-6 cytokines, alongside upregulating the anti-inflammatory angiotensin (1-7) and IL-10. At the molecular level, perindopril downregulated the TLR4/NF-κB and c-Fos/c-Jun pathways in inflamed intestine of rats. Moreover, it attenuated the pro-oxidant events by lowering intestinal MDA and boosting GSH, SOD, and GST antioxidants together with PPAR-γ and SIRT1 cytoprotective signals. The aforementioned findings were also highlighted using molecular docking and network pharmacology analysis. CONCLUSIONS Perindopril demonstrated notable mitigation of MTX-induced intestinal injury through suppression of TLR4/NF-κB and c-Fos/c-Jun pathways alongside the augmentation of PPAR-γ/SIRT1 cytoprotective signals.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, 71515, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
10
|
Resveratrol against lung injury in an ischemia/reperfusion model of abdominal aortic rupture. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2021; 29:330-338. [PMID: 34589251 PMCID: PMC8462112 DOI: 10.5606/tgkdc.dergisi.2021.21737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
Background
The aim of this study was to examine the effects on the lungs of ischemia/reperfusion injury in a ruptured abdominal aortic aneurysm model in rats and to investigate the potential protective effects of resveratrol.
Methods
Thirty-two male Sprague-Dawley rats were randomly divided into four groups: control, ischemia/reperfusion, sham (ischemia/ reperfusion + solvent/dimethyl sulfoxide), and ischemia/reperfusion + resveratrol. In the groups subjected to ischemia/reperfusion, following 60-min shock to the abdominal aorta, vascular clamps were attached from the levels of the infrarenal and iliac bifurcation. A total of 60-min ischemia was applied, followed by 120-min reperfusion. In the ischemia/ reperfusion + resveratrol group, intraperitoneal 10 mg/kg resveratrol was administered 15 min before ischemia and immediately after reperfusion. Malondialdehyde, glutathione, and catalase levels were analyzed and histopathological examination of the lung tissues was performed.
Results
Malondialdehyde levels increased in the ischemia/reperfusion and ischemia/reperfusion + dimethyl sulfoxide groups, compared to the control group, while catalase levels decreased, and no significant difference was observed in the glutathione levels. Malondialdehyde levels decreased with the administration of resveratrol, while glutathione levels increased, and catalase levels remained unchanged. The increased inflammation in interstitial spaces, thickening in the alveolar septal walls, increased numbers of cleaved caspase-3 apoptotic pneumocytes, and increased histopathological lung damage scores observed in the ischemia/reperfusion and ischemia/reperfusion + dimethyl sulfoxide groups improved with the application of resveratrol.
Conclusion
These findings suggest that resveratrol may exhibit a protective effect in preventing acute lung injury developing due to ischemia/reperfusion in ruptured abdominal aortic aneurysm surgery by reducing oxidative damage.
Collapse
|
11
|
Rong J, Tao X, Lin Y, Zheng H, Ning L, Lu HS, Daugherty A, Shi P, Mullick AE, Chen S, Zhang Z, Xu Y, Wang J. Loss of Hepatic Angiotensinogen Attenuates Sepsis-Induced Myocardial Dysfunction. Circ Res 2021; 129:547-564. [PMID: 34238019 DOI: 10.1161/circresaha.120.318075] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale: The renin-angiotensin system (RAS) is a complex regulatory network that maintains normal physiological functions. The role of the RAS in sepsis-induced myocardial dysfunction (SIMD) is poorly defined. Angiotensinogen (AGT) is the unique precursor of the RAS and gives rise to all angiotensin peptides. The effects and mechanisms of AGT in development of SIMD have not been defined. Objective: To determine a role of AGT in SIMD and investigate the underlying mechanisms. Methods and Results: Either intraperitoneal injection of lipopolysaccharide (LPS) or cecal ligation and puncture (CLP) significantly enhanced AGT abundances in liver, heart, and plasma. Deficiency of hepatocyte-derived AGT (hepAGT), rather than cardiomyocyte-derived AGT (carAGT), alleviated septic cardiac dysfunction in mice and prolonged survival time. Further investigations revealed that the effects of hepAGT on SIMD were partially associated with augmented angiotensin II (AngII) production in circulation. In addition, hepAGT was internalized by LDL receptor-related protein 1 (LRP1) in cardiac fibroblasts (CF), and subsequently activated NLRP3 inflammasome via an AngII-independent pathway, ultimately promoting SIMD by suppressing Sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) abundances in cardiomyocytes (CM). Conclusions: HepAGT promoted SIMD via both AngII-dependent and AngII-independent pathways. We identified a liver-heart axis by which AGT regulated development of SIMD. Our study may provide a potential novel therapeutic target for SIMD.
Collapse
Affiliation(s)
- Jiabing Rong
- Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, CHINA
| | - Xinran Tao
- Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine
| | - Yao Lin
- Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine
| | - Haiqiong Zheng
- Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang university, CHINA
| | - Le Ning
- Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine
| | - Hong S Lu
- Physiology, University of Kentucky, UNITED STATES
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, UNITED STATES
| | - Peng Shi
- Institute of Translational Medicine, Zhejiang University, CHINA
| | - Adam E Mullick
- Antisense Drug Discovery, Ionis Pharmaceuticals, UNITED STATES
| | - Sicong Chen
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, CHINA
| | - Zhaocai Zhang
- Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, CHINA
| | - Yinchuan Xu
- Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang university, CHINA
| | - Jian'an Wang
- Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, CHINA
| |
Collapse
|
12
|
The protective role of fosfomycin in lung injury due to oxidative stress and inflammation caused by sepsis. Life Sci 2021; 279:119662. [PMID: 34081989 DOI: 10.1016/j.lfs.2021.119662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/02/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
AIM Early and prompt treatment of sepsis by effective antibiotics against susceptible organisms may be lifesaving. However, increased antibiotic resistance and side effects of chemotherapeutic agents limiting their tolerability result in a restricted use of medications. This has led to an increased search for solution oriented novel treatments and therapeutic targets, as well as investigations on the pathogenesis and physiology of sepsis. In this study, we aimed to examine the antioxidant and anti-inflammatory effects of fosfomycin in sepsis resulting from other causes. MAIN METHODS Sprague Dawley rats were assigned into three groups. Randomly selected control rats received intraperitoneal saline solution only. Only caecal puncture and ligation were carried out in the caecal ligation and puncture (CLP) group, while in the CLP + fosfomycin group (CLP + FOS), together with sepsis due to caecal puncture and ligation, 500 mg/kg of FOS was administered intraperitoneally (i.p.). KEY FINDINGS As compared to the control group, elevated TBARS and TNF-α levels as well as increased expression of NF-kB/p65 and TLR-4 and reduced -SH levels were found in the lung tissue of CLP rats. On the other hand, TBARS and TNF-α levels were reduced and NF-kB/p65 and TLR-4 expressions were decreased together with increase in total -SH levels among CLP + FOS (500 mg/kg i.p.) rats. SIGNIFICANCE FOS treatment may represent a promising agent in terms of reducing the sepsis-related lung injury due to its antimicrobial effects as well as its antioxidant and anti-inflammatory properties.
Collapse
|
13
|
LPS promotes the progression of sepsis by activation of lncRNA HULC/miR-204-5p/TRPM7 network in HUVECs. Biosci Rep 2021; 40:225116. [PMID: 32484206 PMCID: PMC7295636 DOI: 10.1042/bsr20200740] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Sepsis is a systemic inflammatory response syndrome caused by infection. Lipopolysaccharide (LPS) has been reported to induce inflammatory responses, and long non-coding RNA highly up-regulated in liver cancer (HULC) expression was associated with the progression of sepsis. But the role and underlying mechanism of HULC in LPS-induced sepsis remain unclear. Cell viability and apoptosis were measured by methyl thiazolyl tetrazolium (MTT) and flow cytometry assays, respectively. The levels of apoptosis-related proteins, inflammatory cytokines and transient receptor potential melastatin7 (TRPM7) were detected by western blot. Reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) levels were detected by dichloro-dihydro-fluorescein diacetate (DCFH-DA) method using commercial kit. HULC, microRNA-204-5p (miR-204-5p) and TRPM7 expressions in serum of sepsis patients and human umbilical vein endothelial cells (HUVECs) were examined by quantitative real-time polymerase chain reaction (qRT-PCR). Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to confirm the interaction between HULC and miR-204-5p, miR-204-5p and TRPM7. LPS stimulation restrained cell viability and facilitated apoptosis, inflammatory injury and oxidative stress in HUVECs. HULC and TRPM7 were increased and accompanied with decreased miR-204-5p expression in serum of sepsis patients. A significant negative correlation between miR-204-5p and HULC or TRPM7 was observed, and there was a positive relationship between expressions of HULC and TRPM7. Importantly, LPS inhibited the cell viability and induced apoptosis, inflammatory injury and oxidative stress of HUVECs by up-regulating the expressions of HULC and TRPM7, and down-modulating miR-204-5p expression. Mechanically, HULC positively regulated TRPM7 expression by sponging miR-204-5p in HUVECs. LPS impaired cell viability, and promoted cell apoptosis, inflammatory response and oxidative stress in HUVECs by regulating HULC/miR-204-5p/TRPM7 axis.
Collapse
|
14
|
Ning L, Rong J, Zhang Z, Xu Y. Therapeutic approaches targeting renin-angiotensin system in sepsis and its complications. Pharmacol Res 2021; 167:105409. [PMID: 33465472 DOI: 10.1016/j.phrs.2020.105409] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/28/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023]
Abstract
Sepsis, caused by the inappropriate host response to infection, is characterized by excessive inflammatory response and organ dysfunction, thus becomes a critical clinical problem. Commonly, sepsis may progress to septic shock and severe complications, including acute kidney injury (AKI), acute respiratory distress syndrome (ARDS), sepsis-induced myocardial dysfunction (SIMD), liver dysfunction, cerebral dysfunction, and skeletal muscle atrophy, which predominantly contribute to high mortality. Additionally, the global pandemic of coronavirus disease 2019 (COVID-19) raised the concern of development of effectve therapeutic strategies for viral sepsis. Renin-angiotensin system (RAS) may represent as a potent therapeutic target for sepsis therapy. The emerging role of RAS in the pathogenesis of sepsis has been investigated and several preclinical and clinical trials targeting RAS for sepsis treatment revealed promising outcomes. Herein, we attempt to review the effects and mechanisms of RAS manipulation on sepsis and its complications and provide new insights into optimizing RAS interventions for sepsis treatment.
Collapse
Affiliation(s)
- Le Ning
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jiabing Rong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhaocai Zhang
- Department of Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Yinchuan Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
15
|
Kostakoglu U, Mercantepe T, Yilmaz HK, Tumkaya L, Batcik S, Pinarbas E, Uydu HA. The Protective Effects of Perindopril Against Acute Kidney Damage Caused by Septic Shock. Inflammation 2020; 44:148-159. [PMID: 32803666 DOI: 10.1007/s10753-020-01316-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) resulting from septic shock caused by sepsis is an important health problem encountered at rates of 55-73%. Increasing oxidative stress and inflammation following sepsis is a widely observed condition with rising mortality rates. The purpose of this study was to determine whether perindopril (PER) can prevent sepsis-associated AKI with its antioxidant, anti-inflammatory, and anti-apoptotic effects. The control group received an oral saline solution only for 4 days. Cecal ligation and puncture (CLP)-induced sepsis only was applied to the CLP group, while the CLP + PER (2 mg/kg) received CLP-induced sepsis together with 2 mg/kg PER via the oral route for 4 days before induction of sepsis. Finally, all rats were euthanized by anesthesia and sacrificed. TBARS, total SH levels and NF-κβ, TNF-α, and Caspase-3 expression were then calculated for statistical analysis. TBARS, total SH, NF-kβ/p65, TNF-a, and Caspase-3 levels increased in the CLP group. In contrast, oral administration of PER (2 mg/kg) to septic rats reduced TBARS levels and NF-kβ/p65, TNF-α, and Caspase-3 immunopositivity at biochemical analysis. PER treatment appears to be a promising method for preventing sepsis-induced acute kidney injury through its antioxidant anti-inflammation and anti-apoptotic activities.
Collapse
Affiliation(s)
- Ugur Kostakoglu
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Hulya Kilic Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Sule Batcik
- Department of Anaesthesiology and Reanimation, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Esra Pinarbas
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Huseyin Avni Uydu
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| |
Collapse
|
16
|
Ugan RA, Un H, Gurbuz MA, Kaya G, Kahramanlar A, Aksakalli-Magden ZB, Halici Z, Cadirci E. Possible contribution of the neprilysin/ACE pathway to sepsis in mice. Life Sci 2020; 258:118177. [PMID: 32738364 DOI: 10.1016/j.lfs.2020.118177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/19/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Abstract
AIM Omapatrilat is an antagonist of angiotensin-converting (ACE) and neprilysin-neuropeptidase (NEP) enzymes. The aim of our study is to show that omapatrilat may have beneficial effects as a treatment for polymicrobial sepsis. MAIN METHODS A cecal ligation and puncture (CLP) sepsis model was used to evaluate 10 and 20 mg/kg doses of omapatrilat in mice (n = 30) fasted for 12 h. The lungs were removed 12 h after CLP, and lung levels of cytokines (tumor necrosis factor-alpha [TNF-α], interleukin-6 [IL-6], NF-κB), iNOS and eNOS mRNA expression, GSH and MDA levels, and ACE and NEP activities were determined. Histopathological examinations were also performed. KEY FINDINGS Omapatrilat treatment provided a dose-dependent reduction in oxidative stress and inflammatory parameters in lung tissues. Omapatrilat administration decreased lung iNOS and eNOS mRNA levels at 20 mg/kg dose. Histopathological analysis revealed a decline in the thickening and edema areas in the alveolar septa in the Sepsis+OMA20 group. SIGNIFICANCE Omapatrilat, a dual ACE and NEP inhibitor, protected lung tissue from sepsis damage by reducing ACE and NEP activities, by decreasing the mRNA expression levels of pro-inflammatory cytokines (TNF-α, IL-6, and NF-κB), by suppressing leukocyte infiltration and edema, by restoring iNOS and eNOS levels, and by restoring SOD activity and GSH and MDA levels, thereby reducing oxidative stress.
Collapse
Affiliation(s)
- Rustem Anil Ugan
- Ataturk University Faculty of Pharmacy, Department of Pharmacology, Erzurum, Turkey.
| | - Harun Un
- Agri Ibrahim Cecen University Faculty of Pharmacy, Department of Biochemistry, Agri, Turkey
| | - Muhammed Ali Gurbuz
- Ataturk University Faculty of Medicine, Department of Histology and Embryology, Erzurum, Turkey
| | - Gokce Kaya
- Ataturk University Faculty of Medicine, Department of Pharmacology, Erzurum, Turkey
| | - Aysenur Kahramanlar
- Ataturk University Faculty of Pharmacy, Department of Biochemistry, Erzurum, Turkey
| | | | - Zekai Halici
- Ataturk University Faculty of Medicine, Department of Pharmacology, Erzurum, Turkey; Ataturk University Clinical Research, Development and Design Application and Research Center, Erzurum, Turkey
| | - Elif Cadirci
- Ataturk University Faculty of Medicine, Department of Pharmacology, Erzurum, Turkey; Ataturk University Clinical Research, Development and Design Application and Research Center, Erzurum, Turkey
| |
Collapse
|
17
|
Lamas-Barreiro JM, Alonso-Suárez M, Fernández-Martín JJ, Saavedra-Alonso JA. [Angiotensin II suppression in SARS-CoV-2 infection: a therapeutic approach]. Nefrologia 2020; 40:213-216. [PMID: 32456945 PMCID: PMC7190491 DOI: 10.1016/j.nefro.2020.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023] Open
Affiliation(s)
| | - Mario Alonso-Suárez
- Servicio de Nefrología, Complejo Hospitalario Universitario de Vigo, Vigo, España
| | | | | |
Collapse
|
18
|
Lamas-Barreiro JM, Alonso-Suárez M, Fernández-Martín JJ, Saavedra-Alonso JA. Angiotensin II suppression in SARS-CoV-2 infection: a therapeutic approach ☆. NEFROLOGÍA (ENGLISH EDITION) 2020; 40. [PMCID: PMC7323640 DOI: 10.1016/j.nefroe.2020.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Affiliation(s)
- José María Lamas-Barreiro
- Servicio de Nefrología, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
- Corresponding author.
| | - Mario Alonso-Suárez
- Servicio de Nefrología, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
| | | | | |
Collapse
|