1
|
Kiełbowski K, Skórka P, Plewa P, Bakinowska E, Pawlik A. The Role of Alarmins in the Pathogenesis of Atherosclerosis and Myocardial Infarction. Curr Issues Mol Biol 2024; 46:8995-9015. [PMID: 39194749 DOI: 10.3390/cimb46080532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Atherosclerosis is a condition that is associated with lipid accumulation in the arterial intima. Consequently, the enlarging lesion, which is also known as an atherosclerotic plaque, may close the blood vessel lumen, thus leading to organ ischaemia. Furthermore, the plaque may rupture and initiate the formation of a thrombus, which can cause acute ischaemia. Atherosclerosis is a background pathological condition that can eventually lead to major cardiovascular diseases such as acute coronary syndrome or ischaemic stroke. The disorder is associated with an altered profile of alarmins, stress response molecules that are secreted due to cell injury or death and that induce inflammatory responses. High-mobility group box 1 (HMGB1), S100 proteins, interleukin-33, and heat shock proteins (HSPs) also affect the behaviour of endothelial cells and vascular smooth muscle cells (VSMCs). Thus, alarmins control the inflammatory responses of endothelial cells and proliferation of VSMCs, two important processes implicated in the pathogenesis of atherosclerosis. In this review, we will discuss the role of alarmins in the pathophysiology of atherosclerosis and myocardial infarction.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Patryk Skórka
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Yan Y, Wu Q, Li JH, Wei X, Xiao J, Yang L, Xie A, Zhang L, Mei WJ, Yang YJ, Zeng Y, Wen D, Deng LJ, Zheng LF. Chitosan inhibits vascular intimal hyperplasia via LINC01615/MIR-185-5p/PIK3R2 signaling pathway. Gene 2024; 892:147850. [PMID: 37778418 DOI: 10.1016/j.gene.2023.147850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are the main pathological processes which are involved in the formation of new intima. In our previous study, we found that chitosan can inhibit the formation of new intima in the arteriovenous fistulas of uremic patients, and the expression of LINC01615 was significantly increased in patients after treatment with chitosan. Therefore, this study aims to further explore the effect of chitosan on the intimal hyperplasia and elucidate the potential molecular mechanism. In vitro, we found that in chitosan-treated VSMC, the levels of Il-1β, IL-6 and TNF-α decreased, and the intimal hyperplasia was inhibited along with significantly downregulated PIK3R2 and upregualted PI3K, AKT and p-AKT. Meanwhile, we observed the phenotypic transformation of hVSMCs after LINC01615 was upregulated. In addition, inflammatory factors showed the same changes in the process of up-regulating LINC01615. Moreover, only in the LINC01615 overexpression and miR-185-5p mimic experimental group, the inhibition of intimal hyperplasia was the most obvious. The interaction between LINC01615 and miR-185-5p, miR-185-5p and PIK3R2 was further confirmed by the dual luciferase assay. These results suggest that chitosan has a potential preventive effect on neointimal hyperplasia and related vascular remodeling.
Collapse
Affiliation(s)
- Yan Yan
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qian Wu
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jin-Hong Li
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xin Wei
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jun Xiao
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Liu Yang
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - An Xie
- Institute of Urology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Li Zhang
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wen-Juan Mei
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yu-Juan Yang
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yan Zeng
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Dan Wen
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Li-Juan Deng
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Lin-Feng Zheng
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
3
|
Zheng X, Lu J, Liu J, Zhou L, He Y. HMGB family proteins: Potential biomarkers and mechanistic factors in cardiovascular diseases. Biomed Pharmacother 2023; 165:115118. [PMID: 37437373 DOI: 10.1016/j.biopha.2023.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023] Open
Abstract
Cardiovascular disease (CVD) is the most fatal disease that causes sudden death, and inflammation contributes substantially to its occurrence and progression. The prevalence of CVD increases as the population ages, and the pathophysiology is complex. Anti-inflammatory and immunological modulation are the potential methods for CVD prevention and treatment. High-Mobility Group (HMG) chromosomal proteins are one of the most abundant nuclear nonhistone proteins which act as inflammatory mediators in DNA replication, transcription, and repair by producing cytokines and serving as damage-associated molecular patterns in inflammatory responses. The most common and well-studied HMG proteins are those with an HMGB domain, which participate in a variety of biological processes. HMGB1 and HMGB2 were the first members of the HMGB family to be identified and are present in all investigated eukaryotes. Our review is primarily concerned with the involvement of HMGB1 and HMGB2 in CVD. The purpose of this review is to provide a theoretical framework for diagnosing and treating CVD by discussing the structure and function of HMGB1 and HMGB2.
Collapse
Affiliation(s)
- Xialei Zheng
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Junmi Lu
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jing Liu
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Liufang Zhou
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Cardiovascular Medicine, the Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, China
| | - Yuhu He
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
4
|
Shao P, Liu H, Xue Y, Xiang T, Sun Z. LncRNA HOTTIP promotes inflammatory response in acute gouty arthritis via miR-101-3p/BRD4 axis. Int J Rheum Dis 2023; 26:305-315. [PMID: 36482051 DOI: 10.1111/1756-185x.14514] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Acute gouty arthritis (AGA) is characterized by the accumulation of pro-inflammatory factors. This research aimed to examine the regulation of long non-coding RNA HOXA distal transcript antisense RNA (HOTTIP) in AGA on inflammation and its potential mechanisms. METHODS Serum levels of HOTTIP in AGA patients were examined by reverse-transcription quantitative polymerase chain reaction. The receiver operating characteristic curve was performed in the diagnosis of AGA patients. Monosodium urate (MSU) stimulation of THP-1-derived macrophages was used to establish an in vitro AGA model. Enzyme-linked immunosorbent assay was carried out to assess the levels of pro-inflammatory cytokines. Pearson correlation was applied to examine the correlation. RNA immunoprecipitation assay and dual-luciferase reporter assay were employed to identify the targeting relationship between miR-101-3p and HOTTIP or bromodomain-containing 4 (BRD4). RESULTS HOTTIP and BRD4 were statistically overexpressed in AGA patients compared with controls, while miR-101-3p was reduced (P < 0.05). Serum HOTTIP can significantly distinguish AGA patients from healthy controls. HOTTIP bound with miR-101-3p then augmented BRD4 via a competing endogenous RNA mechanism. Additionally, HOTTIP levels were elevated in a dose-dependent manner by MSU (P < 0.05). Weakened HOTTIP significantly inhibited MSU-induced release of pro-inflammatory factors interleukin (IL)-1β, IL-8, and transforming growth factor-α in macrophages (P < 0.05), but this inhibition was reversed by silencing miR-101-3p (P < 0.05). CONCLUSION In short, HOTTIP contributes to inflammation via miR-101-3p/BRD4 axis, and serves as a new diagnostic biomarker. This study offers a renewed perspective on the diagnosis and treatment of AGA.
Collapse
Affiliation(s)
- Ping Shao
- Department of Rheumatology and Immunology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Huijie Liu
- Department of Rheumatology and Immunology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yanyan Xue
- Department of Rheumatology and Immunology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Ting Xiang
- Department of Rheumatology and Immunology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Zhanjuan Sun
- Department of Rheumatology and Immunology, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
5
|
Chen S, Sun L, Zhang J, Zhang L, Liu X. Oxygenized Low-Density Lipoprotein-Induced ASMC Dysregulation Depends on circ_0000345-Mediated Regulatory Mechanism. J Atheroscler Thromb 2022; 29:1849-1863. [PMID: 36171087 PMCID: PMC9881541 DOI: 10.5551/jat.63327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIMS Vascular smooth muscle cells are key participants in atherosclerosis. Circular RNA hsa_circ_0000345 (circ_0000345) and miR-647 are related to oxygenized low-density lipoprotein (ox-LDL)-induced arterial smooth muscle cell (ASMC) dysregulation. However, the relationship between circ_0000345 and miR-647 in ox-LDL-induced ASMC dysregulation is unclear. METHODS Relative levels of circ_0000345, miR-647, and PAP-associated domain containing 5 (PAPD5) mRNA in AS patient's serum and ox-LDL-induced ASMCs were detected via RT-qPCR. Gain-of-function experiments were utilized to analyze the effects of circ_0000345 upregulation on ox-LDL-induced cell proliferation, migration, invasion, and inflammatory response in ASMCs. The relationship between circ_0000345 or PAPD5 and miR-647 was validated by dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS Circ_0000345 and PAPD5 were lowly expressed in AS patient's serum and ox-LDL-induced ASMCs, while miR-647 expression had an opposing trend. Mechanistically, circ_0000345 was verified as a miR-647 sponge, and miR-647 overexpression impaired the inhibitory effects of circ_0000345 upregulation on ox-LDL-induced ASMC proliferation, migration, invasion, and inflammatory response. Further experiments demonstrated that PAPD5 was a miR-647 target, and circ_0000345 adsorbed miR-647 to mediate PAPD5 expression. Also, PAPD5 inhibition relieved miR-647 silencing-mediated suppression on ox-LDL-induced ASMC proliferation, migration, invasion, and inflammatory response. CONCLUSIONS Circ_0000345 elevated PAPD5 expression via acting as a miR-647 sponge, resulting in alleviating ox-LDL-induced ASMC dysregulation. The study highlighted the critical role of circ_0000345 in AS.
Collapse
Affiliation(s)
- Song Chen
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang, 150001, China
| | - Lixiu Sun
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang, 150001, China
| | - Jingjing Zhang
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang, 150001, China
| | - Ling Zhang
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang, 150001, China
| | - Xian Liu
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang, 150001, China
| |
Collapse
|
6
|
Fan H, Shao H, Gao X. Long Non-Coding RNA HOTTIP is Elevated in Patients with Sepsis and Promotes Cardiac Dysfunction. Immunol Invest 2022; 51:2086-2096. [PMID: 35921152 DOI: 10.1080/08820139.2022.2107932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cardiac dysfunction is the most common clinical complication of sepsis. Herein, the study explored the clinical importance of long non-coding RNA (lncRNA) HOXA terminal transcript antisense RNA (HOTTIP) in the onset of sepsis and the development of cardiac dysfunction. METHODS 120 patients with sepsis were recruited and divided into cardiac dysfunction group and non-cardiac dysfunction group. Serum HOTTIP levels were measured via RT-qPCR. AC16 cells were treated with lipopolysaccharide (LPS) for cell experiments and detected for cell viability and apoptosis. RESULTS High serum HOTTIP levels were tested in sepsis patients, which was associated with procalcitonin (PCT) level. Serum HOTTIP can identify sepsis cases from healthy people with the AUC of 0.927. 72 cases developed into cardiac dysfunction, accompanied by elevated levels of HOTTIP. ROC curve displayed the predictive ability of serum HOTTIP in the development of cardiac dysfunction in patients with sepsis. After adjusting for other clinical parameters, HOTTIP can independently affect the development of cardiac dysfunction. In vitro, HOTTIP knockdown promoted the recovery of cell viability and reversed LPS-induced cell apoptosis and excessive interleukin-6 (IL-6) release. CONCLUSION LncRNA HOTTIP is closely related to the condition of patients with sepsis and the development of cardiac dysfunction, possibly owing to its function in LPS-induced myocardial apoptosis and inflammation.
Collapse
Affiliation(s)
- Hao Fan
- Department of Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Han Shao
- Department of Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinyu Gao
- Department of Burn Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
7
|
Wang X, Ma C, Hou X, Zhang G, Huang Y. Circular RNA circ_0002984 Promotes Cell Proliferation and Migration by Regulating miR-181b-5p/Vascular Endothelial Growth Factor Axis and PI3K-AKT Signaling Pathway in Oxidized Low-Density Lipoprotein-Treated Vascular Smooth Muscle Cells. J Cardiovasc Pharmacol 2022; 79:501-511. [PMID: 34954748 DOI: 10.1097/fjc.0000000000001203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/20/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT RNAs (circRNAs) play critical roles in many diseases, including atherosclerosis (AS). However, the role and underlying mechanism of circ_0002984 in AS remain unclear. Vascular smooth muscle cells (VSMCs) treated with oxidized low-density lipoprotein (ox-LDL) were used as a AS cell model. Quantitative real-time polymerase chain reaction was conducted to detect the expression of circ_0002984, miR-181b-5p and vascular endothelial growth factor A (VEGFA). Cell proliferation was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide assay and 5-ethynyl-2'-deoxyuridine assays. Cell migration was assessed using wound healing assay and transwell assay. All protein levels were analyzed by western blot assay. The interaction between miR-181b-5p and circ_0002984 or VEGFA was confirmed by dual-luciferase reporter, RNA Immunoprecipitation, and RNA pull-down assays. Circ_0002984 and VEGFA were overexpressed, and miR-181b-5p was downregulated in serum of AS patients and ox-LDL-stimulated VSMCs. Circ_0002984 silencing inhibited ox-LDL-induced proliferation and migration in VSMCs. MiR-181b-5p was a target of circ_0002984, and miR-181b-5p inhibition counteracted the suppressing effects of circ_0002984 downregulation on proliferation and migration in ox-LDL-stimulated VSMCs. Additionally, VEGFA was a downstream target of miR-181b-5p and VEGFA upregulation abolished the suppressive influence of miR-181b-5p on proliferation and migration in ox-LDL-exposed VSMCs. Furthermore, circ_0002984 depletion blocked phosphatidylinositol 3 kinase-AKT signaling pathway by regulating miR-181b-5p and VEGFA. Circ_0002984 downregulation suppressed cell proliferation and migration by regulating miR-181b-5p/VEGFA axis and phosphatidylinositol 3 kinase-AKT pathway in ox-LDL-stimulated VEGFA, providing a new mechanism for AS pathogenesis.
Collapse
Affiliation(s)
| | - Chong Ma
- Cardiology, Heilongjiang Provincial Hospital, Haerbin City, Heilongjiang Province, China
| | | | - Ge Zhang
- Departments of Geriatric Neurology; and
| | | |
Collapse
|
8
|
Ke X, Zhang J, Huang X, Li S, Leng M, Ye Z, Li G. Construction and Analysis of the lncRNA-miRNA-mRNA Network Based on Competing Endogenous RNA in Atrial Fibrillation. Front Cardiovasc Med 2022; 9:791156. [PMID: 35141302 PMCID: PMC8818759 DOI: 10.3389/fcvm.2022.791156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Background Accumulated studies have revealed that long non-coding RNAs (lncRNAs) play critical roles in human diseases by acting as competing endogenous RNAs (ceRNAs). However, functional roles and regulatory mechanisms of lncRNA-mediated ceRNA in atrial fibrillation (AF) remain unknown. In the present study, we aimed to construct the lncRNA-miRNA-mRNA network based on ceRNA theory in AF by using bioinformatic analyses of public datasets. Methods Microarray data sets of GSE115574 and GSE79768 from the Gene Expression Omnibus database were downloaded. Twenty-one AF right atrial appendage (RAA) samples and 22 sinus rhythm (SR) subjects RAA samples were selected for subsequent analyses. After merging all microarray data and adjusting for batch effect, differentially expressed genes were identified. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out. A ceRNA network was constructed. Result A total of 8 lncRNAs and 43 mRNAs were significantly differentially expressed with fold change >1.5 (p < 0.05) in RAA samples of AF patients when compared with SR. GO and KEGG pathway analysis showed that cardiac muscle contraction pathway were involved in AF development. The ceRNA was predicted by co-expressing LOC101928304/ LRRC2 from the constructional network analysis, which was competitively combined with miR-490-3p. The expression of LOC101928304 and LRRC were up-regulated in myocardial tissue of patients with AF, while miR-490-3p was down-regulated. Conclusion We constructed the LOC101928304/miR-490-3p/LRRC2 network based on ceRNA theory in AF in the bioinformatic analyses of public datasets. The ceRNA network found from this study may help improve our understanding of lncRNA-mediated ceRNA regulatory mechanisms in the pathogenesis of AF.
Collapse
Affiliation(s)
- Xiangyu Ke
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Junguo Zhang
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xin Huang
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shuai Li
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Meifang Leng
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zebing Ye
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Zebing Ye
| | - Guowei Li
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University, Hamilton, ON, Canada
- Guowei Li
| |
Collapse
|
9
|
Yuan L, Wang D, Wu C. Protective effect of liquiritin on coronary heart disease through regulating the proliferation of human vascular smooth muscle cells via upregulation of sirtuin1. Bioengineered 2022; 13:2840-2850. [PMID: 35038972 PMCID: PMC8974169 DOI: 10.1080/21655979.2021.2024687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study aimed to explore whether liquiritin affects the development of coronary heart disease by regulating the proliferation and migration of human vascular smooth muscle cells (hVSMCs). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) release detection were performed to measure the toxic effects of liquiritin on hVSMCs. An in vitro atherosclerosis model in hVSMCs was established using oxidized low-density lipoprotein (ox-LDL), and cell proliferation and apoptosis were detected using an MTT assay and flow cytometry analysis. Western blotting and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) were used to detect protein and mRNA expressions, respectively. Caspase3 activity and cell migration were measured using an activity detection kit and Transwell assay, respectively. The results indicated that liquiritin at doses <160 μM had no significant effect on cell viability and LDH release in hVSMCs. Ox-LDL significantly induced cell proliferation and migration, and inhibited hVSMCs apoptosis. Liquiritin significantly inhibited cell proliferation and migration, and enhanced cell apoptosis in ox-LDL induced hVSMCs. Sirtuin1 (SIRT1) was lowly expressed in atherosclerotic plaque tissues in coronary heart disease patients and in ox-LDL-induced hVSMCs. Liquiritin improved SIRT1 expression in ox-LDL-induced hVSMCs, whereas the improvement was inhibited by Selisistat (EX 527, an effective SIRT1 inhibitor) treatment. EX 527 reversed the effects of liquiritin on cell proliferation, migration, and apoptosis in ox-LDL-induced hVSMCs In conclusion, liquiritin plays a protective role in coronary heart disease by regulating the proliferation and migration of hVSMCs by increasing SIRT1 expression.
Collapse
Affiliation(s)
- Liang Yuan
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dajie Wang
- Department of Cardiology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), Yancheng, China
| | - Chunyang Wu
- Department of Cardiology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), Yancheng, China
| |
Collapse
|
10
|
Ding Y, Yin R, Zhang S, Xiao Q, Zhao H, Pan X, Zhu X. The Combined Regulation of Long Non-coding RNA and RNA-Binding Proteins in Atherosclerosis. Front Cardiovasc Med 2021; 8:731958. [PMID: 34796209 PMCID: PMC8592911 DOI: 10.3389/fcvm.2021.731958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/07/2021] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a complex disease closely related to the function of endothelial cells (ECs), monocytes/macrophages, and vascular smooth muscle cells (VSMCs). Despite a good understanding of the pathogenesis of atherosclerosis, the underlying molecular mechanisms are still only poorly understood. Therefore, atherosclerosis continues to be an important clinical issue worthy of further research. Recent evidence has shown that long non-coding RNAs (lncRNAs) and RNA-binding proteins (RBPs) can serve as important regulators of cellular function in atherosclerosis. Besides, several studies have shown that lncRNAs are partly dependent on the specific interaction with RBPs to exert their function. This review summarizes the important contributions of lncRNAs and RBPs in atherosclerosis and provides novel and comprehensible interaction models of lncRNAs and RBPs.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruihua Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongqin Zhao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Long Non-coding RNAs: Potential Players in Cardiotoxicity Induced by Chemotherapy Drugs. Cardiovasc Toxicol 2021; 22:191-206. [PMID: 34417760 DOI: 10.1007/s12012-021-09681-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
One of the most important side effects of chemotherapy is cardiovascular complications, such as cardiotoxicity. Many factors are involved in the pathogenesis of cardiotoxicity; one of the most important of which is long non-coding RNAs (lncRNAs). lncRNA has 200-1000 nucleotides. It is involved in important processes such as cell proliferation, regeneration and apoptosis; today it is used as a prognostic and diagnostic factor. A, various drugs by acting on lncRNAs can affect cells. Therefore, by accurately identifying IncRNAs function, we can play an effective role in preventing the development of cardiotoxicity-induced chemotherapy drugs, and use them as a therapeutic strategy to improve clinical symptoms and increase patient survival.
Collapse
|
12
|
Weng G, Gu M, Zhang Y, Zhao G, Gu Y. LINC01123 promotes cell proliferation and migration via regulating miR-1277-5p/KLF5 axis in ox-LDL-induced vascular smooth muscle cells. J Mol Histol 2021; 52:943-953. [PMID: 34403009 DOI: 10.1007/s10735-021-10010-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/09/2021] [Indexed: 11/25/2022]
Abstract
The pathophysiological mechanism of carotid atherosclerosis (CAS) involves endothelial cell dysfunction, vascular smooth muscle cells (VSMCs), and macrophage activation, which ultimately leads to fibrosis of the vessel wall. lncRNA works weightily in the formation of CAS, but the function and mechanism of lncRNA LINC01123 in stable plaque formation are still equivocal. We collected blood samples from 35 CAS patients as well as 33 healthy volunteers. VSMCs treated with oxidized low-density lipoprotein (ox-LDL) were utilized as the CAS cell models. We applied qRT-PCR for detecting LINC01123, miR-1277-5p and KLF5 mRNA expression, CCK-8 method and BrdU test for determining cell proliferation, Transwell test for measuring cell migration, as well as Western blot for assaying KLF5 protein expression. Dual-luciferase reporter experiment was adopted for assessing the interaction between LINC01123 and miR-1277-5p, as well as KLF5 and miR-1277-5p. LINC01123 and KLF5 expression were dramatically up-regulated, while miR-1277-5p expression was down-regulated in CAS patients and ox-LDL-induced CAS cell models. Overexpressed LINC01123 notedly promoted VSMCs migration and proliferation. LINC01123 knockdown repressed cell proliferation and migration. Also, LINC01123 targeted miR-1277-5p and down-regulated its expression, while miR-1277-5p could negatively regulate KLF5 expression. LINC01123 is highly expressed in CAS patients, and promotes cell proliferation and migration via regulating miR-1277-5p/KLF5 axis in ox-LDL-induced VSMCs. It might be involved in the fibrous plaque formation.
Collapse
Affiliation(s)
- Guohu Weng
- Department of Encephalopathy, Hainan Provincial Hospital of Chinese Medicine, 47# Heping North Road, Haikou, 570203, Hainan, People's Republic of China
| | - Minhua Gu
- Department of Cardiology, Hainan Provincial Hospital of Chinese Medicine, Haikou, 570203, Hainan, People's Republic of China
| | - Yifan Zhang
- Department of Encephalopathy, Hainan Provincial Hospital of Chinese Medicine, 47# Heping North Road, Haikou, 570203, Hainan, People's Republic of China
| | - Guangfeng Zhao
- Department of Encephalopathy, Hainan Provincial Hospital of Chinese Medicine, 47# Heping North Road, Haikou, 570203, Hainan, People's Republic of China
| | - Yong Gu
- Department of Encephalopathy, Hainan Provincial Hospital of Chinese Medicine, 47# Heping North Road, Haikou, 570203, Hainan, People's Republic of China.
| |
Collapse
|
13
|
Myocardial Infarction-associated Transcript Knockdown Inhibits Cell Proliferation, Migration, and Invasion Through miR-490-3p/Intercellular Adhesion Molecule 1 Axis in Oxidized Low-density Lipoprotein-induced Vascular Smooth Muscle Cells. J Cardiovasc Pharmacol 2021; 76:617-626. [PMID: 33165137 DOI: 10.1097/fjc.0000000000000901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Emerging evidence has demonstrated that long noncoding RNAs are related to the pathogenesis of atherosclerosis. We aimed to investigate the roles and molecular mechanisms of myocardial infarction-associated transcript (MIAT) in the proliferation, migration, and invasion of oxidized low-density lipoprotein (ox-LDL)-induced vascular smooth muscle cells (VSMCs). Quantitative real-time polymerase chain reaction was conducted to determine the levels of MIAT, microRNA490-3p (miR-490-3p), and intercellular adhesion molecule 1 (ICAM1). Cell Counting Kit-8 assay was performed to assess cell proliferation. Transwell assay was used to evaluate cell migration and invasion. Western blot assay was performed to measure the protein levels of proliferating cell nuclear antigen, N-cadherin, matrix metalloprotein-9, and ICAM1. Dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays were conducted to verify the relationship between miR-490-3p and MIAT or ICAM1. MIAT was elevated in atherosclerosis patients' serum and ox-LDL-induced VSMCs. MIAT knockdown suppressed cell proliferation, migration, and invasion in ox-LDL-stimulated VSMCs. MIAT acted as a sponge of miR-490-3p, and miR-490-3p deficiency overturned the inhibition of MIAT knockdown on VSMC proliferation, migration, and invasion. ICAM1 was a direct target of miR-490-3p, and ICAM1 silencing repressed the proliferation, migration, and invasion of ox-LDL-stimulated VSMCs. Moreover, ICAM1 overexpression reversed the impacts of MIAT knockdown on ox-LDL-induced VSMC proliferation, migration, and invasion. MIAT knockdown could depress cell proliferation, migration, and invasion through miR-490-3p/ICAM1 axis in ox-LDL-induced VSMCs.
Collapse
|
14
|
Li Y, Li H, Chen B, Yang F, Hao Z. miR-141-5p suppresses vascular smooth muscle cell inflammation, proliferation, and migration via inhibiting the HMGB1/NF-κB pathway. J Biochem Mol Toxicol 2021; 35:e22828. [PMID: 34128295 DOI: 10.1002/jbt.22828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/20/2021] [Accepted: 05/18/2021] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) have been identified as significant modulators in the pathogenesis of atherosclerosis (AS). Additionally, the dysregulation of vascular smooth muscle cells (VSMCs) is a crucial biological event during AS. Our study aimed to explore the functional roles and molecular mechanisms of miR-141-5p in VSMCs dysfunction. C57BL/6 mice were used to establish AS animal model. Human VSMCs were treated by oxidized low-density lipoprotein (ox-LDL) to establish AS cell model. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to probe miR-141-5p and high-mobility group box 1 (HMGB1) mRNA expressions in VSMCs or plasma samples of the mice. Inflammatory cytokines were detected by enzyme-linked immunosorbent assay kits. Cell counting kit-8 and bromodeoxyuridine assays were performed to evaluate cell proliferation. Cell migration and apoptosis were detected with Transwell assay and flow cytometry analysis, respectively. The target gene of miR-141-5p was predicted with the TargetScan database, and the interaction between miR-141-5p and HMGB1/nuclear factor-κB (NF-κB) was further validated by dual-luciferase reporter assay, qRT-PCR, and Western blot analysis. miR-141-5p was found to be decreased in the plasma of patients and mice model with AS. Its expression was also downregulated in VSMCs treated by ox-LDL. miR-141-5p overexpression inhibited the inflammation, proliferation, migration of VSMCs, and promoted the apoptosis of VSMCs. HMGB1 was identified as a direct target of miR-141-5p, and miR-141-5p could repress the activity of HMGB1/NF-κB signaling. HMGB1 restoration reversed the effects of miR-141-5p, and NF-κB inhibitor JSH-23 showed similar effects with miR-141-5p mimics. miR-141-5p inhibits VSMCs' dysfunction by targeting the HMGB1/NF-κB pathway, which probably functions as a protective factor during the development of AS.
Collapse
Affiliation(s)
- Yadong Li
- Department of Emergency, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haide Li
- Department of Cardiovascular Medicine, Linyi Central Hospital, Linyi, Shandong, China
| | - Bin Chen
- Department of Cardiovascular Medicine, Linyi Central Hospital, Linyi, Shandong, China
| | - Fan Yang
- Department of Cardiovascular Medicine, Linyi Central Hospital, Linyi, Shandong, China
| | - Zhiying Hao
- Department of Pharmacy, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
15
|
Pu Y, Zhao Q, Men X, Jin W, Yang M. MicroRNA-325 facilitates atherosclerosis progression by mediating the SREBF1/LXR axis via KDM1A. Life Sci 2021; 277:119464. [PMID: 33811891 DOI: 10.1016/j.lfs.2021.119464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/19/2021] [Accepted: 03/27/2021] [Indexed: 02/08/2023]
Abstract
AIMS MicroRNA-325 (miR-325) was significantly upregulated in diabetic atherosclerosis, while its specific role in atherosclerosis has not been established. The present study was set to probe the effects of miR-325 on the atherosclerosis progression and to explore the mechanisms. MATERIALS AND METHODS The ApoE-/- mouse with atherosclerosis was developed to detect the miR-325 expression in atherosclerotic plaques. The pathological symptoms of atherosclerotic mice were observed by injection of miR-325 mimic or inhibitor. Subsequently, the levels of CRP, IL-6, IL-1β and TNF-ɑ in mouse serum were measured by ELISA. Then, miR-325 was overexpressed or silenced in RAW264.7-derived foam cells (FCs), and cholesterol efflux and lipid content were evaluated. Furthermore, miR-325 expression was altered in HA-VSMCs to measure viability and apoptosis. The targets of miR-325 were predicted in a bioinformatics website, and the expression of KDM1A, SREBF1 and PPARγ-LXR-ABCA1 in mouse arterial tissues and cells was detected, followed by rescue experiments. KEY FINDINGS miR-325 was elevated in arterial tissues of atherosclerotic mice, and miR-325 inhibition in mice reduced the contents of total cholesterol, triglyceride, low-density lipoprotein, and CRP, IL-6, IL-1β and TNF-ɑ levels in mouse serum. miR-325 inhibitor facilitated the cholesterol efflux and decreased the lipid content in RAW264.7 cells, and also diminished HA-VSMC viability. miR-325 targeted KDM1A to reduce SREBF1 expression, and further KDM1A suppression inhibited cholesterol efflux in RAW264.7 cells and the activation of PPARγ-LXR-ABCA1 pathway. SIGNIFICANCE miR-325 lowers SREBF1 expression by decreasing KDM1A expression, thereby inhibiting the activation of the PPARγ-LXR-ABCA1 pathway and thus promoting atherosclerosis.
Collapse
Affiliation(s)
- Yanhua Pu
- Department of General Family Medicine No.1, The Fourth Hospital of Jinan, Jinan 250031, Shandong, PR China
| | - Qian Zhao
- Department of General Family Medicine No.1, The Fourth Hospital of Jinan, Jinan 250031, Shandong, PR China
| | - Xuelin Men
- Department of Respiratory Medicine, The Fourth Hospital of Jinan, Jinan 250031, Shandong, PR China
| | - Wei Jin
- Department of Catheter Room, The Fourth Hospital of Jinan, Jinan 250031, Shandong, PR China
| | - Min Yang
- Department of Ultrasound Diagnosis, The Fourth Hospital of Jinan, Jinan 250031, Shandong, PR China.
| |
Collapse
|
16
|
Vinchure OS, Kulshreshtha R. miR-490: A potential biomarker and therapeutic target in cancer and other diseases. J Cell Physiol 2020; 236:3178-3193. [PMID: 33094503 DOI: 10.1002/jcp.30119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function as posttranscriptional gene regulators. Among a pool of >2600 known human mature miRNAs, only a small subset have been functionally interrogated and a further smaller pool shown to be associated with the pathogenesis of a variety of diseases suggesting their critical role in maintaining homeostasis. Here, we draw your attention to one such miRNA, miR-490, that has been reported to be deregulated in a myriad of diseases (23 diseases) ranging from cardiomyopathy, depression, and developmental disorders to many cancer types (28 cancer types), such as hepatocellular carcinoma, gastric cancer, cancers of the reproductive and central nervous system among others. The prognostic and diagnostic potential of miR-490 has been reported in many diseases including cancer underlining its clinical relevance. We also collate a complex plethora of epigenetic (histone and DNA methylation), transcriptional (TF), and posttranscriptional (lncRNA and circRNA) mechanisms that have been shown to tightly regulate miR-490 levels. The targets of miR-490 involve a range of cancer-related genes involved in the regulation of various cancer hallmarks like cell proliferation, migration, and invasion, apoptotic cell death, angiogenesis, and so forth. Overall, our in-depth review highlights for the first time the emerging role of miR-490 in disease pathology, diagnosis, and prognosis that assigns a unique therapeutic potential to miR-490 in the era of precision medicine.
Collapse
Affiliation(s)
- Omkar Suhas Vinchure
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
17
|
Abstract
OBJECTIVE This study investigated the potential microRNAs (miRNAs) having a diagnostic value in atrial fibrillation (AF). METHODS The miRNA and mRNA expression profiles of atrial tissue from healthy individuals and patients with AF were downloaded from the Gene Expression Omnibus database. Differentially expressed miRNAs/mRNAs (DEMis/DEMs) were identified in patients with AF. Furthermore, an interaction network between DEMis and DMEs was constructed. The biological processes, molecular functions, and signaling pathways of DEMs were enriched. Then, the diagnostic values of candidate DECs among healthy individuals and patients with AF were preliminarily evaluated in the GSE101586, GSEE101684, and GSE112214 datasets. RESULTS Twenty DEMis were identified in patients with AF, including seven upregulated and 13 downregulated DEMis. Furthermore, 2,307 DEMs were identified in patients with AF. In the DEMi-DEM interaction network, downregulated miR-193b and upregulated miR-16 interacted with the most targeted DEMs, which interacted with 72 and 65 targeted DEMs, respectively. The targeted DEMs were significantly enriched in biological functions including apoptosis and the PI3K-Akt, mTOR, Hippo, HIF-1, and ErbB signaling pathways. Four of the 20 DEMis (i.e., miR-490-3p, miR-630, miR-146b-5p, and miR-367) had a potential value to distinguish patients with AF from healthy individuals in the GSE68475, GSE70887, and GSE28954 datasets. The area under the curve values for those four DEMis were 0.751, 0.719, 0.709, and 0.7, respectively. CONCLUSION DEMis might play key roles in AF progression through the mTOR and Hippo signaling pathways. miR-409-3p, miR-630, miR-146b-5p, and miR-367 had a potential diagnostic value to discriminate patients with AF from healthy controls in this study.
Collapse
|