1
|
Kılıçarslan A, Polat SÖ, Doğan HT, Ünal TDK, Karabulut Ş, Özet G. The relationship between clinical prognostic factors, microvascular density, and tumor-infiltrating lymphocytes with CD47 and SIRPα expression in diffuse large B cell lymphomas. Leuk Res 2024; 149:107636. [PMID: 39732044 DOI: 10.1016/j.leukres.2024.107636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/24/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024]
Abstract
CD47 interacts with signal regulatory protein alpha (SIRPα) on macrophages to deliver an anti-phagocytic signal, enabling tumor cells to evade immune destruction. This study explores the relationship between CD47 and SIRPα expression and key clinical prognostic factors, microvascular density (MVD), and tumor-infiltrating lymphocytes (TIL) in Diffuse Large B Cell Lymphoma (DLBCL) cases. We analyzed tissue samples from 122 DLBCL cases using tissue microarray (TMA) blocks and immunohistochemical staining for CD47, SIRPα, CD31, and CD3. CD47 expression was scored using the Allred scoring system, and SIRPα expression was quantified based on the percentage of positive membranous and cytoplasmic expression. Clinical data, including IPI scores, relapse rates, and gene expression profiles, were correlated with the immunohistochemical findings.CD47 expression score ≥ 6 was significantly associated with the DLBCL-ABC phenotype (p = 0.029), higher IPI scores (p = 0.020), and increased relapse rates (p = 0.021). High SIRPα expression (≥25 % staining) was also linked to the ABC phenotype (p = 0.022) and frequent relapses (p = 0.021). Notably, cases with high microvascular density exhibited lower SIRPα expression (p = 0.013). There was no significant relationship between MVD and CD47 or other clinical prognostic factors. Additionally, higher CD3-positive TIL percentages were inversely correlated with IPI scores (p = 0.005), although no significant association was found between CD3 and CD47-SIRPα. The study reveals that increased CD47-SIRPα expression is partially linked to adverse prognostic indicators and reduced MVD in DLBCL cases. These findings suggest that targeting the CD47-SIRPα axis could offer a novel therapeutic approach in DLBCL, particularly for patients with poor prognostic features.
Collapse
Affiliation(s)
- Aydan Kılıçarslan
- Ankara Yıldırım Beyazıt University, Pathology Clinic, Ankara, Turkey.
| | | | | | | | - Şefika Karabulut
- Gulhane Department of Microbiology, Virology, Health Sciences University, Ankara, Turkey
| | - Gülsüm Özet
- Ankara Yıldırım Beyazıt University, Hematology Clinic, Ankara, Turkey
| |
Collapse
|
2
|
Kang Y, Yeo M, Choi H, Jun H, Eom S, Park SG, Yoon H, Kim E, Kang S. Lactate oxidase/vSIRPα conjugates efficiently consume tumor-produced lactates and locally produce tumor-necrotic H 2O 2 to suppress tumor growth. Int J Biol Macromol 2023; 231:123577. [PMID: 36758763 DOI: 10.1016/j.ijbiomac.2023.123577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Aggressive tumor formation often leads to excessive anaerobic glycolysis and massive production and accumulation of lactate in the tumor microenvironment (TME). To significantly curb lactate accumulation in TME, in this study, lactate oxidase (LOX) was used as a potential therapeutic enzyme and signal regulatory protein α variant (vSIRPα) as a tumor cell targeting ligand. SpyCatcher protein and SpyTag peptide were genetically fused to LOX and vSIRPα, respectively, to form SC-LOX and ST-vSIRPα and tumor-targeting LOX/vSIRPα conjugates were constructed via a SpyCatcher/SpyTag protein ligation system. LOX/vSIRPα conjugates selectively bound to the CD47-overexpressing mouse melanoma B16-F10 cells and effectively consumed lactate produced by the B16-F10 cells, generating adequate amounts of hydrogen peroxide (H2O2), which induces drastic necrotic tumor cell death. Local treatments of B16-F10 tumor-bearing mice with LOX/vSIRPα conjugates significantly suppressed B16-F10 tumor growth in vivo without any severe side effects. Tumor-targeting vSIRPα may allow longer retention of LOX in tumor sites, effectively consuming surrounding lactate in TME and locally generating adequate amounts of cytotoxic H2O2 to suppress tumor growth. The approach restraining the local lactate concentration and H2O2 in TME using LOX and vSIRPα could offer new opportunities for developing enzyme/targeting ligand conjugate-based therapeutic tools for tumor treatment.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Mirae Yeo
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyukjun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Heejin Jun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Soomin Eom
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seong Guk Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Haejin Yoon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eunhee Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
3
|
Zhao W, Shen B, Cheng Q, Zhou Y, Chen K. Roles of TSP1-CD47 signaling pathway in senescence of endothelial cells: cell cycle, inflammation and metabolism. Mol Biol Rep 2023; 50:4579-4585. [PMID: 36897523 DOI: 10.1007/s11033-023-08357-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
Endothelial cells (ECs) serve as a barrier with forming a monolayer lining in the surface of vascular system. Many mature cell types are post-mitotic like neurons, but ECs have the ability to grow during angiogenesis. Vascular endothelial growth factor (VEGF) stimulates growth of vascular ECs derived from arteries, veins, and lymphatics and induces angiogenesis. Senescence of ECs is regarded as a key contributor in aging-induced vascular dysfunction via evoking increase of ECs permeability, impairment of angiogenesis and vascular repair. Several genomics and proteomics studies on ECs senescence reported changes in gene and protein expression that directly correlate with vascular systemic disorder. CD47 functions as a signaling receptor for secreted matricellular protein thrombospondin-1 (TSP1) and plays an important role in several fundamental cellular functions, including proliferation, apoptosis, inflammation, and atherosclerotic response. TSP1-CD47 signaling is upregulated with age in ECs, concurrent with suppression of key self-renewal genes. Recent studies indicate that CD47 is involved in regulation of senescence, self-renewal and inflammation. In this review, we highlight the functions of CD47 in senescent ECs, including modulation of cell cycle, mediation of inflammation and metabolism by the experimental studies, which may provide CD47 as a potential therapeutic target for aging-associated vascular dysfunction.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Botao Shen
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Quanli Cheng
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Yangyang Zhou
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| | - Kexin Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Gao L, He Z, Wu Y. Advances in Anti-metabolic Disease Treatments Targeting CD47. Curr Pharm Des 2022; 28:3720-3728. [PMID: 36201266 DOI: 10.2174/1381612828666221006123144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 01/28/2023]
Abstract
Metabolic disorders include a cluster of conditions that result from hyperglycemia, hyperlipidemia, insulin resistance, obesity, and hepatic steatosis, which cause the dysfunction of immune cells and innate cells, such as macrophages, natural killer cells, vascular endothelial cells, hepatocytes, and human kidney tubular epithelial cells. Besides targeting the derangements in lipid metabolism, therapeutic modulations to regulate abnormal responses in the immune system and innate cell dysfunctions may prove to be promising strategies in the management of metabolic diseases. In recent years, several targets have been explored for the CD47 molecule (CD47), a glycosylated protein, which was originally reported to transmit an anti-phagocytic signal known as "don't eat me" in the atherosclerotic environment, hindering the efferocytosis of immune cells and promoting arterial plaque accumulation. Subsequently, the role of CD47 has been explored in obesity, fatty liver, and lipotoxic nephropathy, and its utility as a therapeutic target has been investigated using anti-CD47 antibodies or inhibitors of the THBS1/CD47 axis and the CD47/SIRPα signaling pathway. This review summarizes the mechanisms of action of CD47 in different cell types during metabolic diseases and the clinical research progress to date, providing a reference for the comprehensive targeting of CD47 to treat metabolic diseases and the devising of potential improvements to possible side effects.
Collapse
Affiliation(s)
- Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Center for Scientific Research of Anhui Medical University, Hefei 230022, China
| | - Zhe He
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Center for Scientific Research of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
5
|
Li L, Liu S, Tan J, Wei L, Wu D, Gao S, Weng Y, Chen J. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies. J Tissue Eng 2022; 13:20417314221088509. [PMID: 35356091 PMCID: PMC8958685 DOI: 10.1177/20417314221088509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of vascular wall, is a progressive pathophysiological process with lipids oxidation/depositing initiation and innate/adaptive immune responses. The coordination of multi systems covering oxidative stress, dysfunctional endothelium, diseased lipid uptake, cell apoptosis, thrombotic and pro-inflammatory responding as well as switched SMCs contributes to plaque growth. In this circumstance, inevitably, targeting these processes is considered to be effective for treating atherosclerosis. Arriving, retention and working of payload candidates mediated by targets in lesion direct ultimate therapeutic outcomes. Accumulating a series of scientific studies and clinical practice in the past decades, lesion homing delivery strategies including stent/balloon/nanoparticle-based transportation worked as the potent promotor to ensure a therapeutic effect. The objective of this review is to achieve a very brief summary about the effective therapeutic methods cooperating specifical targets and positioning-delivery strategies in atherosclerosis for better outcomes.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
6
|
Liu C, Zhang J, Lun X, Li L. LncRNA PVT1 Promotes Hypoxia-Induced Cardiomyocyte Injury by Inhibiting miR-214-3p. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4604883. [PMID: 34820454 PMCID: PMC8608544 DOI: 10.1155/2021/4604883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To explore the effect and related mechanism of LncRNA PVT1 on hypoxia-induced cardiomyocyte injury. METHODS PVT1RNA and miR-214-3p levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell vitality and apoptosis were, respectively, evaluated by Cell Counting Kit-8 (CCK-8) and flow cytometry analysis. Starbase and Dual luciferase reporter (DLR) gene assay was employed to validate the interaction between miR-214-3p and PVT1. RESULTS PVT1 was statistically upregulated, and miR-214-3p was statistically downregulated in hypoxia-induced H9c2 cells. The survival rate of H9c2 cells induced by hypoxia decreased statistically, while the apoptosis rate increased statistically (P < 0.05). PVT1 knockdown upregulated the hypoxia-induced H9c2 cell viability and inhibited apoptosis. DLR assay verified the targeting relationship between PVT1 and miR-214-3p. In addition, miR-214-3p inhibitors reversed the viability of H9c2 cells with PVT1 knockout and promoted apoptosis. CONCLUSION Silencing PVT1 can enhance the hypoxia-induced H9c2 cell viability and inhibit apoptosis, providing a potential target for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Chuanliang Liu
- The First Department of Health Care, Weifang People's Hospital, China
| | - Jieqiong Zhang
- The Third Department of Health Care of Weifang People's Hospital, 151 Guangwen Street, Kuiwen District, Weifang City, 261041 Shandong Province, China
| | - Xuejie Lun
- Department of Internal Medicine, Weifang Municipal Hospital, China
| | - Lei Li
- The Third Department of Health Care of Weifang People's Hospital, 151 Guangwen Street, Kuiwen District, Weifang City, 261041 Shandong Province, China
| |
Collapse
|
7
|
Liu MM, Wang C, Zhang YH, Wang RJ, Lu XM, Li PL, Wang YX, Gong PD, Liu N, Zhang T, Tian TT. Potential of thrombospondin-1 in treatment of polycystic ovary syndrome rat model: a preliminary study. Gynecol Endocrinol 2021; 37:1020-1026. [PMID: 34282706 DOI: 10.1080/09513590.2021.1950682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/16/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is a common gynecological endocrine disease in reproductive women, and the endocrine levels are also affected by diseases. The aim of this study was to determine the effect of thrombospondin-1 (TSP-1) on PCOS rat model. METHODS We established the PCOS rat model, the serum hormones including TSP-1 expression were determined and morphological characteristics were investigated to evaluate the model. These above endocrine and morphological features were investigated again to evaluate the effect of TSP-1 treatment. RESULTS In the PCOS model group, the serum hormones change (higher luteinizing hormone, testosterone and estrogen) and decreased TSP-1 expression levels were found compared with the control group. Besides, the morphological characteristics of PCOS were also observed in the model group. After TSP-1 treatment, the higher TSP-1, ANGPT2, PDGFB and PDGFD expression levels, the lower LH and T levels, decreased vessel density as well as VEGFA and ANGPT1 expression levels were found compared with the control group, and the ovary morphological changes were also observed in the TSP-1 experimental group. CONCLUSIONS TSP-1 delivery system might be an alternative therapy for PCOS treatment.
Collapse
Affiliation(s)
- Mei-Mei Liu
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Wang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu-Hong Zhang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui-Jing Wang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiu-Min Lu
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pei-Ling Li
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu-Xin Wang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pi-Dong Gong
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ning Liu
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ting Zhang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ting-Ting Tian
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Xu LN, Wang SH, Su XL, Komal S, Fan HK, Xia L, Zhang LR, Han SN. Targeting Glycogen Synthase Kinase 3 Beta Regulates CD47 Expression After Myocardial Infarction in Rats via the NF-κB Signaling Pathway. Front Pharmacol 2021; 12:662726. [PMID: 34349643 PMCID: PMC8327268 DOI: 10.3389/fphar.2021.662726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate the effects of the GSK-3β/NF-κB pathway on integrin-associated protein (CD47) expression after myocardial infarction (MI) in rats. An MI Sprague Dawley rat model was established by ligating the left anterior descending coronary artery. The rats were divided into three groups: Sham, MI, and SB + MI (SB216763) groups. Immunohistochemistry was used to observe the changes in cardiac morphology. A significant reduction in the sizes of fibrotic scars was observed in the SB + MI group compared to that in the MI group. SB216763 decreased the mRNA and protein expression of CD47 and NF-κB during MI. Primary rat cardiomyocytes (RCMs) and the H9c2 cell line were used to establish in vitro hypoxia models. Quantitative real-time PCR and western blotting analyses were conducted to detect mRNA and protein expression levels of CD47 and NF-κB and apoptosis-related proteins, respectively. Apoptosis of hypoxic cells was assessed using flow cytometry. SB216763 reduced the protein expression of CD47 and NF-κB in RCMs and H9c2 cells under hypoxic conditions for 12 h, and alleviated hypoxia-induced apoptosis. SN50 (an NF-κB inhibitor) also decreased CD47 protein expression in RCMs and H9c2 cells under hypoxic conditions for 12 h and protected cells from apoptosis. GSK-3β upregulates CD47 expression in cardiac tissues after MI by activating NF-κB, which in turn leads to myocardial cell damage and apoptosis.
Collapse
Affiliation(s)
- Li-Na Xu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shu-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xue-Ling Su
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hong-Kun Fan
- Department of Physiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Li Xia
- Department of Anesthesiology in Surgery Branch, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|